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Thermal conductivity of the Lennard-Jones fluid

Denis J. Evans
Research School of Chemistry, Australian National Uniuersity, G P 0. .Bo. x 4, Canberra, Australian Capital Territory, Australia 260l

(Received 5 March 1986}

We use the Evans method [Phys. Lett. 91A, 457 (1982) to simulate heat flow in the Lennard-Jones
fluid. With use of the standard Lennard-Jones representation of argon, the results are in broad
agreement with experimental argon data except in a small region close to the critical point. The re-
sults indicate that away from phase boundaries there is little N dependence of the computed results.
Close to the critical point the computed effective thermal conductivity is a nonmonotonic function
of the external field. The long-time tail of the heat flux autocorrelation function is somewhat larger
than mode-coupling predictions.

I. INTRODUCTION

At present the only known homogeneous method for
simulating heat flow in a periodic system is due to Evans. '

In this method a fictitious external field F essentially re-
places the role played in experiment by the temperature
gradient V T. Linear-response theory is then used to prove
that in the linear regime the ratio of the heat flux J& to
the external field F is equal to the thermal conductivity
multiplied by the absolute temperature. Consider the fol-
lowing equations of motion:

dq;/dt =p;/m,

dp;/dt=g Ftj+(E; —E)F(t)—g Ftjq(J P(t)

+$ FJkqlk P(t)/2$ —up;,
j,k

where o., the thermostating multiplier, is

tx =g g P"+(E —E)P(t)—g F"q" F(t)

I dt(Jg(t) Jg(0)) .
Q

(3)

A number of points need to be made about these equa-
tions of motion. The term ap; is the Gaussian thermo-
stat. ' lt ensures that the temperature as measured by the
kinetic energy, g p /2m (=3Xktt T/2), is a constant of
the motion. This means that the order of taking limits in

+g PjsQ&k F(t) pt/2N gpt pt
j,k i

In Eq. (1), Et is the instantaneous energy of particle i,
E =g,. E~/N, F,t is the force on particle i due to j, and

q,j——ql —q;. It is relatively straightforward to show that
if the external field is constant, then

lim J~-AF/T as P~O .
t~O

This result is proved by comparing the linear response to
F with the Green-Kubo expression for the thermal con-
ductivity, k:

(2) can be interchanged without changing the result.
This is, of course, not possible in adiabatic linear-response
theory. For computer simulations the thermostat is, of
course, indispensable since otherwise the heating of the
system would prevent the attainment of a true steady
state. Isothermal linear-response theory shows that the
Gaussian thermostat is relatively benign. It leaves the for-
mal expression for the linear response unaltered except
that in the equilibrium time-correlation function (3) prop-
agation is governed by the field-free Gaussian isothermal
propagator rather than by the corresponding Newtonian
propagator. We have recently proved that in the thermo-
dynamic limit the adiabatic and isothermal equilibrium
time-correlation functions are identical. '

A second point about these equations of motion is that
even in the absence of a thermostat, no Hamiltonian has
been found which is capable of generating the (adiabatic)
equations of motion. It can be shown that provided the
adiabatic incompressibility of phase-space condition
(AII ) is fulfilled, linear-response theory for Hamiltonian
systems has a simple generalization to non-Hamiltonian
systems. ' It is worth noting that an apparently similar
set of equations due to Gillan do not satisfy AII . One
manifestation of this property of the Gillan equations is
that in contrast to our equations (1), the Gillan equations
do not conserve momentum.

A third property of our equations is that they are con-
sistent with the periodic boundary conditions used in
computer simulations. Indeed, it was the necessity of
satisfying these conditions that originally lead to the
abandonment of Hamiltonian forms for the dynamics. '

Because the external field acts homogeneously the heat
flux is created in the complete absence of temperature or
density gradients. It is the unavoidable presence of these
gradients in real heat flow that means that a straightfor-
ward simulation of heat flow between walls maintained at
different temperatures is fraught with severe interpretive
difficulties. '

The price we pay for these substantial benefits is that
outside the linear regime close to equilibrium, no meaning
is known for the field-dependent nonlinear transport coef-
ficient Jtt/F. All that is presently known is that in the
zero field limit this ratio is equal to the thermal conduc-
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tivity times the absolute temperature.
» this paper we use the dynamics described by Eqs. (1)

to study heat flow in the Lennard-Jones fiuid. The inter-
molecular potential function @(q),

4( q) =4(q ' —q ) (4)

II. ZERO-FREQUENCY THERMAL CONDUCTIVITY

was truncated at q =2.5. Most of the calculations we
performed for 108-particle simulations although a small
number of comparisons were made for 256-particle sys-
tems to check the number dependence of the results.
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Most previous studies of Lennard-Jones thermal con-
ductivities have been restricted to the triple-point re-
gion. " In this study we performed simulations for a
wide range of state points. Figures 1—3 show computed
thermal conductivities as a function of external field F
for the critical isotherm ( T =1.35), for a supercritical
isotherm (T=2), and for two state points along the
Lennard-Jones freezing line. Apart from the critical point
simulation ( T =1.35,p=0.4) the agremunt with experi-
ment is within statistical uncertainties. In general, the ef-
fective field-dependent conductivity seems to be a mono-
tonic, virtually linear, function of the external field. If
this could be established theoretically it would greatly in-
crease our confidence in the unavoidable extrapolation to
zero field to obtain the thermal conductivity. This essen-
tially linear behavior was also seen in our earlier triple-
point calculations.

Figure 4 shows the critical point results in more detail.
It appears that at least for this state point, a linear rela-
tion between the conductivity and the field is not valid
over the range of field strengths studied. Because of the
well-known critical enhancement of thermal conductivity,
we should not expect to be able to calculate the correct
thermal conductivity for small periodic systems that are
close to the critical point. We note that the disagreement
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FIG. 2. Computed conductivity as a function of external

field F for a supercritical isotherm (T=2). Except for the
critical-point state, extrapolated zero-field conductivities agree
with experimental thermal conductivities (Ref. 20) within es-

timated statistical uncertainties.

with experiment is in the expected direction, simulation
being some 11% smaller than experiment.

Figure 5 shows some of our earlier triple-point data to-
gether with some new results for a 256-particle system.
One immediately sees the apparently linear field depen-
dence of the conductivity. At fields greater than 0.2 the
results show no discernable E-dependence. At F=0.2,
two conductivities are obtainable for the larger system.
One of the conductivities is in excellent agreement with

the 108-particle results. At the smaller field (F=0.1),
only one conductivity is observable in the system. It is

larger than the corresponding 108-particle result.
At a field of 0.2 the two different conductivities were

obtained depending upon whether the state point was ap-
proached from higher or lower fields. The system thus
exhibits hysteresis. We believe that for the 256-particle
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FIG. 1. Computed conductivity as a function of external
field F for the critical isotherm (T=1.35). Except for the
critical-point state, extrapolated zero-field conductivities agree
with experimental thermal conductivities (Ref. 20) within es-

timated statistical uncertainties.

FIG. 3. Computed conductivity as a function of external
field F for two state points along the Lennard-Jones freezing
line. Except for the critical-point state, extrapolated zero-field
conductivities agree with experimental thermal conductivities
(Ref. 20) within estimated statistical uncertainties.
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FIG. 4. Computed conductivity for the Lennard-Jones criti-
cal point ( T =1.3S, p=0.4). Note the nonmonotonic variation
with field. The zero-field thermal conductivity disagrees with

experiment (Ref. 20) by a statistically significant amount.

FIG. 6. For the 24S-particle system, heating at I' =0.1 melts
the system, giving a conductivity which when extrapolated to
the triple-point temperature agrees with the 108-particle results
at that field.
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system, the equilibrium (F=O} phase is the solid rather
than the hquid. As the field increases the system under-
goes a phase transition to a (thermally conducting} liquid
phase. If this hypothesis is carrect it should be possible to
promote the same transition by varying the temperature at
constant field rather than by varying the field at constant
temperature. Fixing the field at 0.1, where only one phase
is stable, presumably the solid, we increased the tempera-
ture to farm the thermally conducting liquid. This was
observed as a sharp drop in the observed conductivity (see

Fig. 6}. At a fixed field of 0.1, it can be seen that there
are again apparently two stable branches with the transi-
tion occurring at a temperature in the range 0.722
g T g0.747. Using the high-temperature-liquid data we
can extrapolate down to T =0.722 to obtain the estimated
F=0.1, liquid phase, 256-particle conductivity. The re-
sult of this extrapolation is shown in Fig. 5. It is in excel-
lent agreement with the corresponding 108-particle results
and with the high-field 256-particle conductivities extra-
polated to F=0.1.

In retrospect it was probably unfortunate to attempt the
N-dependence study for a fiuid close to its triple point.
~e conclude, however, that in the dense fluid phase there
is no significant X dependence of computed conductivities
for the Evans method. Of course this cannot be expected
to apply in the critical point region.

The extrapolated thermal conductivity for the
I.ennard-Jones triple point agrees we11 with the argon ex-
perimental results. However, we can see from Fig. 5 that
there is considerable uncertainty in the experimenta1 re-
sults. In fact, it would appear from our simulations that
it should be possible to calculate the argon thermal con-
ductivity more accurately than it can be measured experi-
mentally. Of course, one would have to use a more accu-
rate representation of the argon intermolecular potential
than that provided by the Leonard-Jones representation.
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0.5 III. FREQUENCY-DEPENDENT THERMAL
CONDUCTIVITY

FIG. S. Conductivity for the triple-point state. The results
are shown as a function of external field and system size. At
low fields the 2S6-particle system has an equilibrium phase
which differs from that of the 108-particle system. They are
presumably solid and liquid, respectively. The filled-in square
shows the extrapolated liquid-phase conductivity for 256 parti-
cles at I' =0.1 (see Fig. 6). %'e conclude there is no significant
N dependence for the Evans method provided systems are in the
same phase. The calculated results are in agreement with exper-
imental data (Refs. 20 and 21).

A, (c0)= i I dt e'"'(Jg(t} Jg(0)) .
3k' T~

(5)

Equation (5) shows that the complex frequency-
dependent thermal conductivity gives us the Fourier-

If we chose an external field which has a sinusoidal
time dependence, we can, of course, calculate the
frequency-dependent conductivity A,(co). It is well known
that
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Laplace transform of the heat-flux autocorrelation func-
tion at equilibrium.

In the past me have used the same technique to study
the stress autocorrelation function using nonequilibrium
molecular dynamics simulations of viscous flow. "' As
is now well known"' the equilibrium stress autocorrela-
tion function seems to be dominated at long times by
what have become known as "enhanced long-time tails. "
In three dimensions these tails appear to decay as t
giving rise at low frequencies to a square-root cusp in the
real and imaginary parts of the frequency-dependent
viscosity. In two dimensions these tails appear to decay as
r ', leading to the possible divergence of viscosity in two
dimensions. In a recent paper we have presented simula-
tion data which suggest that in two dimensions at suff-
icientl long times and low strain rates, planar shear flow
itself bo:omes unstable, thus screening the two-
dimensional divergence. '

One of the interesting aspects of these tails is that the
functional time dependences observed in computer simu-
lations agree with those predicted by mode-coupling
theory. This is the case for both the frequency and
strain-rate dependences, in two, three, and even four di-
mensions. The amplitudes of the observed tails are, how-
ever, orders of magnitude larger than theoretical predic-
tions. Further, the theoretical dependence of tail amph-
tudes upon temperature and density are also in disagree-
ment with the simulation results. Although bulk viscosity
has been studied less extensively it too seems to exhibit an
enhanced long-time tail. '5 It therefore seemed of interest
to perform similar calculations for thermal conductivity
to ascertain whether enhanced tails are confined to viscos-
ity and related transport coefficients. '

Figure 7 shows the complex frequency-dependent
thermal conductivity as a function of the square root of
the frequency. Like viscosity it reveals a monotonic de-
crease in the real part of the conductivity with increasing
frequency. However, unlike viscosity, Fig. 7 shows a
slight shoulder at a frequency of approximately 2. It is
well known that at low frequencies the imaginary part of
the transport coefficient is subject to larger statistical un-
certainties than the corresponding real part. " This is
partly explained by the fact that, relative to the imaginary
branch, there is a greater range of frequencies over which
the asymptotic (co~0) dependence is observable in the
real part of the spectrum. This can be clearly seen in
Figs. 7 and 8. The real part of the low-frequency data is
consistent with the behavior

Re[A(co)] =(1.9+0.1)—(0.3+0.05)co'

Mode-coupling theory predicts that rather than 0.3,
the coefficient of the square-root cusp should be approxi-
mately 0.05+0.01. This estimate was based upon the
known properties of the 108-particle Lennard-Jones fluid
rather than upon the experimental properties of argon.
The main uncertainty in the calculation of the theoretical
mode-coupling amplitude is the unknown bulk viscosity.
%e have assumed that it is equal to the shear viscosity.
The amplitude is not sensitive to the precise value of the
bulk viscosity. %e use the I.ennard-Jones properties rath-
er than those of argon to try to avoid difficulties due to

dent
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the small system size restricting the critical behavior that
would be found in real argon. The actual critical point of
the 2.5 cutoff Lennard-Jones fluid is not known with
great accuracy. It is highly dependent upon details of sys-
tem size and cutoff distances and procedures.

Although the data shown in Fig. 7 are not of as high
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FIG. 8. Similar data to Fig. 7 except that the density has
been increased to 0.6.
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FIG. 7. Real and imaginary parts of the critical-point,
frequency-dependent thermal conductivity. The field amplitude
used in these calculations was 0.1. It was found that there is
negligible field dependence of the results at nonzero frequencies.
It appears that at low frequencies the results are consistent with
a square-root variation with frequency. The observed amplitude
appears to be about an order of magnitude larger than mode-
coupling predictions.
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quality as the corresponding shear-viscosity data, it ap-
pears that mode-coupling amplitude may be as much as a
factor of 6 times smaller than the observed amplitude.
Figure 8 shows the results at a slightly higher density on
the critical isotherm. Here the long-time-tail amplitude
seeins to be much reduced and it is much more difficult to
determine with any accuracy. Our tentative figures at
T =1.35, p=0.6 are

Re[A, (co)]= (3.4+0.1)—(0.16+0.1)co'~

The mode-coupling amplitude at this state point is ap-
proximately 0.03.

IV. CONCLUSION

We have shown that the I.ennard-Jones thermal con-

ductivity calculated using the Evans algorithm is in good
agreement with experimental argon thermal conductivities
over a broad range of temperatures and densities. It in

fact appears possible to use accurate potential functions to
calculate inert-gas thermal conductivities more accurately
than they can be measured experimentally, at least in re-

gions of the phase diagram that are not close to the criti-
cal point.

Our extrapolated triple-point thermal conductivity is in

excellent agreement with very recent calculations for the

same system carried out by Paolini, Ciccotti, and Masso-

brio. ' The chief difference between our calculations and

theirs is that Paolini, Ciccotti, and Massobrio use an im-

pulse field I' in Eq. (1) rather than the steady field used in
this work. Their calculations also reveal a negligible
dependence of the computed results upon the system size,
provided X & 108.

Away from the critical region it seems that the field-
dependent conductivity is essentially a linear function of
the apphed external field. Near the critical point it is
probable that long-time-tail effects are responsible for the
nonmonotonic variation of the conductivity with respect
to the external field. It also seems possible that mode-
coupling theories underestimate the amplitude of these
long-time tails. The discrepancy seems, however, to be
much smaller than is the case for shear or bulk viscosity.

Provided one is not too close to a phase boundary there
seems to be little N dependence in the computed results.
This conclusion is supported by recent calculations that
we have performed on thermal conductivity and diffusion
in binary mixtures.

Note added in proof. We have recently proved that
despite the violation of momentum conservation and AII,
the Gillan algorithm is correct [MacGowan and Evans
(unpublished)].
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