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The colloid configurational contribution to the excess stress tensor of a dilute suspension interact-

ing via a screened Coulomb potential in a fluid undergoing Couette Aow is analyzed. The structure

factor for the nonequilibrium system obtained by solving a fluctuating diffusion equation with a

wave-vector-dependent diffusion constant is used to obtain shear-rate-dependent viscosity and nor-

mal stress functions. The viscometric functions are nonanalytic in the limit of vanishing shear rate,

although the nonanalytic parts are very small. At high shear rates, the viscosity due to the colloid is

inversely proportional to the shear rate. In general, the principle of material objectivity, often

evoked in rheology, is not satisfied.

I. INTRODUCTION II. GENERAL CONSIDERATIONS

In recent years, dilute colloidal suspensions of highly
charged particles have been shown to be interesting para-
digms of molecular fluids and solids. In particular, these
systems show strong static correlations, exhibit fluid-
solid and glass phase transitions and display a variety of
interesting nonequilibrium phenomena. In this last
category, distortions in the structure factor due to shear
flow, " rheological properties, "' and shear-induced
melting have been studied experimentally and theoretical-
ly.

Rainwater and Hess+" have examined the stress tensor
for a system of spherical particles using a nonequilibrium
pair correlation function obtained by solving the Smolu-
chowski equation in a perturbation expansion in the
strength of the potential. In addition, they have solved
the convective-diffusion equation for Gaussian initial con-
ditions on the colloid density or for a Gaussian source; ' '

among other things, shear-rate-dependent relaxation times
and diffusivity tensors were computed. Finally, loein et
al. have analyzed the linear viscosity using a mode-mode
coupling theory which includes the effects of strong static
intercolloid correlations in a nonperturbative fashion.

In the next section, the results of the fiuctuating dif-
fusion equation approach are summarized, and the non-

equilibrium stress tensor is considered; in particular, it is
shown that the kinetic contribution by the colloid to the
stress is unimportant. In Sec. III, zero shear rate limits of
the viscosity and normal stress functions are given in
terms of the equilibrium colloid-colloid structure factor
[obtained within the hypernetted chain (HNC) approxima-
tion] and the dependences on density, screening length
and colloid charge are investigated. In Sec. IV, a violation
of the principle of material objectivity is discussed, and in
Sec. V, numerical and analytic results for the shear viscos-
ity are presented. In particular, a nonanalytic shear rate
dependence [analogous to that of Ref. 6(a)] is found; how-

ever, for strongly interacting colloidal suspension, it is
completely negligible. Finally, Sec. VI contains some con-
cluding remarks.

Recently, a theory for the way in which the shear flow
distorts the static correlations of a colloidal suspension
was analyzed within the context of the fluctuating dif-
fusion equation; i.e.,

(ico+k Dt, „)E(k,to) = topk»
' + ik Ii, „,BX(k,to)

where N(k, to) is the space and time Fourier transform of
the colloid number density, Dk is a generalized k-
dependent collective diffusion constant, and the fiuid
velocity is in the y direction with gradient, coo, along x
i.e., v(r) = yxcop. The fluctuating diffusion current, Ii,
satisfies the Einstein relation:

N '(Ii, „Ii, )NF ——(2n ) 5(k —k')5(co —to')2Dk +p(k),

where N is the number of colloid particles in the system,
( )NE is a nonequilibrium ensemble average, and Sp(k) is
the equilibrium colloid structure factor. It must be
stressed that no assumption concerning the nature of the
nonequilibrium structure factor is made. The nonequili-
brium structure factor is strongly affected by the shear; on
the other hand, the random diffusion current accounts for
processes which occur on a microscopic scale, and should
be well represented by the local equilibrium expression
[cf. Eq. (2)].

Equations (1) and (2) are easily solved for the dynamic
and static correlation functions. The calculation was fur-
ther simplified by recognizing that for sufficiently dilute
colloidal suspensions, collective diffusive dynamics could
be approximated by neglecting dynamic correlations be-
tween the colloid particles (e.g., hydrodynamic interac-
tions). This is just the de Gennes narrowing limit, and
amounts to letting Dk „——D, /Sp(k), where

D& kii T/67rgA p is the colloid self-diffusion constant
(kii is Boltzmann's constant, T is the temperature, i) is
the solvent viscosity, and Rp is the colloid radius). It was
thus found that
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2D, 2Dg z ~'+k~~
S(k) = dk, (k, +k~~)exp — dx

k„k coo/(k iuol k„k duo/(k„ceo) g [(x&+k& )&/&]

where k~~
= k„+k, . This last expression gives structure

factors which compare well with experiment.
Strictly speaking, the diffusion constant in Eqs. (1) and

(2) should be frequency dependent. Indeed, at the formal
level, the manipulations which lead to the general expres-
sions for the time correlation functions (cf. Eq. (14) of
Ref. [5(b)]) are unchanged. Unfortunately, the nonequili-
brium static structure factor is not simply the co = 0 lim-
it of the dynamic one; it results from an additional fre-
quency integration. In general this integration cannot be
done analytically and will significantly complicate the nu-
merical work discussed below. However, it should be not-
ed that while the assumption of the frequency-
independent, de Gennes narrowing form for the diffusion
constant is strictly true only in the short time limit, the
time scale over which this initial exponential decay is ob-
served increases as the strength of the interactions be-
tween the colloid particles are decreased (e.g., by lowering
the density}. Moreover, an imposed shear results in faster
relaxation of the density fluctuations, ' ' and thus, the
short time behavior of the equilibrium dynamic structure
factor becomes the most important aspect of the dynanucs
of the equilibrium system.

The zero wave-vector limit of ~, the nonconvective part
of stress tensor, is defined as

Pl Pl + i vari jFij (4)2' I.

where p;, m;, r; j, and F; j are the momentum of particle
i in a frame moving with the mass average velocity, the
particle mass, the vector connecting particles i and j, and
the force particle j exerts on i, respectively. Strictly
speaking, the sums in Eq. (4) include colloid, counter-ion,
and solvent particles; however, as is common practice, "
the counter-ions will be ignored in favor of an effective
colloid-colloid interaction of the form

—sc[r —0 )
Z~8

U(r) = ,r & a,

where z„cr, and e are the colloid charge, diameter, and
solvent dielectric constant, respectively. In the same spir-
it, the stress will be decomposed into the solvent contribu-
tion, and h~, the excess due to the colloid. For an in-
compressible Newtonian fluid, the stress due to the sol-
vent can be written as

Bu' Bu'
5ijpk ) + '

Bxj Bx'

where pk is the hydrostatic pressure and 5;j is a Kroneck-
er 5. Next, Eq. (4} is averaged using the nonequilibrium
distribution function, and the excess average stress per
unit volume due to the colloid becomes:

p
PP [1)

p

+ 2 &12r12 1,2 r12 p r12,

where f'"(p) is the nonequilibrium colloid momentum
distribution function (in the local rest frame), and p' '(riz)
is the nonequihbrium colloid configurational pair distri-
bution function. In obtaining Eq. (7), it was assumed that
the properties system are independent of position in the
local rest frames.

In the kinetic theory of dilute gases, the term explicitly
containing the forces (hereafter referred to as the configu-
rational contribution) is usually neglected; instead, atten-
tion is focused on the momentum distribution and correla-
tions in the velocities of the gas particles. On the other
hand, for highly charged dilute colloidal suspensions, it
was just argued that dynamic correlations between the
particles are unimportant. Thus, the momentum distribu-
tion for a typical colloid particle should depend only on
the local properties of the solvent. An estimate for the
importance of the kinetic correlations can be obtained by
using the expression for the singlet distribution function
obtained from linear response theory in Ref. 12. Apply-
ing Eq. (2.6) of Ref. 12 to the Couette flow currently
under study gives:

p, y(p) —f d«5[p —p, (t)]AH'~(t =0))

to linear order in too. The notation ( ) denotes an equili-
brium grand canonical ensemble average, P(p) is the
Maxwell-Boltzmann momentum distribution for the col-
loids, p, is the colloid number density, and pi(t) is the
momentum of one colloid particle at time t. If Eq. (8) is
used in the first term on the right-hand side of Eq. (7),

one finds

pkjj Tl —p f dt p p &&'~(t =0)p(t)p(t)
o

—p, kjj T[1 —(eie2+ezei )~„coo],
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where the last relation was obtained by assuming that the
time correlation function decays exponentially in time
with time constant, r, . In the absence of strong interpar-
ticle dynamic correlations, ~„will just be the single-
particle velocity relaxation time (i.e., ~„—m/6m')Rp).
For particles whose typical diameter is 0.1 pm,
~„—10 sec, and hence, the second term on the right-
hand side of Eq. (9) is negligible for experimentally acces-
sible shear rates. Thus, only the equilibrium part of the
velocity distribution need be kept in Eq. (7). This results

in a trivial p, ki)TI contribution to the colloid stress
which is isotropic and completely negligible for typical
colloid densities.

The remaining contribution to the colloid stress is con-
figurational which, by using Eq. (7), and going to a
Fourier representation, can be rewritten as:

r

IUk +
k

pk'. 10
2(2n )'

In writing Eq. (10), it was assumed p(z)(r) is negligible for
when the particles are near contact (as will be the case for
highly charged colloid particles). This allows the screened
Coulomb potential to be used for all space, with negligible
error.

The isotropic part of the colloid contribution to the
stress tensor will be very difficult to measure, and conse-
quently, only the traceless part will be kept; i.e.,

(b7)NE z,'e "p,

2ir'e

x fdk (kk ——,
' l)[S(k)—1],

(k +)r )
(11)

where S(k) is the nonequilibrium structure factor [cf. Eq.
(3), recall that p'k '—:p, (S(k) —1)].

Systems undergoing planar Couette flow in the y-z
plane, are invariant under the reflection z ~ —z. This
implies that' (hr")NE ——(b,H')NE = 0, i =x,y, and
thus, there are only three independent viscometric func-
tions in the traceless part of the excess stress; these will be
defined as:

hi)(P)p) =——(aey)„,
v~o

(12a)

~(xx —yy)(~ ) (12b)

~(xx —xx)(~ )
((hr" "—b,r"))NE

2
Vcoo

(12c)

where the extra factors of p)p have been included in order
to allow the viscometric functions to have nonzero limits
as the shear rate goes to zero. Note that hei is the excess
shear viscosity and the N's are excess normal stress coeffi-
cients due to the colloid (they are sometimes defined
without the p)() divided out).

III. ZERO SHEAR RATE LIMITS

In general, a four-dimensional integral must be per-
formed in order to evaluate the excess stress [cf. Eqs. (3),
(11)]. Fortunately, the zero shear rate limit of the
viscometric functions is much simpler. By integrating
Eq. (3) by parts, it is easy to show that ' '

p)pky
S(k) —g

p 2Dkk'
(13a)

copk„k„Sp(k) (3Sp(k)

2kD, Bk

2

1 p)pky i 8 Sp(k) BS()(k)
+ —

2 Sp(k) k
2

+(1—3k k )k + O((p)pk /D, )i),
2D, k (lk2

(13b)

~h~~~ the second equality is obtained when the de Gennes narrowing form of the diffusion constant is used. ~hen Eq.
(13b) is used in Eq. (11), the angular integrations can be carried out, and the zero shear limits of the viscometric func-
tions become

hei(0) =— c Pc f dk [Sp(k) 1]
k (3K k )

3&neD,

~2e CFK 2 3k 2

dk [S()(k)—1]
45m eD,' P (k'+a')'

(14a)

(14b)

~2~ CM

N' '(0) =
2 dk

105neD, P 2(k'+. x. )'
BS()(k) 2

(3Sp(k)k(k'+~') +(k'+5~')S (k)p, (14c)
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where integration by parts and the de Gennes narrowing
form for the diffusion coefficient were used in obtaining
these last results.

As was done in Ref. 8, structure factors for systems in-

teracting via screened Coulomb potentials were computed
within the hypernetted chain approximation (HNC), and
the results were used to numerically compute the zero
shear limits of the viscometric functions [cf. Eqs.
(14a)—(14c)]. The dependence on the colloid charge is
shown in Fig. 1. For the purpose of the plot, it was as-
sumed that there were no excess counter-ions, and that the
screening wave vector could be calculated within the
Debye™Huckel approximation, i.e.,

tion of Ref. 6(a) always gives p, behavior.
When the density is increased further„b, r/(0) —p,

'
over the last decade in density in which it was possible to
solve the HNC equations. On the other hand, X' «'(0)
and N' '(0) do not show a simple sealing behavior
over any appreciable density range; N' ~' —p,

' and
' —p,

' at the highest densities shown.
In the random-phase approximation, the potential is

treated as a perturbation in calculating the direct correla-
tion function, and

4irp, /z, /e

@kg T

In general, the strength of the interactions between the
colloid particles [e.g., as indicated by the height of the
first maximum in So(k)] and the magnitude of the excess
viscosity grow as the charge increases. The same trend is
observed for the normal stress functions.

It should be noted that the HNC approximation fails to
converge when the interactions between the particles be-
come too strong. It is usually argued that the system
reaches a supercooling limit at this point. This interpreta-
tion is further supported by noting that the maximum
values of the first peak in So(k) was approximately 2.8
for the highest charges shown in Fig. 1, and hence, the
Verlet criterion' for freezing is close to being satisfied.

The data shown in Fig. 1 in general do not scale as a
single power of the colloid charge. Nonetheless, for the
highest charges shown, hr/ —z, , the range of validity
increasing with increasing density. The dependence on
the screening length at fixed colloid charge (surface poten-
tial) is shown in Fig. 2 (A,D

= 2ir/x). As before, an in-
crease in the screening length leads to stronger interac-
tions between the particles and correspondingly larger
viscosities and normal stresses result.

The dependence on colloid density for fixed charge and
screening length is shown in Fig. 3. The data do not scale
as a single power of density, although the configurational
contribution to the viscometric functions —p, as

p, ~ 0. This dependence follows when the low density
limit of the structure factor is used in Eqs. (14); i.e.,
So(k) —1 + p,f(k), where f(k) is the Fourier
transform of the Mayer f function for the screened
Coulomb potential. For p, behavior to be observed,
4np, R /3 « 1, where 8 is the radius at which
U(R) —kz'r. From Eq. (5), it follows that

1.0

3 .5
I

E 2() L

1.5 !-
c) j

1.0

0.5

1.50
1

a) 1.25

1.00

0.75

0.50

0.25

/

/

/

/

/

/

/

/

/

P

z,'8 —a+ x 'ln
ek~T[o+a '1n[z, /(o+~ ')ek&T]I

(16)

which gives R =1.80&10 cm for the data shown
in Fig. 3 [a numerical solution of the equation
U(R) = k+T gave 8=1.86X10 cm for this case].
Hence, the transition to p, behavior should occur ai
p, -4g10' cm; a log-log plot of the data confirms
this. It should be noted that the weak coupling calcula-

100 200 300 400 500

Colloid Charge (electrons)

FIG. 1. The dependence of the zero shear rate excess
viscometric functions due to the colloid in water at 298 K on the

O

colloid charge. A 2340 A core diameter was assumed. The
points represent the actual values calculated, and the three
curves correspond to coBoid number densities of 1.42&10"
cm 3, 1.42 g 10' cm ', and 1.42 X 10" cm ', for dot-
dashed, dashed„and solid lines, respectively.



DAVID RONIS 34

Sp(k)— I

1+p, Uk/kg T

k +K
k +K +K~

(17)

where the a;—:4nz, p, /@AT is the colloid Debye screen-
ing wave vector. In writing Eq. (17), the contribution due
to the colloid core has been neglo:ted [cf. the discussion
after Eq. (7)]. Note that the random-phase approximation

Ag(0) = 1

480+a, x,

(x, —4~,x —Sv )
4 2 Z

+8m
(v, +a )'

(19)

used here is different than the weak coupling approxima-
tion of Ref. 6(a). When Eq. (17) is used in Eq. (16), the
viscosities become

5
I

2
I

C9 I

I

C)
I

H

!

I

1

V

Cg

I

p

R 1

I

5

I

I I

) 3

2
I

1

O

R

1.0

0.8
1

0.6

0.6

bg
0 4

O.P.

v 0.4
Rig

0.2
a.

1.0 1.5 2.0 2.5 3.0 3.5

)p( pm )

FIG. 2. The dependence of the zero shear rate excess
viscometric functions due to the colloid in water at 298 K as a

0
function of the screening length. A 2340 A core diameter and a
coBoid surface potential of 115 rnV were assumed. The points
represent the actual values calculated, and the two curves corre-
spond to colloid number densities of 1.42 &( 10" cm and 1.42
)& 10' cm for dot-dashed and dashed lines, respectively.

p,(10"cm ')

FIG. 3. The variation of the zero shear rate excess
viscornetric functions due to the colloid in water at 298 K with

0
colloid number density, length, A 2340 A core diameter, a col-
loid surface potential of 115 mV, and a screening length of 3050
0

A were assumed. The points represent the actual values calcu-
lated.
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with a similar expression for N' '(0). As expected,
both expressions give p, behavior far small colloid densi-
ty. In fact, in this limit, {b,r'») NE/(hr'~ »»') NE
=D,« /coo, i.e., the ratio of the rate at which the particles
diffuse a screening length to the shear rate.

IV. PRINCIPLE OF MATERIAL OBJECTIVITY

g = 1'—go+No 0, (20)

where p«, ri, and N are arbitrary scalar functions of the

three invariants of D. [Fluids obeying Eq. (2) are called
Stokes or Reiner-Rivlin fluids. ]

For the linear Couette flow considered here, it is easy to
show that the xx —yy component of the right-hand side
of Eq. (20) vanishes. On the other hand, the velocity gra-
dients are constant, and it would seem that the conditions
of Truesdell's argument should apply. Since Eq. (11)does

The fact that the xx —yy component of the stress ten-
sor is nonzero is a violation of the principle of material
objectivity' often used in constructing constitutive rela-
tions in rheology; the principle requires that the constitu-
tive relation be invariant under all rigid-body changes of
frame of reference [i.e., under r ~ d(t)+Q(t} r, where

h(t) is arbitrary and Q(t) is unitary but otherwise arbi-
trary]. Hence, invariance under noninertiul transforma-
tions is forced upon the system's dynamics. As Trues-
dell's has shown, if the stress tensor depends only on the
local rate of strain tensor (i.e., E'j —= BU~/Bxj), then the
principle of material objectivity imphes that the stress ten-

sor depends only on D, the symmetric part of E. Given
this, a simple application of the Cayley-Hamilton theorem
shows that

not satisfy Eq. (20), the principle of material objectivity is
violated. It must be emphasized that, unlike the other in-
variance principles used in continuum mechanics, the
principle of material objectivity has no underlying micro-
scopic origin; in this light, the fact that a counterexample
has been found is not too surprising.

As was mentioned above, Rainwater and Bess '" have
studied the weak coupling limit of a model non-
Newtonian fluid. For Couette flow studied here, they
find that r"'" & 2' & H». This implies that

', again contradicting the principle of
material objectivity. On the other hand, for the data
shown in the figures, this inequality is satisfied only when
the colloid particles are weakly interacting (e.g., when the
density, charge, or screening length are reduced), and in
particular, far p, & 7 X 10' cm for the case considered
in Fig. 3. Since v' »»' becomes small when the equili-
brium intercolloid correlations are strong, the principle of
material objectivity may be a reasonable approximation
for same systems. '

V. SHEAR DEPENDENT VISCOSITY

The higher order shear rate corrections to the excess
viscosity can be obtained either from Eq. (13a), or by car-
rying out the numerical integrations indicated in Eqs. (3)
and (11);both approached are now considered.

Equation (13a) can be used in Eq. (11), and the angular
integrations can be carried out, in order to obtain the
0 (aio} correction to the excess viscosity. This gives

b, ri(coo) —b,ri(0) + a)ob, ri' ' + (21)

where b,ri(0) is given by Eq. (14a), and

(2) d So(k dSo(k) diSo(k)

420+Di 0 gk2 0 0 g(k2)3 0 gk2 g(k2)2
dk So(k) 2k So(k) + Sk So(k)

d So(k) dSO(k)
+ 3kiSO(k) + 2k

d(k ) dk

dSO(k)
+ 4k So(k} dki

dSO(k)—6SO(k) 1k' (22)

If this procedure is continued, i.e., when Eq. (13a) is used in Eqs. (10) or (ll), it is easy ta see that the infrared diver-
gence in the k integration will occur for sufficiently high j. (This is analogous to what was found by Rainwater and
Hess. +") Indeed, for the traceless part of the stress, this happens for j &j„=—(8 +4)/2, where 1 is the dimensionality
of space. [Note that the argument depends only on the fact that So(k), dSO(k)/dki, and dU(k)/dki are nonzero and f-
init at k=0.]

The traceless parts of the excess stress tensor have terms which go as coo as coo ~ 0+. (The trace of the stress tensor
has an coo term. ") The leading order form of the nonanalytic contribution to the excess shear viscosity is analyzed in
the Appendix; there it is shown that

' 7/2

b, ri(coo) —hg(0} + coohri + coo AW +Z (i) 5n
2 g

where h, g(0) and hg' ' are given by Eqs. (14a) and (22), respectively,

(23)
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1/2

dk dk k5
2zo iyi „» o II Il ki kz~+ II+

64k» ( 84k[[+48 k»+(192kI]+64k([+12)k» —128k])+'16kl[+8k[[ —1
X

[(k +k~~+ —) —k ]

A =p, g S(k)
6f

(25)

and

d lnSO(k)
lim

k ~0+ (26)

is the colloid-colloid correlation length. The two-
dimensional integral in Eq. (23) was done numerically,
and it was found that W = 1.174 g 10

Even though the functional dependences are the same,
there are two differences between the forms of the nonan-
alytic terms given here and those of the weak coupling
calculations of Rainwater and Hess. The first stems from
the k dependence of the diffusion constant; the nonanalyt-
ic terms come from the long wavelength contributions to
the integral in Eq. (11). The dimensionless parameter
governing the size of nonanalytic terms is cogi/Dk
where g is the colloid-colloid correlation length. On the
other hand, the analytic contributions to the viscometric
functions mainly arise from dynamics on the scale of in-
tercolloid separation, and there the coupling to the shear
is governed by coo/Dkk, with k = g '. Since $0(0) is
small at k =0, the couphng to the shear at shorter length
scales will be stronger than that characterizing the nonan-
alytic terms, and they will thus be numerically small.

The second difference is the appearance of extra factors
of So(0) multiplying the nonanalytic terms. In the weak
coupling limit, So(0) —1 to leading order. Here howev-
er, the colloid particles interact strongly and So(0) is
small. This further reduces the size of the nonanalytic
terms.

It should be noted that the origins of the nonanalytic
terms considered here and those invoked for simple fluids
are quite different. In the latter, ' it is correlations in
velocity which are responsible for the nonanalytic shear
dependence, while in this work, the use of the de Gennes
narrowing form of the diffusion constant precludes the
consideration of strong velocity correlations. Of course,
velocity mode-mode coupling effects could be included in
this calculation [cf. Ref. 18(a)]; however, while resulting
in a lower order nonanalytic dependence (i.e., mo for the
shear viscosity), the coefficient will be exceedingly small.

The dependence of the configurational viscosity on
shear rate is shown in Fig. 4. The plot was obtained by
numerically carrying out the four-dimensional integration
in Eq. (11) using a structure factor obtained from the
HNC equation. The integration over wave vectors was
carried out by using a three-dimensional Simpson's rule.
The integration over k» in Eq. (3) was carried out using

I

1.00

0.75

0.50

2.5 5.0 7.5 10.0 12.5

co sec

FIG. 4. The shear dependent excess viscosity for 2340 A di-
ameter particles in water at 298 K. A number density of
1.42 )& 10" cm ' and a 115 mV surface potential were as-
SUBled.

I.aguerre's method for smalI shear rates and by Simpson's
rule for high shear rates (i.e., where there is significant
mode-coupling).

The excess viscosity is well behaved at zero shear rate
and agrees (to within the numerical error) with the value
obtained from Eq. (14a). As the shear rate is increased,
the system shear thins. As is shown in Fig. 4, there is a
small range of shears over which b, i) —coo

' . Finally,
at very large shear rates, the stress saturates, and
hiI —aio '. It should be noted that coo

' behavior has
been observed in the recent experiments of de Kruif et
al. ' on sterically stabilized silica spheres in cyclohexane.

An excellent fit to the viscosity plotted in Fig. 4 is ob-
tained with

heal(0)[1+8(coo/ei') ]
[ I+(a)0/a)') ]'~ [1+8(coo/co') ]

where the characteristic frequency, co' = 6.84 sec ', A
= 0.055, and 8 = 0.013. Note that the characteristic dif-
fusion rate for scales where So(k,„) is a maximum, i.e.,
D,km, „/So(km, „),is 16.3 sec ' for the data shown in Fig.
4.
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The motivation for plotting the excess viscosity versus

coo lies in the results of the mode-coupling theories' and
in the confiicting results of nonequilibrium molecular
dynamics simulations. ' ' The nonequilibrium molecular
dynamics simulations of Evans, strongly suggest a large
coo term in the shear viscosity (although the coefficient
is far too large to be explained by any of the mode-
coupling theories). On the other hand, Erpenbeck, ' finds
no "suggestion of an coo dependence of the viscosity
coefficient near coo ——0." A similar conclusion was
reached by Eu and Ohr who applied Eu's kinetic theory
of dense liquids to calculate the viscometric functions.

If the analogy between the rheological properties of the
colloid suspensions and molecular systems is valid, then
the results presented here suggest the following: (1) As
was found by Erpenbeck, there is no significant c00 term
in the viscosity at zero shear rate. (2) Like Evans, there
seems to be an intermediate regime where the viscosity ap-
pears to have a c00 dependence (cf. Fig. 4); note, howev-
er, that an excellent fit to the data can be achieved with
Eq. (27). (3) There is a shear saturation crossover at suffi-
ciently high shear rates. While it is clear that writing
i)(coo) = il(0) —Acro must break down at sufficiently
high rates of shear if the viscosity is to remain positive,
numerical confirmation of this crossover in molecular sys-
tems is not yet available. How the ranges of these regimes
depend on the differences between the colloidal and
molecular systems is, at present, unknown.

Finally, it must be noted that conditions under which
the simulations are run make the assumption of the de
Gennes narrowing form for the diffusion constant, or for
that matter, simple diffusive dynamics, rather question-
able; there should be strong velocity correlations and
solidlike dynamics in the simulations of liquids, especially
for the shear rates under study.

tended to increase as the interactions between the colloid
particles were increased and the viscosity exhibited shear
thinning as the shear rate was increased. In addition, the
viscometric functions violate the principle of material ob-
jectivity.

The shear thinning observed here has a simple physical
origin. As was shown in Ref. 8, the shear destroys the
static correlations between the colloid particles, and in
particular So(k) ~ 1 as cook&/D, ~ cc. Thus, as the
shear rate is increased, the suspension becomes more like
an ideal gas, which has no configurational contributions
to the stress.

A possible source of error in the numerical results was
the use of approximate equilibrium structure factors for
the colloid particles, and the neglect of the counter-ions
altogether. For exainple, So(0) is usually too small in the
HNC approximation. It is obvious that the formal as-
pects of the theory are unaffected by the choice of equili-
brium structure factor, and in particular, nothing pre-
cludes the use of an experimentally determined one.

The use of the de Gennes narrowing form for the
wave-vector-dependent viscosity is based on the neglcx:t of
velocity correlations between different colloid particles.
This is a reasonable approximation at low concentrations,
but should break down for highly concentrated suspen-
sions (e.g., as were studied experimentally in Ref. 8).
Nonetheless, the fiuctuating diffusion equation approach
can still be used providing that a suitably generalized fre-
quency and wave-vector-dependent diffusion constant is
used in Eqs. (1) and (2). (The nature of the generalized
diffusion constant was considered in Ref. 7.} In general,
Eq. (3) is replaced by an expression containing an addi-
tional frequency integration, thereby complicating the nu-

merical task required in order to obtain the viscometric
functions.
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APPENDIX

In this appendix, the leading order nonanalytic behavior of the excess shear viscosity is examined. Equation (3) is in-

tegrated by parts three times and the result is used in Eq. (10); the excess shear stress thus becomes:

= —hi1(0)coo

+ '-'
(2~)' "." " ' dk'

where

& J dx F(x+k„,k~~)exp
So(0) x (y+k„) +k~~

S [[(y+k„}+k~~]'
dg (A 1)
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So(k)
F(k„,k~l) —=

Bk» So(0)k ~

dSo(k)
k„

dk
(A3)

Next, the order of integration is changed, the transformations k„~ k„—x and y ~ x —y are carried out, and an addi-
tional integration by parts in x is performed. This allows Eq. (Al) to be rewritten as:

V
= —hq(0}coo

4 r'
dk k F(k„,k )

k S (k)

(2~)' k, &o ' "' k'S (0) dk'

a So(k)k. dU(k)
k'S, (0)

So(0) x (y —k~) +kii
S, t [(y —k„}'+kI~]

(A4)

After the differentiations and angular integrations are carried out in the second term on the right-hand side of Eq. (A4) it
is easy to show that the 0(coo) term of Eq. (21) is obtained. The leading order dependence of the remaining term can be
obtained by scaling lt, x, and y by 1'r~, and then taking the I ~ 0+ limit inside the integrations. This gives

(&&')NE (2)

V
= —ari(0)coo —ari ~o

16AE ~ x 3 ~ —2
~~

— z —& —x(k' —xk +x'r3)rk

(2sr) s k [k ~+,— ]
(A5}

where b s)' ' is given by Eq. (22) and A is given by Eq. (25). Finally, k is scaled by x, cylindrical coordinates along the
k„direction are taken, the transformation k, ~ k + —, is performed, and the integrand is symmetrized under
k„~ —k„; after some simple integrals are evaluated, Eq. (23) is obtained.
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