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First-passage times for non-Markovian processes: Correlated impacts on a free process
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%e develop a method to obtain first-passage-time statistics for non-Markovian processes driven

by dichotomous fluctuations. The fluctuations themselves need not be Markovian. %'e calculate an-

alytic first-passage-time distributions and mean first-passage times for exponential, rectangular, and

long-tail temporal distributions of the fluctuations.

I. INTRODUCTION

The statistical analysis of the occurrence of extreme
events is a venerable subject in the area of stochastic pro-
cesses. ' For example, in many applications in the phys-
ical sciences and engineering it is necessary to estimate the
time at which a process first crosses a preassigned value,
i.e., the first-passage time. Examples include "false
alarm" problems in which an alarm is triggered when a
fluctuating current or voltage exceeds a given value;
chemical rate processes that require a reactant to cross a
potential barrier ' mechanical structures that collapse
if they vibrate at an amplitude exceeding a stability
threshold; ' the fatigue failure of ductile materials due to
cracks, ' and measures of statistical fiuctuations in
lasers. '

The importance of analytic procedures for calculating
mean first-passage times (and other first-passage-time mo-
ments) has long been recognized. Such techniques are
particularly important in this case because the numerical
analysis of "extreme" events (e.g., via simulations or
Monte Carlo methods) is usually prohibitively expensive
and time consuming ' extreme events are, by defini-
tion, rare and require a large number of long runs to pro-
vide significant statistics. It is this same rarity of oc-
currence that helps one in the theoretical analysis of such
processes because many tools of asymptotic analysis can
be brought to bear on the problem. ' '

The existing theory of first-passage times (and other ex-
trema statistics) is well understood in only a limited num-
ber of situations. The theory is fully developed for in-

dependent random processes. ' For dependent processes,
on the other hand, most theories deal only with diffusive
single-variable Markov processes, i.e., those that are
described by a Fokker-Planck or master equation in which
the phase space is specified by only one variable. Re-
cently a great deal of progress has been made in the
theory of first-passage times for multivariable diffusive
Markov processes using the methods of singular perturba-
tion theory. ' Some progress has also been made for
nondiffusive (e.g., Levy) Markov processes, but here the

results are so far approximate and restricted to one-
dimensional processes with no restoring force. ' '

Recently there has been a great deal of interest in the
extension of the theory of first-passage times to non-
Markov processes, i.e., to processes whose dynamics are
influenced by memory effects. The physical motiva-
tion for this interest is clear: in many systems the time
scales of variation of the fiuctuations induced by the envi-
ronment are not well separated from those of the system
of interest. Such time-scale effects have been a recurrent
theme in areas as diverse as chemical rate processes in
fluids, the stochastic description of the dynamics of
large scale hydrodynamic structures, ' the description
of energy transport in condensed media, and the statisti-
cal analysis of the light emitted by a dye laser near thresh-
old, to name a few. ' ' ' In spite of this interest, the
theoretical progress in the area has been limited. In some
theories, an effective Markovian equation to approximate
the non-Markovian system is used, and the usual methods
are then brought to bear. ' One expects that these
methods are perhaps appropriate when the memory ef-
fects are small, i.e., in some perturbative sense. These
methods are never exact except in the Markov limit. In
other theories a formalism has been presented whose ap-
plication depends on the construction of operators for
which a readily implemented prescription is not avail-
able. These theories have in fact only been implemented
for systems driven by dichotomous Markovian fluctua-
tions.

In this paper we consider the simplest dynamical sys-
tem driven by external dichotomous (not necessarily Mar-
kovian) fluctuations with a fimte correlation time. ' In
this system we are able to obtain analytic expressions for
the mean first-passage time to cross a given amplitude for
arbitrary correlation times of the fluctuations. To our
knowledge, ours are the first such exact analytic results
available for non-Markovian fluctuations. Our method is
different from those used before and relies on the explicit
construction of trajectories. %e are able to keep track of
each trajectory and in particular we follow those that
cross the given amplitude at each time interval. %'e stress
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that the problem we shall consider does not describe a
thermodynamically closed system, i.e., the correlatcxl fluc-
tuations are external ones.

In Sec. II we outline the formal model. In Sec. III we
obtain the equations satisfied by the first-passage-time
probability density. In Sec. IV the formalism is applied to
various specific examples and explicit first-passage distri-
butions and mean first-passage times are obtained. The
results are discussed in Sec. V.

where A,, ' and A, & are the average residence times in the
states F(t)=a and —b .Thus A,, ' and Ai,

' are average
times between switches, and a A,b b——X, .Our first-
passage-time theory is the first not to be restricted to
these forms.

In this paper we shall restrict ourselves to processes for
which f(X)=0 and g(X)=1, i.e., to unconstrained "Ein-
stein" processes, such as a free process subjected to ran-
dom impacts:

II. THE MODEL X=F(t) . (2.3)

Consider a one-dimensional random process X(t) whose
dynamical evolution is specified by the differential equa-
tion

X=f(X)+g(X)F(t) . (2.1)

p. (t) =A.e gb(t) =A,,e (2.2)

The random variable F(t) is a dichotomous (not necessari-
ly Markovian) process, alternately taking on the value a
and —b with a, b ~ 0. The times that the variable F(t) re-
tains the values a and —b are respectively governed by
the distributions p, (t) and 1(i,(t). If F(t) is a dichoto-
mous Markov process, then these distributions are ex-
ponential,

The generalization to bound processes will be presented
elsewhere. The random process X(t) can take on all real
values —00 (X(t)( ce, and we wish to calculate the dis-
tribution of times for X(t) to first cross the levels +z. In
particular, we are interested in the mean value of this dis-
tribution, i.e., in the mean first-passage time to

~
X(t)

~

=z. Let us begin the process at X(t =0)=xo,
with —z &xo &z. Our procedure is based on the fact that
the process evolves from this initial state in a series of
steps that can be used to construct an actual trajectory by
direct integration for any particular realization of F(t)
Suppose, for example, that F(0)=a. Then we have the
following trajectory:

Xo+at, 0&t &tl,
xo+ati —6(t —ti), ti &t (ti+t3,
xo+ati bt2+a(t —t2 ti), —t,—+t2 &t (t, +t2+t3

3 4

xo+ati —&t2+at3 b(t —t3 ——t2 —ti ), g tj (t ( g +J,
j=l j=1

4 5

xo +at] bt2 +at3 bt4+a t g tj, g—tj & t & g tjXt= j=1 j=1 j=1
~ 0 ~ ~ ~ ~

(2A)

k/2 k —1

x, bt+(a +b) g t»—„gt, & t
/=1 j=l
k/2 k

xo+at —(a +b) g t2t, g tj & t &
l=l j=1

k

& g t~, with k even,
j=l

k+1
g tj, with k even (k & 2),
j=l

The time intervals t„are governed by the distributions

P, (t) and Pt, (t). One such trajectory is shown in Fig. 1,
where the levels +z are also indicated.

Our goal is to calculate the conditional first-passage-
time probability density p (t;xo) defined as follows:

p (t;xo)dt = probability that the processes X(~) crosses z

or —z in the time range t &v ct+dt
without ever having crossed either of these

levels during the time span 0&7.&t . (2.5)

To calculate p(t;xo) it is useful to denote each time range

~ ~ w

FIG. l. A typical trajectory of X(t) vvith F(0)=a. The first
crossing of z or —z occurs during the seventh interval.
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t„between switches as an "interval" and to define the
auxiliary probabibty,

p„(t;xo}dt= probability that the first crossing of z or

—z occurs during the nth interval and in

i.e., that

t, ((z+x, +at, )lb= ~—
2 .

The probability that this inequality is satisfied is

(2.14)

the time range (t, t +dt } (2.6)
T2

Prob(t, (~2)= i)tb(tz }dtz . (2.15)

Clearly

p(t;xo)= g p„(t;xo)
n=1

(2.7)

The probability densities p„(t;xo) can be constructed ex-
plicitly from the trajectories (2.4). To illustrate this con-
struction, let us consider a realization that begins with
F(0)=a, as detailed in Eq. (2.4). We wish to insure that
no crossing of +z occurred in the first (n —1) intervals
and that a crossing does occur during the nth interval.
During the first interval

Similar conditions can be written for the probability that
each successive interval up to and including the ( n —1)st
does not lead to a crossing. To proceed with our explicit
illustration we must choose the parity of n: if it is even
then a crossing can only occur at —z during the nth in-

terval, while odd n can only lead to a crossing at z. %e
select the former and note that the level —z wil/ be
crossed during the 2m th interval if

X(tzm) =xo+ati btz+— +atzm i btz —(—z .

(2.16)
X(t)=xo+at (2.8)

and the level z is not crossed if the switch to F(t)= —b
occurs sufficiently early, i.e., if

The probability that this inequality is satisfied is

PrOb(tZm & rZm) = f Qb(tzm)dtz
2,%

(2.17)

X(ti ) =x11+at1 (z
or, equivalently, if

(2 9) where

vz
——(z+xo+ati btz+ — +atz, )lb . (2.18)

ti ((z —x11)la = (2.10)

X(tz) =xo+ati btz & —z, — (2.13)

The probability that the inequality (2.10) holds is

Prob(ti (wi)= 4a(t) )dti, (2.11)

where Cta(t) is the probabihty density for the first inter-
val. For example, in a "modified renewal process" a
frequent choice is

0
4, (t) =A,, J P, (t ~)d~ . - (2.12)

In general, Ct, (t) depends on the preparation of the sys-
tem. To insure that the second interval does not lead to a
crossing of level —z we must require that

where

t1t=+t (tl +tz+t3+ +ttt) . (2.20)

The probability density for this crossing event is the delta
function 5(rz —b.z ). Collecting the results (2.11},
(2.15), and (2.17) along with this delta function immedi-
ately gives the following integral form for the density

pz (t;xo):

Finally, we must specify when during the 2mth interval
the crossing actually occurs. For the crossing to occur at
time t it is necessary that

X(t)=xo+at, btz+ — +atzm, bbzm ——z—,

(2.19)

T2 2m —l 00

P2ttl(t iXO) dt1 @a(ti ) dt2 6(tz) dt2m —1 ea(tzm —1) dtzmeb(tzm )5(rzm ~zm ) (2.21)

for m & 1, where

,
—= (z —x,—at, +bt, +. . . +bt, , )la,

and we have explicitly indicated the imtial value F(0)=a. For odd n similar reasoning leads to

(2.22)

2 2' —2

p2 —1(t xo)
0

dtl @a(tl ) dt2 Pb(tz) dt2 —2 Wb(tz —2)

X f dt2 1 Q (t2 1)5(tz 1
—52 1)

for m &2, and

p',"(t;x,)= J dt, 4, (ti)5(t —~, ) .

Similar expressions can clearly be obtained for F(0}= b, with—

(2.23)

(2.24)
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——(z —x, +bt, a—t, + +btz, )la (2.25)

T2 ']=(z +xp —bti +atz —' ' +btzm 2) jb

replacing ~2 and &2~ I, respectively.

{2.26)

III. EVOLUTION OF THE FIRST-PASSAGE-TIME PROBABILITY DENSITY

The next step in our procedure is to Laplace transform Eqs. (2.21)—(2.24) according to the definition

p(s;xp)= f dte "p(t;xp) (3.1)

and to establish an integral recursion relation to connect the nth and (n+2)nd densities. The recursion relations for
even n and for odd n must thus be constructed separately. The appropriate Laplace transforms are

pi"(s;xp)=e ' dti 4, (ti),
T2 2m —2 00

p zm i(s ~xp) = dti 4g(ti ) dtz fs(tz ) ' ' ' dtzm z Ps(tzm z )
~ dtzm i fg(tzm i )

0 0 0 2m —1

(3.2)

T} T2 2&st —1 tzO

p zm{s;xp) = dt, @,(t, ) f dt, &,(tz) dtzm, &.(tzm, ) f
I+ 2+ 2m —2+ 2m —I (3 3)

}+2+ + 2m —1+ 2mXe (3.&)

It is clear that these repeated nested integrals can be encapsulated in a recursion relation. To achieve this we define the
auxiliary functions

72 73 72 -2
~(s;x +0)m= f 144&(4) f d44, (4l f dh —,/A~4 2)

{ ) 3 2m —1
7

I z'm i(s;xp+ati)= f dtz Pb(tz) f dt3 Q, (t3) f dtzm i if', (tz i)

2 + + 2m —1+ 2m

2tH

in terms of which

(3.5b)

p'„"(s;xp)= dt, 4, (ti)e 'I „"' i(s;xp+ati), n )2 .
0

We note that in the special case of an "ordinary renewal process"" wherein 4, (t)= it2, (t), the auxiliary functions are

I„"(s;xp+ati)=p„' '(s;xp+ati) .

The functions I '„' clearly satisfy the recursion relation

I „"+z(s;xi)= f dtz Pb(tz) f dt3 P, (t3)e ' ' I'„"(s;xi btz+at3), —n & 1 .

If we sum this recursion relation from n = 1 to oo we obtain the integral equation
72 73I "'(s;xi)=I 'i"(s;xi )+I z' (s;xi )+ dtz fs(tz) dt3 if', (t3)e ' ' I"'(s;xi btz+at3)—

0 0

(3.6)

(3.7)

(3.8)

(3.9)

where

I'"(s;xi)= g I'„"(s;xi) .
n=1

In terms of this function the Laplace transform of the first-passage-time probability density for F(0)=a is
T

1

p "'(s;xp)= dti @,(t, )e 'I "(s;xp+at, )+p'i"(s;xp) .
0

An analogous argument for F(0)= b leads to—
1 —sf } {—b)p ' '(s;xp) = dti 4s(ti )e 'I ' '(s;xp bti )+p 'i '(s;xp)—

(3.10)

(3.11)

(3.12)
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where I ' '(s;x i ) satisfies the integral equation

T2 T3I' '(s;x&)=II '(s;xi)+I'i '(s;xi)+ I dtzg, (t2) f dt3$b(t3)e ' 'I' "'(s;x, +at2 b—t&) . (3.13)

Finally, if we define the probabilities ma{a ~xo) and wo{ b—~xo) that F(0)=a and —b, respectively, given that
X(0)=xo, we find the Laplace transform of the first-passage-time probability density for arbitrary F(0) to be

p(s;xo)=p (s yxo)LUO(a
~
xo)+p (s;xo)tao( —b

~
xo) . (3.14)

Thus the entire problem has been reduced to the solution of the integral equation (3.9), which is the central result of
our method. Such equations can in general not be solved for arbitrary forms of P, (t) and gb(t), but they lend themselves
to approximation schemes appropriate to specific forms of these functions. There are, however, situations when the in-
tegral equations can be solved exactly for certain forms of P, (t) and Pb(t), and we here give three such examples.

It is worthwhile to note a further simplification in these results when the system is prepared in such a way that
4, (t)=P, (t) and 4t, (t) =gb(t). In this case it is no longer necessary to define the auxiliary functions I because of the re-
lation (3.7). The probability densities p

"' and p
' ' themselves now satisfy the integral equations

T2

p "'(s;xo)=p 'i'(s;xo)+p z"(s;xo)+ dt, dt2 P, (t, )gb{t2)e ' '
p "'(s;xo+at, btz),— (3.15)

1 2 —s(t +i2) ( h)p {s xo) p i {s xo)+p 2 {s xo)+ dtl dt2 A(tl )4 (t2) p {s xo bti +&ti) . (3.16)

d I 1 d
2 +S

6 Q dXO

s(s+X. +X, ) p"'{s;x,) =0.
ob

(4.1)

IV. APPLICATIONS

In this section we evaluate the first-passage time prop-
erties of the process (2.3) for various forms of P, (t) and
gb{t) for which the integral equations (3.9) and (3.13) [or
(3.15) and (3.16)] can be converted to an equivalent dif-
ferential equation. The differential equation together with
boundary conditions (one of which turns out to be rather
different from those traditionally imposed) can be solved
analytically. For simplicity we take 4(t) =P(t) in our ex-
amples. Other forms of 4(t) can be easily incorporated.

A. Dichotomous Markov process I'(, i)

A dichotomous Markov process F(t) is characterized
by the exponential switching time distributions (2.2) (see
Fig. 2). The condition that the fluctuations be zero-
centered is insured by the choice of parameters ah, b bA, ——

To find the differential equation satisfied by p "'(s;xo)
we differentiate (3.15) twice with respect to xo to obtain

p "'(s;z)= 1, (4.2)

p '"(s;xo)
dx0

xo= —z

s +kg
( )

p '(s; —z)=-
a

(4.3)

Condition (4.2) insures that a process initiated at the
upper boundary with positive slope is immediately ab-
sorbed with certainty. Condition (4.3) is not of the usual
form for a Fokker-Planck process in which initiation at
the lower boundary would also guarantee immediate ab-
sorption [p"'(s;—z)=1]. Its physical interpretation is
not straightforward.

Equation (4.1) is homogeneous, second order, and has
constant coefficients. Its solution is straightforwardly ob-
tained and is '

The details of the derivation of (4. 1) are given in the Ap-
pendix. The boundary conditions, also obtained in the
Appendix, are

p "'(s;xo)=[(a+r)e (a r)e— ] ' e — ' [{a+r)e ' (a r)e — '—]
~g P(z+xo) r(z —xO) —r(z —xO)e [e —e
a (4.4)

where

ahb+bA, ,+(a +b)s
2ab

(4.5)

r=[4P +4s(s+A, , +Ab)lab]'i

The mean first-passage time to z or —z is given by

Ti (z,xo)= dt tp (t;xo}
0

(4.6)

(4.7)
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0.0
0.0 2.0 4.0 6.0

PIG. 2. Distribution P{t) of time intervals between switches
of I'(t) from one value to another, with A, =1. Solid curve: ex-

ponential t{{r)corresponding to a dichotomous Markov process
F(t). Dashed curve: a rectangular f{t). Dotted curve: P{t)
with a long-time tail (power law) with z =0.5, a =b=1 and
a=1.5 in Eq. {4.29).

the total mean first-passage time is determined by the ini-
tial weights wo(a ~xo) and wo( b—~xo) appearing in Eq.
(3.14).

The first term in (4.12) or in (4.14) is the mean first-
passage time in the limit of Gaussian white noise, in
which b, a ~ ac, A,s, A,,~ ao, and D =const, i.e., the well-

known diffusion case. The remaining contribution in
these equations gives the deviation from the diffusive lim-
it and leads to a discontinuous change in the mean first-
passage time at xo ———z. This finite value of T' (z, —z)
is the reason why the first-passage-time problem in the
presence of colored noise cannot be described in terms of
the standard boundary conditions but rather involves the
mixed boundary condition (4.11)." Equation (4.14) is
shown in Figs. 3(a) and 4(a), as is the Gaussian white-

and satisfies the simple differential equation

( )
Ay+Ah

z
Ti' (z,x())=-

ah
(4.8) l.0—

as can be obtained directly from (4.1) using the relation 0.8-

Ti"(z,x())= — p "(s;xp) (4.9)
Tl 06-

The boundary conditions constraining the solution of (4.8)
are obtained from (4.2) and (4.3) using (4.9):

T' (zz) =0,
(a)T, (zx())

Zp= —Z

I,,T'i" (z, —z) —1

(4.10)

(4.11)
0.2-

One can either solve (4.8) subject to (4.10) and (4.11) or in
the present case since we have the analytic form for
p "'(s;xo) in Eq. (4) we can apply (4.9) directly to it to ob-
tain

0.0
-05 0.0

xo
0.5

a (a +b)

(, )
z —x() (z —x() ) ~a

T'i" (z,xp) =
0 Q

l.0-

0.6

(4.12)

(4.13)

This result was obtained by Hanggi and Talkner ' using
an entirely different procedure restricted to a dichotomous
Markov process F(t). For the special case a=b and
A,, =As =—)(,, the mean first-passage time (4.12) reduces to
the simpler form

2 2
Z —Xo Z —XoT' (zx )=

2D a

where now D=a /2X.
The corresponding results for the initial value F(0)

= —b are obtained from (4.4) and (4.12) with the inter-
changes a~b, A,,~A(), and —xo~x%). Note that the pro-
portion in which T't'(z, xo) and T'i '(z,xo) contribute to

0.4

0.2

0.0
-0.5 0.0 0.5

X0

FIG. 3. (a) Mean first-passage time Tl to +0.5 vs initial po-
sition xp for a process that begins with positive slope. We
choose parameter values A, =a =b =1. Dotted curve: dichoto-
mous Markov fluctuations. Solid curve: rectangular fluctua-
tions. Dot-dashed curve: long-tail process with e=2.5.
Dashed curve: diffusive process with 2D = l. I'b) Mean first-

passage time Tl to +0.5 vs initial positive xp for a long-tail pro-
cess that begins with a positive value, with A, =a =b =1. Solid
curve: a= 1.5. Dashed curve: a=2. 5 [also shown as dot-
dashed curve in Fig. 3{a)].
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2.0-

2.0 l.8-

4 Long-tail, (=2. 5~

~

l.2-

Markov
(exponential ),
R ac t angular

0.8
t.Q-

0.4 0.8-

00'
—l.0 G.O I.O

Q4-
~
.'' I

Dif fusive

0.2- ~ /

2.0 -/
( (b)

QQ ~+~M
0.0 0.2 0.4 0.6 0.8 l.O

FIG. 5. Mean first-passage time averaged over initial posi-
tion, vs barrier height z. Parameter values are A, =a=b=l.
Dotted curve indicates both the dichotomous Markov fluctua-
tions and the rectangular process. Dot-dashed curve: long-tail
process with a=2.5. Dashed curve: diffusive process with
2D =1.

l.2-

l.Q-

0.8-

Q.6-

noise result for comparison. A further discussion of these
results is given in Sec. V.

An equally interesting quantity is the mean first-
passage time to z or —z averaged over a distribution of
initial states. For a uniform initial distribution in the in-
terval ( —z,z) we find

04-

0.2-
Z' Z

3D a
(4.15)

00 t

—l.Q —0.5 O.O 0.5 l.O

Equation (4.14) is shown in Fig. 5, as is the Gaussian
white-noise result for comparison.

FIG. 4. (a) Mean first-passage time Tl to 10.99 vs initial po-
sition xo for a process that begins with a positive slope. The pa-
rameter values are A, =a =b =1. Dotted curve: dichotomous
Markov fluctuations. Solid curve: rectangular fluctuations.
Dot-dashed curve: long-tail process with 0.= 1.5. Dashed
curve: diffusive process with 2D =1. {b) Mean first-passage
time Tl to +0.99 vs initial position xo for a long-tail process
that begins with a positive value, with k=a=b=l. Solid
curve: a=1.5 [also shown as dot-dashed curve in Fig. 4(a)].
Dashed curve: a=2.5. 0, otherwise .

(4.16)

B. A rectangular process F(t)

One of the simplest temporally localized non-Markov
dichotomous processes is a rectangular, i.e., one in which
the distributions g, (t) and fb(t) have the form shown in
Fig. 2. For p =a,b we take
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Once again the mean times between switches are A,, and

k~ '. %e shall restrict ourselves to the parameter domain
a/A. , =b/A, b ~z so as to allow the process a finite proba-
bility of reaching the boundary z or —z even in the first
time interval. This restriction is chosen for convenience
but can easily be relaxed. We shall further restrict the
analysis to the symmetric case a =b, so that A.,=kb =A, .
This restriction can also be easily relaxed. As Fig. 2
shows, the relative probability of very frequent switches
and of very infrequent switches of F(t) from one value to
another is greater for a dichotomous Markov process than
for a rectangular process. On the other hand, the rec-
tangular process allows for more intervals of an inter-
mediate (ht-A ') length. Since one does not a priori
know which interval lengths contribute most to the first-
passage-time behavior, it is difficult to predict the effects
of this redistribution of relative weights.

In the Appendix we show that with the rectangular pro-
cess F(t) the following differential equation is satisfied by
the transform p "'{s;xo):

d 1 k 2 (,)z+ —s p '(s;xo)
xo a2 4

The boundary conditions for Eq. (4.17) are

p "'(s;z)= 1 (4.18)

p "'(s;xo)
dx0

——p "(s;—z)= (e ~/' —1) .
x= —z a 2a

(4.19)

As before, condition (4.18) insures certain absorption of a
process that begins at the upper boundary with positive
slope. The second boundary condition, (4.19), differs
from its counterpart (4.3) in the previous example and is
thus seen to be process specific. Its physical interpreta-
tion is not as straightforward as that for a Fokker-Planck
process.

Equation (4.17) is an inhomogeneous second-order
equation with constant coefficients. Again, its solution is
straightforward

As —(z —xo)s/a A (z+xo)s/a2

e ' + e
2 ~2 (4.17)

p "(s;x,) = —+p e~' — ——p e
a 0

e
—2sz/a

T

p(z xp) —p(z —xo) S p(z+xo) S —P(z —xo)
(e —e )+ —+p e — pe- —

2a a a

—x(z+ro)/a g -s(z —xo)/a+e +4—e (4.20)

where

P= '
(A,

'—4s'))"
2Q

AaAb
( )Ti' (z,x())=-

dx(')

The mean first-passage tiine in general satisfies the simple differential equation
'I

~a a +6 ~a~b

2a ab 4a$2
(z+x() )

(4.21)

(4.22)

and

T'("(z,z) =0 {4.23)

T i {z,x() )
(a)

dx0
(4.24)

and where we have not imposed the parameter restrictions a =b and A,, =Ab ——A, . The solut, ion of (4.22) with (4.23) and

(4.24) is '

T( (z x())=(a)

cos(2az)
2 b 2z 11+——— cos[a(z +x() )]+-

a b CK

A.z
sin[a(z —xo ) )2

1+—+—(z+xo)2 b

a b
(4.25)
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where
1/2

a=——
2 ab

(4.26)

For the special case a =b and A,,=Ah ——, A, (4.24) reduces to the simpler form
P

~) A(z —xo) A(z+x())T)"(z,xo) = sin +cos
aA, cos Az/a) 2a 2a

1 4a —z —xo
a

(4.27)

Again, T'( '(z, xo) can be obtained from (4.25) with the
interchanges a~b, A,,~A,b, and —xo~xo. Equation
(4.27) is shown in Figs. 3(a) and 4(a) and is discussed fur-
ther in Sec. V.

We can average T' (z,xo) over the initial state of the
process. For a uniform initial distribution one obtains

A 2z+ 1 ——
0

~
—As/A a 2z 2

QA, X Q —2
(4.33)

T)' (z)=( ) 2 (2a —Az)
[1—cos( Az /a ) +sin()(z /a )]

)(.zz cos(Az/a)

4 z—+-
a

(4.28)

This result is nearly identical to that depicted in Fig. 5

for a dichotomous Markov process with I,=a = 1 and
0&z &1.

C. A process F(t) with a long-time tail

2Z
Ape ", 0&t &—

p
(&)=

I,

p

(4.29)

It is interesting to investigate the effects of long-time
memories of the fiuctuations on the first-passage-time
properties of the system. A particular choice of distribu-
tion that is analytically tractable within our theory is one
that decays exponentially for short times and algebraically
for long times:

The normalization condition (4.30) and continuity con-
straint impose relations among the parameters that de-
pend on the value of z. One finds, for instance, that

2zk 2~/g
a(a —1)

(4.34)

These conditions can be relaxed (without affecting the an-
alytic manipulation) by changing the location of the
exponential-algebraic boundary in (4.29) from 2z/p to
2y/(u where y&z. This modification would lead to a
quantitative but not qualitative change in the results.
With the choice made in (4.29), one finds that (4.30) and
(4.31) impose the following behavior on P(t): when a de-
creases for a fixed z, A decreases so that the weight is
shifted from very short to very long switching intervals.
When a is fixed, on the other hand, a decrease in z causes
an increase in A so that short intervals are emphasized.

In the Appendix we show that the differential equation
now satisfied by the transform p "(s;xo) is

d 1
2+ 2

[/I —(A. +s) ] p" (s;xo)
dx0 a

where @=a,b and a&~ 1. This distribution is shown in
Fig. 2. The requirement that each P„(t) be normalized
and be continuous at 2z/(u imposes the following relations
among the parameters:

—s(z —xo)/a —s(z+xo)/a]
A, +2s +Re

(4.35)

1 —a
Ap, —2x z/p ~p 2z

(1—e " )+
EKED

—1 p

/I„e " "=B„(2z/p)

(4.30)

(4.31)

where we have used the parameter relations (4.30) and
(4.31) to eliminate 8 and a. The boundary conditions for
(4.35) are

(4.36}

We shall restrict further discussion to the symmetric case
a =b, A., =A,~

——k. It should be noted that in this exam-
ple A,

' is no longer the mean time between switches. The
latter time, denoted as v„ is given by

dt t (4.32)

p "'(s;x, )
dx0 Zp= —Z

(s +A) („)
a

—2sz/a

a

and is only finite if a, =a(, =a & 2, whence Equation (4.35) is once again an inhomogeneous



J. MASOLIVER, KATJA LINDENBERG, AND BRUCE J. %EST 34

second-order equation with constant coefficients and can
be solved without major difficulty. The mean first-
passage time satisfies the equation

d (A —A ) ()Ti' (z,xo)
dxo a

T'i" (z,z) =0

Xp= —2 0
Ti (zxo)(a)

dXp
T—

i (z, —z)(a)

(4.39)

with

(A —I, ) [2a +(A, —A)xo —(A. +A}z]a'
(4.38}

(A —A. ) ——. (4.40)
g~ Q

The solution of (4.38)—(4.40) has two forms depending on
whether A, ~A or A. &A. When A, &A

(a) 1 2A 1 z z A —z p~0 A z k —pzo proTi (z,xo)=- +— p+ —8 ——e e + —e + p ——
6 A, +A A, —A a a a a a

*

2A z A, —A+ 2 2+ — &P pa a(A, +A)
(4.41)

and

p=—(A, —A )' /a (4.42)

(4.43)

For A, ~A,

(a) 1 2A z 1Ti' (z,xo)= 6' A+A, a A —A,

(A —A, ) cos(p'z ) +p'sin(p'z ) sin(p'xo )

(A+A)p'cos(p'z)+ sin(p'z) cos(p'xo)

where

2A z A —A,

a a(A+A)+—+ xp~

(A 2 g2)1/2yg

(4.44)

(4.45)

and

x ~

b,':—p'cos(2p'z}+ —sin(2p'z) .
0

(4.46)

Equations (4.41) and (4.44) are shown in Figs. 3 and 4 and discussed further in Section V.
The mean first-passage time averaged over a uniform initial distribution is again dependent on the relative size of iL

and A. For A &A,

Ta' (Z) =(,) 1 2A 1 z+-
+p +0 A, —A A

X+A q g A+A 2p, A+A
+p ep'+ —p e p' —2

2A z+2'
2 2+— (4.47)

T(,)( )
—1 2A z 1

a sin(2p'z ) + —,2 A+A, z
sin (p'z) +2z

P 8 0
2A

(4.48)

These results are shown in Fig. 5 and discussed in Sec. V.
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V. DISCUSSION AND CONCLUSIONS

A discussion of the salient results obtained in Sec. IV is
most easily presented by individually interpreting each
figure.

Figure 3(a). The most general property of the nondif-
fusive process considered here is the asymmetry in
T' (z,xo) about xo ——0. In other words, a nondiffusive
process beginning at the lower boundary (xo ———z) is not
immediately absorbed while one that departs from the
upper boundary (xo ——z) is. As stated earlier, this is a
consequence of the fact that an initial velocity away from
a boundary together with a finite retention time for this
velocity carries the process away from the boundary. This
is different from a diffusive process wherein the velocity
is infinite and its directional retention time is infinitesimal
and hence the process that starts at a boundary cannot es-

cape.
A second general property of the non-Markovian pro-

cesses is that for all of them T'i"(z,xo) exceeds the dif-
fusive case for all xo &z. The finite retention time of a
given velocity in the former has two opposing effects:
when far from a boundary, it takes the process nearer to it
in a given interval than in the diffusive case (leading to an
apparent shortening of T, ). On the other hand, when

near a boundary it is easier for a nondiffusive process to
escape from it (leading to an apparent lengthening of T, ).
A priori it is impossible to determine which of these com-
peting effects will win out. The figure shows that it is the
second.

The third observation concerns the comparison among
the nondiffusive processes. We note that a=2. 5 and
z =0.5 lead to a coefficient A ~ A, for the long-tail process
so that this process admits of a greater weight of very
short steps than either the rectangular or the exponential
process. (Shorter steps do not make the process diffusion-
like unless the velocity goes to infinity. In this discussion
the velocity is held fixed at a=1.) Furthermore, the
long-tail process allows more long intervals than the ex-
ponential, which in turn allows more than the rectangular.
Intermediate-sized intervals are favored by the rectangular
process. Again, it is not immediately apparent what the
relative effects of these regimes are on T'i" (z,xo). In this
figure it would seem that the proportion of short steps
(for a fixed velocity) may determine the ordering of T„
with the greater weight leading to a longer mean first-
passage time. %'e will see subsequently that the analysis
is not as straightforward as this argument would imply,
and that the relative ordering also depends on the barrier
height z and/or on the initial state xo.

Figure 3(b). In this graph we compare the T, values
for two power-law indices in the long-tail distribution,
@=2.5 and 1.5. In the former the coefficient 3 is bigger
and the tail is relatively suppressed. Correspondingly, T~
for the former is larger than for the latter.

Figure 4(a). There are two differences between the pa-
rameter values used here and those used in Fig. 3(a): z
has here been increased from 0.5 to 0.99, and a has been
changed from 2.5 to 1.5. The iwo general features ob-

served earlier persist, namely, that Ti"(z,xo) is in general
asymmetric about xo ——0, and that T, for a diffusive pro-
cess is smaller than those of the other processes. In our
discussion of Fig. 3(a) we indicated that simple arguments
based on the relative weightings of long and short steps in
the determination of Ti may be misleading. Here we see
the evidence for this note of caution. Thus, although the
long-tail distribution with a=1.5 admits of a greater pro-
portion of very short intervals than does the rectangular
process (cf. Fig. 2), Ti for the latter exceeds that of the
former for all xo. Furthermore, the crossing of the rec-
tangular and the exponential curves shows the sensitivity
of the mean first-passage time to the detailed distribution
f(r) of intervals.

Figure 4(b) Thi.s graph reemphasizes the conclusion
reached in Fig. 3(b). The differences between the two fig-
ures arise from the difference in z values.

Figure 5. Here we show the mean first-passage time to
z or —z averaged over the initial state xo. The diffusive
case again shows the shortest time to capture for each
value of z. The long-tail process with a=1.5 has the
same qualitative structure as that indicated for a=2.5,
with a somewhat lower value of Ti at each z. The ex-

ponential and rectangular results are essentially indistin-
guishable and are therefore drawn as a single curve. For
small z this occurs because even the unaveraged mean
first-passage times Ti(z,xo) are very close for these two
processes [cf. Fig. 3(a)]. For large z the average over xo
causes a cancellation between the region where the Mar-
kov process has a shorter mean first-passage time [cf. Fig.
4(a), xo &0] and the region where it has a longer mean
first-passage time [cf. Fig. 4(a), xo&0]. A noteworthy
feature of this figure is the crossing of the T, curves for
the exponential/rectangular and the long-tail processes.
As z increases for a fixed a, the value of A decreases, i.e.,
the proportion of short steps is reduced. Thus the process
has a greater probability of remaining within the range
( —z, z) because it can more easily escape from the vicinity
of either boundary back into the range ( —z,z). This ef-
fect is consistent with the discussion of Fig. 3(a).

We conclude that the mean flrst-passage time is a sensi-
tive function not only of the correlation time of the fluc-
tuations that drive the process but also of the detailed
form of the temporal distribution of these fluctuations. It
is worth emphasizing that this is the first method capable
of dealing analytically with non-Markovian fluctuations.
We have also been able to generalize the formalism to
dynamical systems subject to a potential. These results
will be reported in a forthcoming publication. '
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To facilitate the derivation of differential evolution equations it is convenient to introduce new variables of integration
into (3.15) and (3.16). We return to the path variables x) ——X(t) ) and x2 ——X(tl ) of Eqs. (2.9) and (2.13) and write (3.15)

z xi
p "(s;x())=p)"(s;x())+p2"(s;x())+ dx) dx2)j/, ((x) —xp)/a)fb((x) x—l)/b)

ab xp —z

(x) —xp) (x) —xl)
X exp —s + p "(s;x,) . (Al)

A similar replacement can be made for (3.16).

1. Derivation of Eqs. {4.1)—(4.3}for Markov F{t}

When ))/, and fb are the exponential forms (2.2), Eq. (Al) becomes

a b (A, +s)xp/a

ab xp

(A,,+s) (Ab+s)
+ (A, I), +s)x2/b (a)

The derivative of (A2) with respect to xp is

(A,, s)
p '(s'»o)= (p) +p2 )+ IP (s'xo) p ) pl )

(A2)

a b —(Ab+s)x&lb O (kb+s)x&/b
8 dx2e P S;Xl

a —z
(A3)

Another differentiation with respect to xp and some reorganization of terms yields

1 1 d S (a)
l +s — — (s +kg+Ah) P (s;xP)=

b a dxp ab

Using the explicit forms
—(s ~l. )(z —x&&)/u

p ) s~xo =e

d 1 1 d
2 +S

b a dxp

(&g +s)()|'b +s)
( ) ( )(-(a)+-(a))

ab

(A4)

(A5)

p ',"(s;x,) =
(/(,, +s) (Ab+s)

a +

—(A~ +s )(z +xp ) /b
, e ' 1 —exp

(A,,+s) (A,b+s)
+

b
(z —x() ) (A6)

one easily shows that the right-hand side of (A4) vanishes identically.
One boundary condition is obtained by setting z =xp in Eq. (A 1). The integrated term then vanishes, p ) (s;z)~1 and

p 2"(s;z)~0 so that

p "(s;z)=l .

The second boundary condition is obtained by setting xp ———z in Eq. (A3):

(A7)

p "'(s;xp)
dx0

(s+A., )

p '"(s;—z) =— (A8)

2. Derivation of Eqs. (4.17)—(4.19) for rectangular F(t)

When )t/, and gb are the rectangular forms (4.16) with the restriction a /A, , = b/A. b ~ z, Eq. (Al) becomes

-(a} . -(a) -(a) a b sxp/a z

p (s;xo) =p, (s;xo)+p 2 (s;xp)+ e dxt exp —s —+—x&
4ab xp a b f sx2/b

dxl e ' p"'(s;x, ) . (A9)

The xp derivative of (A9) is
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AaAb —sx /bp"'(s;x())= (p')"+p2')+ —[p' (s;xo)—p',"]— e ' dx2e ' p"'(s;x, ) . (A10)

Another derivative with respect to xo and some reorganization of terms yields

d 1 1 d 1 AaAb
2+& — +

b a dho Qb 4 p "{s;xo)= d 1 1 d
2 +s

b Q dh,

2
(-(a)+—(a))

Qb
(A 1 1)

With the explicit forms

P ) (s~xo)=~ (tg) 0 2Q

2Q kg
z+xo

—(S—X0)S/a

(A12}

and

s

Aa Ab —s(z+xo )/b
p 2'(s'»o)= e CXP

a+&
(z —x, )s

a&

2b z 1 b2

s(a+b} a Ab (a+b)'s'

b 2

s(a+b) Ab

Q2

s (a+b)
(A13}

the right-hand side of (Al 1) can be evaluated. When a =b we find

d 1 A, 2 () As —(z x)s/a A, (z+xo)s/a2 2 2
—s p's;x() —— e + e

dxo a 4 a 4Q

One boundary condition is again obtained by setting xo ——z in Eq. (Al):

p'"(s z)=1

The second boundary condition follows from (A10) if we set xo ———z:

(A14)

(A15)

p "'(s;x()) p (a)(S Z) ( e 2zs/a
1 )

x= —z a 2a
0

(A16)

3. Derivation of Eqs. {4.35}—(4.37) for lang-tail F{t}

When l()(t) has the form (4.29), Eq. (Al) becomes

(2,+s)xo/a z —2(2+s)x)/a ) (2, +s)x&/a
P &~ &0&=P I +12 + dx& e dX2 e P S;X2

Q
2 "0 —z

The derivative of (A17) with respect to xo is

(A17)

d -(a) . d -(a) -(a) (A+s) —(a) . -(a) -(a)(',XO)= {P) +P2 )+ [P {'XO}—P) —P2 ]
dxo dxo Q

it —(2.+s)x()/a 0 (2,+s)x&ia
e dx, e '

p '(s;x, ).
Q

—g
(A18)

Another derivation with respect to xo yields

1

, +, [&'—(s+&)'] p"'(s;xo)=
dX0 Q

d

dxo2

(S + ) I-(a)+ —(a)&
&S] +I 2

Together with the explicit form
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—(a)( . )+-(a)( .
) e

—(X+s)z/a(e o e i—L/ae

g 2 —(2A. +s)z/a

A, +2s
(g+2 )z/a (il. +s)zola —sxo/a)

e z ce —e

—( ~+s)z/a
+S}Z/0 ~~+5 ~XO/0

e
2( J(.+s)

1 —a

—(A, +s)xo/a0

+ 8
a —1

sxo/a 3 (g~Z )z/a (X+s)x()/a —sxo/a
e e e e —e

A, +2s
(A20)

we then obtain Eq. (4.35). One boundary condition is again obtained by setting z=xo in Eq. (Al) to yield (4.36). The
second boundary condition is obtained from (A18) by setting xo = —z to yield (4.37).
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