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Search for randomness in the kicked quantum rotator
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%e reexamine the problem of the 5-kicked rotator in the light of some numerical results which

support the thesis of the existence of a singular continuous component in the quasienergy spectrum,
in accordance with previously obtained analytical results. In particular, we discuss to what extent a
memory of classical chaos may survive in the quantum motion.

I. INTRODUCTION

Deterministic Newtonian systems can exhibit every
shade of randomness from simple ergodic flow on a torus
to wildly erratic phase-space flow indistinguishable from
a truly random process. This inherent randomness exhib-
ited by many Newtonian systems provides hope that clas-
sical statistical mechanics can at last be rigorously derived
without the use of additional ad hoc probability assump-
tions.

Finite-particle-number, bounded, conservative quantum
systems, on the other hand, yield a time evolution which,
due to discrete energy spectra, is almost periodic and is
therefore ergodic only at best.

Quantum statistical mechanics, which requires random-
ness in the deterministic Schrodinger fiow of the wave
function, thus would seem to lie beyond the pale of such
systems. Many have suggested that randomness in quan-
tum evolution may be recovered in systems having con-
tinuous spectra or even in systems having discrete spectra,
provided one considers only time intervals over which a
continuum approximation might be valid. However, this
possible resolution suffers the defect that a continuous
spectrum alone is no guarantee of randomness.

Indeed, a continuous spectrum need imply no more
than weak mixing in the quantum flow. In consequence,
the question of randomness (chaos) in the time evolution
of a quantum system is seen to perhaps involve quite deli-
cate issues, and one is hard pressed not to suspect, at the
very least, that quantum mechanics imposes severe limita-
tions on the classical notions of chaos. Regardless, a con-
tinuous spectrum is a necessary„even though not a suffi-
cient condition for randomness; thus, it is surely in sys-
tems having a continuous spectrum that wc must search
for randomness, if any, in the quantum flow. In this pa-
per, we present a progress report on the search for a con-
tinuous spectrum and randomness in a particular quan-

turn system.
Time-dependent, one-degree-of-freedom Hamil tonian

systems are perhaps the simplest which can exhibit con-
tinuous spectra and, of these, perhaps the simplest is the
"kicked" quantum rotator introduced in Ref. 1. The
Hamiltonian for this model is

H =p /2+to cos8 g 5(t —nT),

where p is the rotator momentum and 8 is its angular po-
sition, co is the perturbation strength, and T is the kick
period.

The classical equations of motion for Hamiltonian (1}
when integrated over a kick period become the mapping
equations

P„+i P„+Ksin8„——,
8„~i

——8„+P„+i,
(2a)

(2b)

where K=to T, n is the time measured in number of
kicks, and P„ is the dimensionless rotator momentum.

Equation (2} is Chirikov's standard map frequently
used to study the transition to chaos, the disappearance of
the last horizontal Kolmogorov-Arnold-Moser (KAM)
curve, and the application of renormalization theory to
dynamics. Statistical properties appear in this mapping
when the parameter K yy 1. Under this condition, numer-
ical evidence verifies that the P motion obeys a simple,
random-walk diffusion equation having the form

where P is the average of the squared rotator momentum
and where initially P is taken to be zero. Numerical evi-
dence also establishes that the momentum distribution it-
self has the time-dependent Gaussian form
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f(P)=K(em) '~ exp( P—/& n) . (4) properties of the driven quantum motion, a point to
which we now turn.

It is precisely this type stochastic or random behavior
that is being sought in the corresponding quantum sys-
tern.

II. EARLIER RESULTS ON THE QUANTUM
KICKED ROTATOR

The Hamiltonian for the kicked quantum rotator has
the form

8H = ——,+a)2cos8 g 5(t nT—) .
~ a8'

The quantum motion governed by Hamiltonian (5) is
described' by the following mapping. Given
iti(8)= g" „c e', then the value of |li(8), called

Sf(8), after. a free rotation and a kick is given by

gq( n s i k cose- —i[(v/2)m 2 —m8]Hi=e C~8

where k =co /irt and ~=AT.
Due to the periodicity of mapping (6), it is convenient

to redefine v =~/4' and consider values of r lying only in
the interval [0,1]. Note that the classical EC is such that
here E =4mkr.

The simple mapping of Eq. (6) is especially interesting
because, as we discuss later, it can yield quantum motion
having a continuous spectrum as required for randomness.
We thus now turn to the details of our progress report on
the search for randomness (beyond f*f) in quantum
mechanics.

In all studies of the kicked quantum rotator, two cen-
tral features of the motion are observed. First for rational
values of ~ in the kick period equation T =4m~/R, the ro-
tator energy resonantly increases asymptotically as t2.
This is a strictly quantum phenomenon and does not
occur in the corresponding classical system. This quan-
tum peculiarity arises because the unperturbed quantum
motion, as opposed to the classical, has the same period
independent of initial state. Second, for suitable values of
system parameters, the quantum motion can mimic the
classical diffusive energy growth yielding

m2
2 k(E)=g ~c ~'= t.

Ho~ever, in the quantum motion this linear energy
growth persists only up to a break time t~. Empirically it
appears that tti~ao as R +0 or equiva—lently k~ao, for
constant EC=4mkr. For times greater than the break
time, the quantum energy appears to enter a steady-state
oscillatory regime. In short, the kicked quantum rotator
apparently introduces a limitation to classical diffusion
and randomness. Break time also relates to the spectral

III. THE LOCALIZATION PHENOMENON

Recall that the wave-function solution for a periodical-
ly driven quantum system can always be written

g( t) =P(t)e'G'P(0),

where P is a periodic unitary operator and 6 is a self-
adjoint operator.

The character of the time evolution for f is known once
the spectrum of G, called the quasienergy (abbreviated
q.e., hereafter) spectrum is known. As we shall show
later, the quasienergy spectrum for our model can be pure
point only when the rotator energy remains bounded for
all times, in which case the initial wave packet remains lo-
calized in momentum space. Thus the very existence of a
break time after which energy growth stops completely
would ensure that the quasienergy spe:trum is pure point
and that the full quantum motion is almost periodic.

Chirikov, Izrailev, and Shepelyansky have advanced an
heuristic argument which yields a quantitative estimate
for this quantum limitation of diffusion due to the break-
time phenomenon. In essence, this argument is the fol-
lowing: Assume that the q.e. spectrum is pure point since
otherwise there will be no finite break time. By the quan-
tum theory of measurement, this pure-point character of
the spectrum can become apparent after only a certain
time t'. Prior to this time the system wiB behave as if its
spectrum were continuous and hence the limitation on dif-
fusion will occur no later than t'. Chirikov et al. there-
fore identify t with the break time ttt in order of magni-
tude.

To estimate t', recall that the total number of q.e. lev-
els is infinite and that all these levels are located within a
bounded interval. In addition, recall that each particular
state f of the system can be obtained as a superposition of
quasienergy eigenstates; while, generally speaking, the su-
perposition involves an infinite number of q.e. states, we
may assume that for an initially localized packet, the fi-
nite time evolution of P is dominated by a finite number
in N~ of them. This effective number X& is also the
number of eigenfrequencies actually occurring in the time
evolution of P. Therefore the spectrum of the motion cor-
responding to state i' will consist of N frequencies with
average spacings about N~ '. It is now clear that t*=N~
and we must estimate N&. First, we assume that le~
roughly coincides with the number of unperturbed eigen-
states significantly involved in the motion. Next, we iden-
tify N~ with bP(t ), that is, with the spread in momen-
tum achieved at time t '. Experimentally we have
AP(t )-k(t')' (for k ~ 1, K ~ 1). Since N~-t*
-EP(t'), we finally get that, in order of magnitude,

-k . In other words, both the break time and the lo-
calization length N~ are of the order of the classical dif-
fusion coefficient.

Localization of quantum wave packets in cases where
classical mechanics would predict a diffusive behavior is a
well-known phenomenon in solid-state physics also.
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Indeed, the (time-independent) Hamiltonian of a particle
in a random potential on a line can be proved to have a
pure-point spectrum with eigenfunctions exponentially lo-
calized in space; this fact is known as Anderson locahza-
tion.

An intimate connection between the localization in mo-
menta which occurs in the kicked rotator and Anderson
localization was discovered by Fishmann et al. They
showed that the equations which must be satisfied by the
q.e. eigenfunctions of the rotator, written in the momen-
tum space, look like the Schrodinger equation for the
eigenstates of Anderson's model. Whether this similarity
is close enough that Anderson's result can be invoked in
this case is a point which turns out to depend on the "de-
gree of randomness" of the number sequence
g„=tg[k—r(n l2)]. This is a very delicate question; at
first sight one would say that the answer might depend
strongly on the arithmetic properties of ~. Indeed, we will
see in the next section that the spectral type of the rotator
depends on such properties of r.

Nevertheless, for typical irrational values of ~ the pic-
ture of Anderson localization in momentum space fits
very well the rotator problem also. In Fig. 1 we show the
shape of the squared modulus of the wave function in
momentum space, after the break time t' and for the ini-
tial 5-like state.

The exponential behavior is apparent here; also, the lo-

lfl
I cp

calization length is in excellent agreement with the esti-
mate given above by Chirikov et al. This is surprising
because Anderson's result is concerned with the asymptot-
ics for n ~ ao of eigenfttnctions of q.e.; here, we find very
good exponential decay even for sma/1 n and for a nonsta
tionary state. (Actually, in the next section we will show
that the asymptotics for n —+ ac should give in this case a
faster than exponential decay ).Evidently, some mecha-
nism must be working here that requires further investiga-
tion.

IV. QUASIENERGY SPECTRUM
AND ENERGY GRO%'TH

In the preceding section we have seen that there is a
close relationship between the behavior in time of the ro-
tator energy and the nature of its q.e. spectrum. Actually,
this is a rather general feature for periodically driven
quantum systems; the nature of the q.e. spectrum has a
quite general and definite connection with energy growth
(or localization) which can, to some extent, be analyzed
without making reference to the particular model under
investigation. In this section, we shall outline some basic
facts about this relationship. In general, the q.e. spectrum
of the operator 6 in Eq. (7) can be decomposed into its
absolutely continuous, singular continuous, and pure-
point parts; a priori, any or all of these parts may occur.

We shall now investigate the effects of these com-
ponents on the long-time behavior of the kinetic energy.
We have for the kinetic energy

-5- PlE(t)= g ~c (t) (

m =—oo
2

(Sa)

-15-
c (nT)= [e' s, l((nT)],

1

2n

-25-

-35-

where P(nT) =S"P(0) is the wave function at time t =nT.
Suppose that P(0) lies in the subspace of absolute con-

tinuity of S, i.e., that the motion has a pure absolutely
continuous spectrum.

As is well known, this implies that c (nT)~0 as
n~ ,acand this in turn implies that E(nT)~no as
n ~ oo, since for all n, g ~

c (n T)
~

t = 1.
Instead, if g lies in the pure-point subspace of S, each

c (nT) displays an almost periodic behavior, resulting in
a similar behavior in E(nT).

The third possibility, that motion exhibits a singular
continuous spectrum, seems not to be emphasized in
much of the literature. In this case, the autocorrelation of
g given by Eq. (Sb) may not tend to zero as n ~ ao ', how-
ever, it will do so when time averaged. Therefore, one
mould have

256

FIG. 1. Distribution function
~
c„~ after 50000 iter-

ations of the quantum mapping for the case
k=10 and v=[0,25, 1, 1, 1, . . . ] (dashed line),
~=[0,25, 100,200,400, 800, . . . ] (solid line). Notice the fairly
good exponential localization in momentum space over several
orders of magnitude.

lim —g ~c (jT)
~

=()
fI~co 7l

but not necessarily c~(jT)~0 As a consequen. ce, the en-
ergy E(nT) would display an erratjc behavior
that

n—g E(j T)~ ac as n ~ co .
J=1





1417

turn to initial state (discrete spectrum), the energy must
eventually move away, either up or down, from the value
shown in Fig. 2. Unfortunately, even though we have
pushed the integration time interval near the limit of
currently available super computers, we have been unable
to decide which alternative actually occurs in this case. In
consequence, we have been driven to analysis.

One's first attempt at analysis might naturally begin
with perturbation theory since the unperturbed system
(k =0) has an especially simple motion, recurrent with a
pure-point spectrum. One therefore reasonably expects
the weakly perturbed system to also have a pure-point
spectrum. From our earlier discussions, however, we
know this to be false, no matter the smallness of k, since
rational values of ~ yield a continuous component in the
spectrum. Moreover, detailed investigations reveal that
quantum perturbation analysis is here plagued with the
same small denominators which appear in the KAM
theory of classical mechanics. This similarity to KAM
theory again reinforces the expectation that the number
theoretic properties of ~ may be crucial.

Because of our central concern with the possibility of
finding a set of irrational ~ values for which the spectrum
is continuous, we have, following the lead of KAM
theory, examined intervals of ~ values centered on irra-
tionals especially well approximated by rationals. In
essence, since each rational ~ value yields a continuous
spectrum, we ask, if by choosing irrational values of r
suitably close to rationals, t'he continuous spectrum might
not survive the perturbation, rational to irrational.
Indeed, we have been able to prove that there is a class of
irrational r values for which the q.e. spectrum is continu-
ous. This proof definitivel establishes that an irrational,
"nonresonant" ~ value does not automatically imply a
point q.e. spectrum, contrary to earlier belief. However,
our rigorous analysis leaves two open questions: What is
the nature of this continuous spectrum, and how big is
this class or irrationals —specifically whether they are nu-
merically detectable or not? In order to answer the first
question, a delicate analysis of the spectrum in resonance
is needed but is not yet available. However, even if it were
possible to prove that the continuous nonresonant spec-
trum is singular, we would not then expect behavior in the
quantum flow any more "chaotic" than that which occurs
in classical weak mixing.

The remaining problem is now whether this spectral
peculiarity and its dependence on system parameters can
be detected by numerical experiments, as well as how it
affects the energy dependence on time.

In order to address these questions, we outline the
mathematical arguments used to prove the existence of a
continuous spectrum for irrational ~ values. As we have
seen, for rational r, the energy grows like r, as taboo.
The important feature to exploit now is the fact that the
time evolution of the rotator depends on r in a continuous
way. This means that, if a given initial state evolves
under two different rotator dynamics, associated with
slightly different values v, ~' of the external period, the re-
sulting evolutions will remain close to each other; the
longer the time, the smaller the difference

I
r ~'

l

. Sup-
pose then that we seek an appropriate ~ in the form of a

continued fraction ( a, ,a 2,a i, . . .), i.e.,

a)+
Q2+

Q3+ '

with principal convergents r„=p„/q„. The energy E(t)
will remain close to the behavior typical for i

&
during a

time interval which depends on the size of
~

~—~i ~. If
is small enough, E(t) will also follow to some

extent the t increase associated with the rational r& value.
At some later time the irrational character of ~ would
emerge, causing the growth of E(t) to slow; typically,
E(t) would then enter an oscillatory regime.

Nevertheless, the second convergent is a better rational
approximation to r than i.i. Therefore, as it departs from
the resonant increase associated with r, , E(t) would be
still following the resonant trend corresponding to vi , this'

trend continues over a period which is longer as
~

~ ri ~—
is smaller, i.e., a3 greater. Certainly, by suitably choosing
ai, we can arrange things so that E(t) follows the ~i reso-
nance sufficiently long so that it takes part in the corre-
sponding quadratic increase. Can this process be contin-
ued indefinitely'? In other words, is it possible, by careful-
ly selecting the a„'s to keep E(t) "jumping" from one res-
onance to another, thus taking up some increment from
each'? In this case, we would have a nonterminating se-
quence (a i,az, . . . , ), i.e., an irrational r such that E(t)
would be unbounded in time.

It is not easy to answer this question along the qualita-
tive lines just sketched. However, as we have already
quoted, a careful analysis yields the exact result, that
there are indeed irrational values of i. with this property.
These are irrational numbers that are so rapidly approxi-
mated by rationals that the asymptotic divergence of
E(t), which is typical for rational cases, "carries over" to
the limit. In order to find numerical evidence for these
facts, one must somehow discriminate between rational
and irrational numbers —which is obviously very delicate.
However, the advantage of the outhned strategy is that it
can be used in effective numerical experiments. In Fig. 3
we show results of one such experiment. One can clearly
see the resonant behavior of E (t) corresponding to
v =(0,1) and to r=(0, 1,70). In the first case, for irration-
als of type (0, 1,70,a4, . . . ), a parting of the ways from
(0,1) occurs rather early, but then E(t) shares a more or
less extended phase of quadratic increase with the reso-
nance (0,1,70), depending on the choice of a4. Whatever
choice of aq one may take, E(t) would then eventually
display the resonance (0, 1,70,a4); however, it is not possi-
ble to reach this point with the available computers. This
indicates that the duration of the oscillatory "plateau'" be-
tween subsequent resonances is rapidly increasing. The
results in Fig. 3 are a sample of the behavior of E(t) cor-
responding to the continuous irrational or nonresonant
spectrum.

Therefore, in light of Fig. 3 and of the discussion
above, the following picture emerges for the energy
growth. This growth occurs by "jumps" separated by pla-
teaus of exponentially increasing duration. Each jump is
associated with the bandlike structure of the resonant
spectrum corresponding to one particular convergent ~„,
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FIG. 3. Average energy (E) versus time for the case k =10 and for several values of r (0)r=. [0,1]; (6) r=[0, 1,1000]; (~ )

x=[0,1,70]; (a) r= [0,1,70, 10000]; (CI) r=[0,1,70,1000]; (+) r=[0, 1,70, 50]. The solid straight line represents the analytical re-

sult (E(t) ) =(k l4) ti for the case r= 1. Notice also the asymptotic t i increase for the resonant case r= [0,1,70] (dashed line).

and transition into the subsequent "plateau" occurs as
soon as the structure of the actual spectrum on a finer
scale comes into play.

This peculiar behavior of E(t) is suggestive of a singu-
lar continuous character in the spectrum. We now present
independent evidence supporting this conclusion. In Fig.
4, we exhibit the behavior of E(t) when a certain a priori
singular continuous structure (associated in this case with
a Cantor set of zero Lebesgue measure) is imposed on the

q.e. spectrum. In other words we assume that, as a result
of some unspecified external time periodic perturbation,
the Floquet operator becomes a unitary operator with a
singular continuous spectrum prescribed in advance.
However fictitious, this procedure yields results in re-
markable qualitative agreement with the above picture.

The possibility that the spectrum of the kicked rotato:
may exhibit, for irrational r, some hierarchical, self-
similar structure„has been carefully numerically investi-
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FIG. 4. Plot of (E(t) ) versus r, in the case where the q.e. spectrum is a Cantor set generated by iterated deletion of intervals, as
illustrated. The straight lines show the quadratic increases corresponding to the band structure obtained at steps a,P, ) in the con-
struction of this Cantor set.
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gated by Dorizzi, Grammaticos, and Pomeau, ' with a
negative answer. In these computations, regularity in the
q.e. spectrum was sought by approximating the golden
mean value of r by ratios of successive Fibonacci num-
bers. However, for such a "strong*' irrational r, the con-
tinuous spectrum may be even lacking. Moreover, it has
been proven by Bellissard" that the spectrum for irration-
al ~ has no gaps. %hile this result does not preclude that
the spectrum may be singular, it excludes the possibility
that it may be a Cantor set.

VI. CONCLUSIONS

The relevance of numerical and analytical results
presented in the preceding section to the deeper questions
raised in this paper depends on the practicality of detect-
ing the continuous (singular) nonresonant spectrum. In
turn, this problem is closely related to the nature of the

set of values of r which yield this type of spectrum.
present, we know only that they make up a dense 6-5
set, " i.e., a "big" set in the topological sense. However,
we cannot yet exclude their having zero (l.ebesgue) mea-
sure.

Insofar as the effects of a singular continuous spectrum
become apparent only over a long time scale and for
"strange" parameter values, this kicked rotator behavior
may be remindful of Arnold's diffusion. However, some
important questions must still be answered before predict-
ing a kind of quantum chaos on account of it. For, in the
first place, we have not yet been able to determine its
dependence on the perturbation strength k. Second, we
should remember that, if the degree of quantum stochasti-
city is to be assessed according to the same standards as in
the classical theory (and this might well be a problem in
itself), then only the very poor stochasticity connected
with weak mixing might be guaranteed in this problem.
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