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The problem of nonlinear response is considered by employing a general time-evolution equation,
and a Green's function which is the transition or conditional probability density for an unperturbed

system. Expansion of the Green's function in terms of orthonormal functions enables us to express
the distribution function describing the nonlinear behavior by means of matrix products whose ele-

ments are composed of correlation functions in the absence of the perturbation. In other words, it is

shown how the distribution function induced by a strong perturbation may be calculated by knowing
the Green's function without the perturbation. As the special case of the linear response, we have
obtained Kubo s relation. The Laplace-transform technique with respect to time is found quite use-

ful in developing the present theory in which the transient effect is also taken into account. As an

application of the theory, a new relation valid in the region of the second-order perturbation con-

necting the transient rise and decay with the stationary alternating perturbations has been obtained.

INTRODUCTION

Although the general theory of linear response is avail-
able and widely used to interpret various phenomena, '

that of nonlinear response has been in an infant stage.
This paper is devoted to shedding light on the latter.

Instead of starting from the Liouville equation for the
distribution function, which Kubo took in developing his
theory of linear response, ' we use a general evolution
equation for a classical system, and consider how a system
may respond to a strong external perturbation. By intro-
ducing a Greens function which is the transition- or
conditional-probability density for the evolution equation
without the perturbation, and expanding it in terms of
orthonormal functions, we find terms characterizing the
nonlinear responses with matrix products consisting of
correlation functions obtained without taking into account
the perturbation. In other words, we show how the non-
linear terms in the distribution function induced by the
strong perturbation may be calculated once the
transition-probability density (the Green function) is ob-
tained without considering the perturbation.

The transient processes are included in the present
theory. As an application, we have shown for a physical
variable observed in the second-order perturbation region
how the transient rise and decay experiments are related
to the observable arising from a stationary alternating per-
turbation.

Previously we have considered the transient behavior of
the electric polarization and birefringence by using the
Smoluchowski equation for a rigid symmetric body which
undergoes the rotational Brownian motion. The Smolu-
chowski equation was expanded by means of Legendre po-
lynomial, and the Laplace transform technique with
respect to time was employed. It was shown that in some
cases, the Laplace transforms of the electric polarization
and birefringence have been expressed exactly in terms of
an infinite continued fraction. We suggested that the
technique of the Laplace transform and the continued

fraction might play a significant role in considering the
nonlinear relaxation phenomena. This point is also appre-
ciated in a later work. In the present study, we take a
similar approach in developing the general theory except
when introducing the Green function. New general inter-
pretations of various nonlinear relaxation phenomena
using results of the present work will be made in future
publications. At the same time, new phenomena predict-
ed theoretically from the work will be considered.

THEORETICAL FORMALISM

We shall calculate the distribution function f(x, t)
satisfying the following evolution equation:

Bf(x,t) =[Dp(x)+sp(t)D](x)jf (x,t),

and to obtain the average value ((B(t))) of a physical
variable B(x) by using

((B(t)))=IB(x)f(x, t)dx, (2)

where x is a set of variables other than the time t specify-
ing f(x, t), Do(x) and D&(x) are unperturbed and per-
turbed operators, respectively, p(t) is a function of t, s is
the small parameter, and (( )) and ( ) represent
the ensemble averages with and without considering the
perturbation, respectively. The Fokker-Planck and Liou-
ville equations can be written as given in Eq. (1). The
complete statistical-mechanical information on the unper-
turbed system is contained in the conditional-probability-
density function or the transition-probability density
g (x,x', t, t ') which satisfies

Bg (x,x', t, t')
Bt

=Do(x)g (x,x', t, t')

with the initial condition

g(x,x', t, t')=5(x —x') at t =t',
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where 5(x) is Dirac's 5 function.
At this stage, it is appropriate to obtain some of impor-

tant properties of g(x,x', t, t'). To this end, by putting
t'=0, taking the Laplace transform of both sides of Eq.
(3}with respect to t, and using Eq. (4), we find that

[s —Do(x)]G(x,x', s) =5(x —x'),

whose inverse transform gives

f(x,t)= f g(x,x', t,O)fo(x')dx'

+c g x,x', t —t', 0

XDi(x')p(t') f(x', t')dx'dt',

where fo(x) =f(x,O), and F(x,s) =W[f(x, t)].
To go further, by calculating

G(x,x',s) =W[g (x,x', t, O)]

g(x,x', t,O)e "dt .
0

f(x, t) =fo(x)+ ef &(x,t)+e2f2{x,t)+
(6)

we have the hierarchy of equations
The tilda above the symbol indicates the Laplace
transform with respect to t. It should be pointed out here
that G(x,x', s) can be regarded as Green's function for the
operator [s —Do(x}]. Hence after taking the Laplace
transform of both sides of Eq. (1), we can write it in the
integral equation

F(x,s)= f G(x,x', s)fo{x')dx'

fi(x, t) =f f g (x,x', t —t')D, (x')p(t') f,(x')dt'dx',

(10)

f, (x,t)= f g(x,x', t t')D, (x—')p(t') f, ,(x', t')dt'dx'

(j =2,3,4, . . . ) (11)

+E x,x~sD) x t x, f x (7) which lead to

fj(x,t)= f f . f dt, dt, dt, f f . f dx~ dx2 dx g(x,x~, t —t~)D~(x~)
t&r& &t2p &s &0

Xg (x] )xipt] —t2)Di(x2) ' ' ' g (x~ ),x~&tj i
—tj )

XDi(x, )fo(x, )p(ti)p(ti) p(t, ) . (12)

By using the relation

Do(x)fo(x) =0
and Eq. (5), it follows that

fo(x)= f g(x,x', t~O)fo(x')dx',

which should be in view of the facts that g (x,x, t) is the transition probability and fo(x) is the equilibrium distribution
function in the absence of the perturbation. We introduce a set of orthonormal eigenfunctions g„(x) which satisfies the
eigenequation

Do(x)g„(x)= —A,„g„(x)

with the eigenvalue —I,„. Then by writing

(13)

5(x —x') =gg„(x)g„*(x')

and using Eq. (13), we find from Eq. (S) after translating the origin of t from 0 to t' that

g(x,x', t, t')=g(x, x', t —t')=pe " g„(x)g„'(x') . (14)

Therefore, it follows by substituting Eq. (14) in Eq. (12) and carrying out integrations that

fj(x t)= f f.. . f gD(t t))D(t) t2) . —. D(tj 2 tj i)f(tj (
—t )—pj(t))p(t ) i.p—(tj)dtidt2 dtj

t)fl & ' Pt &0
(15)

g=[gisg2rg3~ ] ~



34

'(g i »ifo)
'(g2, Difo}

'(g3 Difo)

(g i'(t}
I Difo}

(g2 (t) IDifo)

(g3 (t}
I Difo)

P

&g", (t)Q(x) &

&g2 (t)Q(x}&

&g3 (t)Q(x) &

D(t}=
31

d)2 d)3

d2z dz3

d32 d3i

in which n =1,2, 3, . . . have been taken and

Di(x)fo(x) =Q(x)fo(x),

d;, (t)=e '(g;,Digj)=(g; (t) ~Dig, )=&g; (t)il;&
(19)

In the foregoing equations,

(A', 8)=f A'(x)8(x)dx,

(A'(t) ~8}=f f A "(x)g(x,x', t)B(x')dx'dx,

&A'(t)B&={A'(t) ~Bf,),
Di(x)gj(x) =rlj(x)fo(x) .

The difference between (A'(t) ~8) and the correlation function &A "(t)B& should be noted. In the special case where

fo(x) is independent of x, (A '(t)
~
8) is equivalent to & A '(t)B &. Hence, it has been shown that once g (x,x', t, t') is ob-

tained or a stochastic equation without the perturbation is solved with the initial condition, we can determine (A *(t)
~

8)
and & A'(t)B & and finally fj(x, t) from Eqs. (15)—(19).

Equation (15) leads to

a(t)= e f f(t ti)p(ti)dti+" f—f D(t —ti)f(ti —t2)p(ti)p(t2)dt2dti
t El f2

+~ D ~ ~} D ~] ~2 ~2 ~3 p t~ p &2 p &3 t3 ~2 ~] + (20)

where

in which

«gi (t)» —&gi &o

«g'(t) » —&g2 &0

«g,'(t) »-&g; &.

sider the latter processes of (a) transient rise and (b) decay
where p(t)~po is time independent. The transient rise
experiment is carried out by suddenly applying po at t =0
whereas the transient decay is obtained by applying po for
sufficiently long time then suddenly at t =0 it is switched
off. On taking the Laplace transform of both sides of Eq.
(15), we find that

&
g' &o=(g' fo) . J

FJ"'(x,s)=W[f~"(x,t)]= gD J '(s)f(s},
5

(23}

In the Appendix, it has been shown that a(t) obtained
without using the Green function agrees fully with that in
Eq. (20), which gives a check of the validity of Eq. (15)
from a different approach, although this approach does
not allow the physical interpretation of d J(t) in Eq. (19).

DISCUSSION

The present formulation takes into account not only the
aged system where the perturbation was switched on at
t = —00, but also the transient response. First let us con-

D(s) =W[D(t)],

f(s) =W[f(t)] .

Hence it follows that

(p) 1 1
)=—f.( )+—p.g+(.)f(.),5 S (24)
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where

+'(s) = g s'pjoD(s) = [X—EpoD(s)]
j=0

(25)

in which I is the identity matrix. It is immediately seen

that once the diagonalization of D(s) is made, we can

write F"(x,s) in the closed matrix form whose inverse

Laplace transform gives f'"'(x, t). Also it should be noted

from Eq. (A4) in the Appendix that A(s) =W[a (t)] satis-

fies the relation

[I—epoD(s)]A (s)= f(s)

f.,(x)= »m f'"(x,t)=hm [sF"(x,s)]
&~ ce s —+0

which is also obtained directly from Eq. (25). It is some-

times useful to calculate A(s} from this relation.
The equilibrium distribution function f,q(x) with the

time-independent perturbation po can be obtained at once
from Eq. (24},

It is evident that for e « 1,

f'"(x,t)+f'"'(x, t) =fo(x)+f,q(x) (32)

which is the well-known symmetrical relation between the
transient rise and decay in the linear regime and the corre-
lation function matrix f(t}determines the dynamical pro-
cess.

Now, let us consider the second-order response from

the perturbation. Equation (23) gives rise to
2

F 2"'(x,s) = gD(s)f(s),
s

(33)

whereas Eq. (29} leads to the following expression:

2

F 2 '(x,s) = g[D(0)—D(s}]f(0)
s

2

lim f2"'(x, t) — gD(s)f(0) .
S t~ce

(34)

Hence it is seen that F &
'(x,s} is determined from D(s),

whereas F2"'(x,s) from both D(s} and f(s) and the

symmetrical relation like Eq. (32) no longer holds in the

first nonlinear term.
Next, we consider the case where an alternating pertur-

bation

=fo(x}+spog@(0)f(0) . (26) p (t) =po Gos(cot), (35)

The distribution function for the transient decay
f' '(x, t) is obtained from the relation

[s —Do(x)]F ' '(x,s)=f,„(x)

which leads to

F'"'(x s)=W[f' '(x, t)]

6 xx,s eq &

is applied at t =0. It follows from Eq. (15) that
ff' (x, t) =pog f f(t t')cos(to—t')dt',

f2'(x, t)=pog f, f, D(t t, )f(t, —t,)—
)(cos(cot| )cos(cot2)dt2 dt)

In the limit of t~ oo, it can be shown that

lim f'&"(x, t) =f'&"'(x, t)
f~ ce

=X'(to)cos(tot)+g "(t0)sin(cot),

(36)

(37)

(38)

In view of Eq. (26), we find that

f' '{x t) =fo(x)+spog'"'(t)@(0)f(0)

—k )t —g2g —A, fg(d) (e &g e 2g e 3g )

(29}

lim f2"(x, t) =ft"'(x, t)
&~ ce

= ao(to)+a2(to)cos(2tot)

+Pt(co)sin(2tot),

where

(39)

f'"'( xt)=f o{x) +epgof f(t')dt'+O(e2) (30)

f'"'(x, t) =fo(x) +spog f(0)—f f(t')dt' +0 (s )

It should be noted that when the linear response is con-
sidered so that higher-order perturbation terms than e are
neglected, we have

4'(s) =4(0)= I
which leads to

(40a)

(40b)

(41a)

ce ce

P2(to)= —,pog D(t&)f(tz)sin[co(2t&+t2)]dtjdt2 .

&'(to) =pog f f(r)cos(tot)dt,

&"(~)=pog f, f(t)sin(~t)dt,

cto(to) =
2 pog f D(t)dt f f(t)cos{cot)dt,

ce ce

crt(~0) =
q pog o

D(t j)f(tq)cos[m(2t&+tz}]dt&dt2,

=f~(x) spog f f{t')d—t'+O(e ) . (31)
It is seen immediately from Eqs. (30) and (36) that since
f' (x, t) and fI"'(x,t) for the transient rise and alternat-
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ing perturbation, respectively, are derived from the same
matrix f( t),

x, t cos Q)t dt = —g Qp (42a}

co fI"'(x,t)sin(cot)dt =X'(co) .
0

(42b)

These are the well-known results stating that X'(co} and
X"(co) may be obtained either from the transient rise or
decay experiment after carrying out the integration in Eq.
(36). To extend this approach to the nonlinear response,
we note that

a2(co) iP—(co)= —,'p(g f f D(t) )f(t2)
—iso(2t& +f2)

&(e dt& atz (43)

2 do JO
1 ~(r)( )

po g egJ J

s(s+ A,„)
2 do 0

jg (r)( ) ~[y(r)( )]
0 y &J J

s (s +A,„) . s +A.J

(44a)

(44b)

p„"'(oo )= lim g'„'(t), d„J =(g„',D,gJ),t~ ao

and confine ourselves to the physical variable g„'(x)
whose contribution to the average value from f2(x, t) is
denoted by

P„(t)=f g„'f2{x,t)dx .

It follows from Eqs. (33) and (34) that for the transient
rise and decay responses

4 (')(s) =W[li„")(t)]

and transient nonlinear responses of the physical variable
g„'(x) caused by the perturbation. It is important to note
that Eqs. (45) are valid quite generally and independent of
stochastic models as far as the same ()'J„(t) is measured
with different kinds of experimental perturbations. Equa-
tions (45) enable us to set up an instrument measuring the
transient rise and decay processes (the time-domain mea-
surement) and giving rise to data in frequency domain, al-

though the relation becomes more complicated than the
linear case.

By comparing Eqs. (45a) with (4la), one may be tempt-
ed to say that since the frequency-dependent parts of both
X'(co) and ao(co) are essentially determined from f(t)
through Eq. (45a) and

&' '(co)={g',X'(co))=poRe
1CO+ A,~

(46)

Bf(x t)
[ (47)

where H is the Hamiltonian of a system and [A,B] is the
Poisson bracket, and f, (x, t) obtained for the aged system.
Equation (12) of our treatment leads in the limit of linear
response to

f(x, t) fo(x) =f, (x—, t)
t

g x,x', t —t'

the frequency dependencies are equivalent. But this is not
always possible unless

0 0
dl!JfJ c5lflJ

where c is a constant, and 5;J is the Kronecker 5.
Kubo treated the linear response starting from the fol-

lowing Liouville equation

fJ'=(gJ D)fo) .

By putting s =ico, and 2i co in Eq. (44a) and s =i co in Eq.
(44b), we find from Eqs. (41a) and (43),

0 0

a," (~)= -, pO Re() z

) co +A,J.

qJ (r)( )y(r)( )
=2 Re Ico (45a)

P'„"'( oo ) i co+ '„"'(ico—)

0 0

ap"'(co } i P'z"'(co —}= z po
2& N +k~ ~ l co +A,J

, i coqJ „'(ico)—

(t)(t) =(B(t)
~
D)f()) (48)

It should be noted that P(t) is independent of the eigen-
function, g„(x). In other words, ct)(t) can be written if
(B(t)), is obtained and it is integrated with D)(x')f0(x'),
where (B(t)), is the conditional average defin(xl by the
equation

( B(t)),=f B(x)g (x,x', t t'}dx . —

&& D, (x')fO(x')p (t')dt'dx'

which immediately enables us to write for a physical vari-
able B(x):

((B(t)))—(B),=f '(t)(t t )p(t—')dt'

where

where

(tJ'„'( oo ) 2i co(P '„'(2—i co)

f'„"'( oo ) i co%"„'(ico—)
(45b) Kubo obtained the following expression for the function

corresponding to P(t) [see Eq. (2.11) of the second paper
of Ref. 1):

aI"'(co)=(g„,at{co)) (I =0 or 2),
P~"'(co)=(g,', )()l2(co ) ) .

These are new results relating the stationary alternating

QJc(t) = —f [A,f()]B(t)dx'

where he treated for

H =HO —Ep(t)A .
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If we write Eq. (47) by using our notation, we see that APPENDIX: ANOTHER DERIVATION OF Eg. (20)

On substituting Eq. (9) directly in Eq. (1), we find that

dfj(x, t)
=D,(x)f, (x, t)+ ep (t)D i(»fJ i(x—')

from which it follows that

P(t)= —(8(t)
i [A,fo]) .

By comparing Eq. (50) with (51), it is seen that 8(t) in
Kubo's case is corresponding to the conditional average
(8(t) ), in the present work, which is the same in the spe-
cial case of the deterministic process described by the
Liouville equation where the transition probability
g(x,x', t, t') becomes a 5 function. Our case includes sto-
chastic processes as well, and the Liouville operator for-
malism or the Poisson bracket formalism requires special
consideration in obtaining further expressions for (()~(t) as
demonstrated by Kubo such as the conservation of the ele-
ment of the phase space.

It is particularly comforting to find that the results of
the present treatment lead to those of the previous special
example of the nonlinear process arising from the rota-
tional Brownian motion of a rigid symmetric body.

which leads to

——D,(x)—sp(t)Di(x) [f(x, t) —fo(x) j

And by expanding

=ep(t)Di(x)fo(x) . (A2)

f(x, t) —fo(x) =g a„(t)g„(x) (A3)

a„(t)= ((g„'(t) )) —(g„"), ,

and integrating the resulting simultaneous differential
equations for a„(t), we have

a(t)= e f f(t t')p(t'—)dt'
t

+e f D(t t')a(t')p—(t')dt', (A4)

from which Eq. (20) is derived after carrying out
Piccard's successive integrations.
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