
PHYSICAL REVIE% A VOLUME 34, NUMBER 2 AUGUST 1986

Spectra and gap amplification for systems with two widely different incommensurate periodicities

M. Ya. Azbel
Department ofPhysics and Astronomy, Uniuersity of Te/ Auiv, Itamot Aviu, Israel

Per Bak
Physics Department, Brookhauen Nationa/ Laboratory, Upton, Pew York 11973

P. M. Chaikin
Department of Physics, University ofPennsylvania, Phi lade/phia, Pennsylvania IN04

and Science Laboratories, Exxon Research and Engineering Company, Annandale, Pew Jersey 08801
(Received 12 February 1986}

%e derive analytically the spectrum for the Schrodinger equation for quasiperiodic systems with

two length scales: one large "macroscopic" scale [e.g., a cos(2nx /A, )] and one small "microscopic"
scale [e.g., v cos(2mx)]. The phase diagram includes regimes with exponentia11y narrow gaps due to
the slowly varying potential, regimes where the rapidly varying potential amplifies these narro~

gaps, and regimes with exponentially narrow "Landau bands. " The full "devil' s-staircase" spectrum
with gaps at wave vectors q =me+ nm/A, develops in a hierarchical manner as a increases. The re-

sults apply to systems with superlattices, to celestial orbits with two periodic perturbations, to sys-

tems with slowly varying lattice distortions, and, in particular, to quasi-one-dimensional magnets

such as bis(tetramethyltetraselenafulvalcue) perchlorate [(TMTSF)2C104] in magnetic fields, where

our findings may provide insight into the experimentally observed cascade of phase transitions.

I. INTRODUCTION

Most nondissipative problems in physics reduce to the
determination of eigenstates. The nature of these eigen-
states depends heavily on the symmetry of the system.
For a quantum system, periodicity leads to Bloch func-
tions. Randomness may lead to Anderson localized states.
Incommensurability in general produces a spectrum in-
cluding infinities of gaps,

' the "devil's staircase. " The
study of the spectra and eigenstates for systems with in-
commensurate periodicities has been a fascinating area of
study for mathematicians and physicists for quite some
time. The eigenstates may either be localized or extend-
ed. Here, we are interested in a region of the spectrum
which has previously been largely unexplored, namely the
case where one potential is sizable but slowly varying
while the second potential has very small amphtude but a
rapid spatial variation (see Fig. 1). The spectrum is ex-
plored at energies larger than either of the potentials.
This situation applies, for instance, to superlattice struc-
tures; to lattice distortions induced by a sonic wave; to the
problem of stability of periodic orbits with respect to
periodic perturbations, such as the orbits forming Saturn's
rings; and to quasi-one-dimensional conductors in mag-
netic fields. In an Appendix we discuss the application
of our results to the latter case in detail. Mortxwer, the
study of this comparatively simple case leads to insight
into the problem of the development of the full devil' s-
staircase spectrum as the strength of the slowly varying
potential increases.

The incommensurate system has gaps at wave vectors

q =ntr+rntr/A, (where lt, is the ratio between the two
periods), but the sizes of these gaps depend decisively on

the strengths and the relative periodicity of the two poten-
tials. The long-wavelength term [e.g., tt cos(2mx/A, )] tak-
en by itself produces gaps with a very small interlevel dis-
tance sr/A[see Fig. , 1(a)]. The eigenfunctions are given by
Mathieu's equation, and only the gaps for small energies,
qi ~a, are noticeable, whereas all gaps at higher energies
above the barrier tt are exponentially narrow and thus
unobservable. The wave functions are well approximated
by quasiclassical solutions in this regime. The spectrum is
rather dull: a continuous spectrum above and narrow
bands below the potential, and a nontrivial spectrum may
arise only in the vicinity of the top of the barrier. Simi-
larly, the rapidly varying potential [e.g., v cos(2@x)] alone
produces widely separately gaps at q =nm [see Fig. 1(b)].
Naively, one might expect that the gap spectrum caused
by the combination of a weak, rapidly varying potential
and a stronger, slowly varying potential [see Fig. 1(c)]
would simply be a superposition of the spectra produced
by the two potentials taken separately, i.e., that the intro-
duction of the rapidly varying potential into Mathieu's
equation would introduce a simple gap at q =en, since
the effect of the potential a cos(2irx/A, ) is weak at this
high energy. This is not so. %e shall demonstrate that
the strength of one potential combines with the periodici-
ty of the other to produce highly nonperturbative results.
We shall see that the spectrum of the slow potential is
highly sensitive to a very weak potential with rapid varia-
tion, and this leads to a dramatic amplification of gaps
and eventually to a whole hierarchy of gaps.

The process by which the hierarchy develops is the sub-
ject of this paper. It will be seen that for small values of
the parameter a the energy gaps are confined to branches
around the gaps produced by the fast potential (see Fig.
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FIG. 2. Phase diagram for the Schrodinger equation (1.1)

(schematic). (a) Branch structure for U ~0. The numbers indi-

cate the n's of the branches of type-A gaps. Regions with no

type-A gaps are indicated with 0. %hen A,~ Oo the boundaries
become infinitely sharp phase transitions. A change in energy
from A6 to A l leads to variations in the number of branches as
discussed in the text. (b) Regions with different behavior for the
total gap width 5q„,. P: conventional perturbative regime,

5q=
~
u„~ /ii 8: sat.urated, insulating region with r)=1, and

5q„,={a}/urn. SO: strong oscil1ations of gap width vs aA, .
%'0: weak oscillations. Axis: a = 16m na k, u = (U„A, ) .
Characteristic points: a ~

——32/n~, ai ——16m'ni{2mnl l'~i

FIG. 1. (a) Rapidly varying periodic potential and the corre-
sponding spectrum, with gaps at q =en. (b) Slowly varying
periodic potential and the corresponding spectrum with dense
gaps only at energies low compared with a. (c) Double-periodic
potential to be considered here. The spectrum is shown in Figs.
2, 3, 5, and 6.

2), and each branch can be labeled by the n of the
appropriate "fast" gap. We argues that it is this b~ching
of strong gaps which is responsible for the cascade of
phase transition observed in organic conductors
such as bis(tetramethyltetraselenafulvalene) perchlorate

[(TMSTSF)2C104] as the magnetic field is varied. 6' Since
these branches are limited by well-defmed boundaries we
shal»peak of these branches as energy spectrum phases"
in a phase diagram in, for instance, q-a space (Fig. 2).
Since there are no (observable) gaps outside the branches
one may introduce an order parameter for these transi-
tions which measures the local relative amount of gaps in-
side the branches. As the strength a of the slow potential
increases, the various branches start to overlap, and even-
tually the whole devil' s-staircase spectrum will develop.
The order parameter has a kink when phase boundaries
cross.

Our approach is analytical, in contrast to roost work on
the general case with comparable periodicities of the two
potentials, which has been purely numerical. We specifi-
cally take advantage of the exponential narrowness of the
gaps for the limit that we consider, A, ~pl, q~~ya. The
quasiclassical nature of the Bloch wave functions outside
these gaps is sufficient to allow us to construct analytical
solutions to the Schrodinger equation. We derive a simple
formula which is convenient both for general analysis and
for the actual calculation of the spectrum. The approach
is demonstrated for the case of a one-dimensional
Schrodinger equation, but it may be generalized to higher
dimensions and to various other eigenstate problems in
electrodynamics, hydrodynamics, acoustics, astronomy,
etc. Possibly, it may even lead to insight into the develop-
ment of chaos and strange attractors through the overlap
of bands.

To be more specific, let us consider the double-periodic
Schrodinger equation

P+ f q u(x) —U (x))$=0—,

where u (x +A, ) =u (x) and U (x + 1)=U (x). Suppose
q & u +U, and q =n. Our findings are as follows. First,
assume w:—max(U) « 1/A. and increase a =max(u).
When a « 1/A, the largest ("type-A") gaps are at q =nm,
n integer. Much smaller "type-8" gaps are at
q =nn+mm/A, with nonzero ,integer m. These gapa de-
crease exponentially with m. When a ~~1/X then a num-
ber N„=ah, /vr of the type-8 gaps (with

~

m
~

&Nz/2)
change into type-A gaps and become observable. At cer-
tain values of a of order m the branches corresponding to
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different n's merge. Only then does the intergap distance
react to the incommensurability (or commensurability) of
the periods. Of course, a potential (u+v} with a total
period A yields a spectrum with intergap distance
A=a/A, and when A, is irrational then A~ 00. However,
most of these dense gaps are type-8 gaps at nir+mm/A,
generated by remote n's and play absolutely no role.

Thus, in the vicinity of A6 in Fig. 2 there are "unob-
servable" type-8 gaps, between A5 and A4 there is a one-
branch region with periodic type-A gapa, between A4 and
Ai there is a two-branch region with gaps at 2n+rnn/A,
and 3n+rnn/'i(, , between Ai and A2 there is again a one-
branch region, and between Ai and Ai there is another
two-branch region. The point A7 is in a three-branch re-

gion with n =2,3,4.
Now fix a »A, ' and increase iv. When iv »(a/A, )'~'

the gaps fill essentially the whole branch of width a/ir
and the space left for the intergap bands is approximately
equal to exp( —iv A, /4ira). This limit may correspond to
orbits around Saturn perturbed by the slow potential from
the Sun and a fast potential from one of the moons, Mi-
mas, and the resulting empty branch inay explain the Cas-
sini division of Saturn's rings, not explainable by the fast
perturbation alone. In the case of anisotropic conductors
in magnetic fields these bands are regularly spaced "Lan-
dau levels. "The effect of a macroscopic A,~ co is most re-
markable. In this case the condition above for iv can be
fulfilled even for an infinitesimal iv, which thus causes ex-
ponentially small gaps b,q=(a/2q )" to blow up to fill
the whole interval of width a/q (see Fig. 6). The system
changes from being completely "metallic" with no gaps to
completely "insulating" with only gaps. It is as if the ef-
fective potential combines the strength of v with the
larger period of u. When A,~Do the boundaries of the
various branches become infinitely sharp.

The remaining part of the paper is organized as follows.
In Sec. II the qualitative nature of the Schrodinger spec-
trum is demonstrated by means of perturbation theory
starting from the quasiclassical solutions for v =0. Sec-
tion III presents the derivation of a general formula for
the wave function and energy spectra. Sections IV and V
demonstrate the strength of this formula by applying it to
two special limits. Section IV derives a systematic pertur-
bation theory in v and the results in Sec. II are recovered
in a rigorous way. Section V deals with the most remark-
able limit where iL becomes macroscopic, and the gaps fill
out completely the n branches in Fig. 2. Section VI sum-
marizes our results for the spectra. The reader who is in-
terested in the results rather than the specific technical de-
tails may proceed directly to Sec. VI which should be
self-contained. In an Appendix our results are applied to
the case of magnetic-field-induced phase transitions in
highly anisotropic organic conductors, and it will be
shown how the oscillations of Hall resistance, etc. , can be
understood in terms of the oscillations of the gaps as
described in Sec. VI.

II. PERTURBATIVE DERIVATION OF SPECTRUM
WITH HIERARCHY OF GAPS

Although we shall derive a general formula for the
spectrum in Sec. III, much can be learned about the

structure of the phase diagram and the origin of the
hierarchy of gaps from perturbative methods. First, con-
sider the Schrodinger equation

P"+[e—V(x) ]g =0

with the simplest double periodic potential

V(x)=a cos(2mx/A )+v cos(2nx } .

(2.1)

(2.2)

Suppose e=q and let us first apply perturbation theory
with respect to the total potential in Eq. (2.2). The gen-
eral pth-order perturbation term is of the form

V = V(qi —q2) V(q~ —qi) V(q~ q~+i—),
where the matrix elements V(q) are given as

V(q)=((/L(f [a cos(2w/k)

+ v cos(2nx) ]exp(iqx)dx,

(2.3)

(2.4)

=2am /A+2m, n, (2.5)

where m+n =p. Hence gaps are opened in the energy
spectrum at

(2.6)

since the wave vector (2.5) connects degenerate states for
the unperturbed spectrum e=q only for these values of
q. The widths of these gapa are 5q=v"a ~~ ~. When
A, »1 (and a, v « 1), the major gaps are located in the vi-
cinity of q =en. For a fixed n, the largest gaps are those
at rn =0. Denote these gapa as type-A gaps. They are
the generators of closely spaced (b,q =m/A, ) type-8 gaps
with nonzero m. These gaps are decreasing exponentially
with m. When

~

rn
~

& A, the gaps generated by different
n's are found in the same q region and react to the com-
mensurability of n and ir/A, . The gaps which penetrate
into a foreign region near an n which is different from
that of the generator are extraordinary small,
5q =a"=exp(A, 1na). These gaps may be denoted as
"type-C" gaps. In the more general case where the total
potential is

V =a cos(2m. /A, )+g icos(2~px),
P

(2.7)

the widths of the gaps become 5q =v„a, where v„quick-
ly decreases with n If v (x}.is analytical then the dix:rease
is exponential. The implications of this are obviously as
before for Eq. (2.2). In practice, when A, »1 one has
periodic bands with width approximately equal to m relat-
ed to the rapidly varying potential, and only near the
edges are there narrow gaps, periodically situated at dis-
tances hq =m/A, .

Now suppose that a increases such that a &~ 1/A, , but U

remains sufficiently small that it can still be considered a
perturbation. Then the perturbation theory must start
from the wave functions of Eqs. (2.1) and (2.2) with v =0:

P"+(q —u)/=0 . (2.8)

which is nonzero only for q =+2m/A, or q =+2m. , so the
general term in Eq. (2.3}is different from zero only when

'ql 'q +I (qi —q2)+(q2 q3)+ +(q, q, +i)—
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The solutions are Bloch functions,

/=exp( —i«x)u"(x), u "(x)=u"(x+1,), (2.9)

where «. and —«are degenerate quasi wave vectors. The
matrix-element coupling states x and ~' due to an arbi-
trary potential u(x) =u(x + 1) are

A
u'""'=(1/A) f P"( x)(t "(x)u (x)dx

A
=(1/A) f exp[i(« —«')x]u(x)u "(x)u "(x)dx

A J

=(1/A) f exp[i(«' —«') x]g u&exp(2mipx)(u "u" )~xp(2mivx/A, )dx,
0

(2.10)

where A is the total period of u+u. Clearly, u'""' is
nonzero only when « a'—=2mn+2m. m//(, and, reasoning
as before, we realize that gapa will be located at

«= nn+mm. /A. ,

In the quasiclassical approximation the quasi wave vector
for the eigenfunction with energy q is

« =(1/n )f (q —a cosx)'~ dx . (2.12)

The gap width 5«, to first order in u, becomes

p*(x')=an .

Such turning points exist only when

(2.21)

(q —a)'~ ~en &(q +a)'~ (2.22)

which can be fulfilled only in the interval (q+, q ) where

(q +} =(n-n) +a (2.23)

only the points x' where r =0 are important, i,e., only
the points defined by

5« =(2/A) f P„uP Px (2.13)

with «given by (2.12). Assuming IY(, to be irrational we
find

5~=(2/A, ) U„ f exp( —2nimx/A)u (x)dx2

~ 2= (2/A, ) u„exp(2minx)(t), (x)dx
0

(2.14)

where u„ is the nth Fourier component of u. Equations
(2.11)—(2.14) will be derived from a general nonperturba-
tive theory in Sec. III. The exact Bloch solutions to (2.8)
may be presented in the form

and a =max(u ). This equation defines the phase-
transition lines in Fig. 2. If u (x) =u ( —x), a simple cal-
culation gives the width of type-A gaps in this interval,

5«=(2u„/Ap')
~

m 'dp'/dx'
i

x~
X cos 2 ridxi +K/4

0
(2.24)

Nz aA/m -n

and the widths of these gaps are

(2.25)

and the number of gaps E„ in this interval is given by
Eq. (2.23), i.e.,

(I)=(1/v p)exp( —iS/2),
x

S =2 pidxi, pimp(xi)
Xp

where the function p is the solution to the equation

p ——,'(lnp)' + —,'(lnp)"=q —u .

(2.26)(2.16)

Outside the interval defined by Eq. (2.23) the WI( 8
points (2.21) disappear and 5«decreases exponentially
with m. These are the type-8 gaps. For u =a cos(mx/II(, )

the gaps can be calculated explicitly,

(2.17)

Notations such as pi ——p(xi), g« =g(x+A) are —used
throughout the paper. Choose a point xo according to

p(xo)—= (p) =«=(1/A. )f pidxi . (2.18)

(2.27}

and qualitatively the results follow from the peroperties of
the Bessel functions. We stress, however, that the results
above are valid for any periodic potential.

For large enough a the equation p(x)=en can be ful-
filled for more than one integer value of n; this gives rise
to overlap of two or more type-A regimes as shown in
Fig. 2. The overlap between n and n' takes place when
a = —,

' H(n' —n ). Only then does the system react to the
incommensurability of the two periods, and the full spec-
trum' develops in a stepwise manner as a function of a as
more and more bands overlap.

The width 5x oscillates with aA, , and the period of
the oscillations correspond to

Sinai„2n

(Fig. 3). For=Z„

Such a choice of xii is always possible since p —(p) must
change sign. The leading approximation to p is the
quasiclassical expression

p=(q —u)2 ]/2 (2.19)

Substituting (2.15) and (2.16) into (2.13) yields

r

5«.=(2//)(. ) u„ f (1/p)exp 2i f r,dx, dx, (2.20)

where r =p nn When
~ (pi —mn). dxi

~
&&1—then the

0
%KB method is applicable. With exponential accuracy

(2 lg) 5«=u„(qadi, )
'~

~
cos[(ak/2mq) mn/2 —n/4] .

~

.—.
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m= I

m= 0
m=-I
m =-2

qtot

(0) transitions" in the energy spectrum. A possible "order
parameter" is the density of gaps ri(q)=dq„, /dq, where

q«, is the total gap below q. Its average over the "infini-
tesimal" interval b,q =ir/A, is a measure of the degree to
which the system is insulating. g=0 corresponds to a
metallic system since there is no gap; when il =1 the gaps
fill up everything and the system is insulating. When

branches merge, g has a kink. The width of the phase

boundary goes to zero when A,~ 00, and the phase transi-

tion in the energy spectrum becomes sharp.
The most remarkable of the results derived above is the

increase of the gap width from 5q =a to 5q =U„. In or-

der to understand this, consider the simplest potential

(2.2). First suppose U =0. For high energies e—=q &a
there are classical turning points u (x)=e only at complex
x =+ix ' where

q i(
(b)

a cos(2mix'/A)=a , cosh(2nx'/A)=q,

x'=(A/2ir)arccosh(q /a)=(iL/4~)ln(q /a) .

(2.29)

(2.30)

foal
=

The gaps as determined by the transfer matrix are propor-
tional to the reflection coefficient R at the barrier:

R egp —2q q —g cos 27rx—x

(a /2q2)Aq/w (2.31)

m =-4

FIG. 3. Oscillation of gaps within one n branch in the (a) SO
regime of Fig. 2 with strong osciBations of the total width and
in the (b) WO regime where the total width has weak oscilla-
tlons.

=2~ n /a A, & 1 the phase an't, /2nq in (2.26) varies httie
as a function of m in the interval (2.23) [see Fig. 5(b)], so
the total width oscillates strongly with aA, . For Z„(1
the phase depends on m (through the m dependence of q)
and the gaps for different m are "out of phase" leading to
weak oscillations in the total width. Regimes with vari-
ous behavior for the total width are shown in Fig. 2. Fig-
ure 3 shows the gap structure as a function of aA, for dif-
ferent m in the two cases Z & 1 and Z ( 1.

The applicability of perturbation theory is related to 5q
being small compared with the intergap distance m/iL.

Indeed, later we shall see that the condition for perturba-
tion theory to be applicable is

(2.28)

This condition may be met even when a=a and dif-
ferent branches merge. Since U„usually decreases ex-

ponentially with n, this condition is fulfilled even for
moderately large n. The oscillations remain as long as
Y„=ah,/2nq & 1, and since this quantity decays only as
1/n the oscillations die out at much larger n.

%%en A, increases, the branch merging yields "phase

yielding exponential small gaps. When q & a, even a very
small U significantly changes the turning point x =ix ',

a cos(2mix'/A)+u co,s(2m' x') =q'

If U »R the solution to (2.32) becomes

x' =(1/2ir)arccosh[(q —a) lu]

(2.32)

(2.33)

where e is the dimensionless energy. Naturally, the wide

gaps at q (a are little affected by small U. Thus the im-

pact is only important when q & a, which is precisely the
case considered in this paper.

III. ANALYTICAL ESTIMATES FOR GENERATION
SGI.UTIGNS TG SCHRGDINCiER EQUATIGN

The perturbative approach of Sec. II provided signifi-
cant insight into the structure of the phase diagram for
the Schrodinger equation, including the stepwisc develop-
ment of the full spectrum as the strength of the slow po-
tential increases. However, in order to deal with the most
interesting case where A, becomes very large and the gaps
fill up the interior of the n branches (see Fig. 2), one must

go beyond perturbation theory. In this section we derive a

and consequently the reflection rate 8 is greatly increased

and the gap strongly amplified.
Until now we have considered only high energies q & a.

If a &q and v =0 then the quasiclassical solutions

reduce to tight binding, and the bands become exponen-

tially narrow since the classical turning points become real

and the reflection rate R=1. The positions of these

bands are given by Bohr's quantization rule

E—Q X X= ll+ 2 'fT, Q X =Q —X

(2.34)
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simple general formula for the spectum. The results of
Sec. II follow in a more rigorous way as a special case of
this approach.

Consider a general case of the equation

tinuity of fz and its derivative gz implies

a/A+ PtPA =exp{i KA

)(ago+�Pro�),

ag'A+13/ A e——xp(iKA)(atg+13fo) .
(3 2)

g"+(q —V}/=0, V=u +u (3.1)

where V(x+A)= V(x), u(x+A)=u(x), A=RA&, and
q=ir Th. e only specific feature of Eq. (3.1) is two dif-
ferent length scales. Suppose that for a specific solution P
one knows the three complex values PA/Po
=P(xo+ A)/f(xo), (in'{'o)', and (1nit4)' at a certain Point
xo. This is sufficient to allow us to determine the quasi
wave vector K(q) of Eq. (3.1). A Bloch-function solution
gz(x +A) =exp(iKA)gq(x) can be expressed in terms of
P and its complex conjugate P as Pii —a/+—PP. Con-

yA ex—p(iKA)tyo yA exp—(iKA)i/Io
=0.

y'A exp—(iKA)yo y„' exp—(iKA)go

Accounting for current conservation

one obtains the dispersion re1ation

(3.3)

(3 4)

A nontrivial solution (a,P) exists only when the deter-
minant

cos(KA) =Re((PA/2&o) Il [»f—A/{foldo)' (3.5)

&={{X Xo=1 Xo=o (3 6)

where P is the solution to (3.1) for u =0. In general, iI} is
given by Eqs. (2.15)—(2.17). Let us again choose xo such
that (2.18) is fulfilled. Everywhere, except for the small

gaps, g is a Bloch function f(x +A, ) =exp(iirA, )g(x) with
wave vector a =(p). When q ~

l
u

l
these gaps are ex-

ponentially small and will be ignored, and the equations
derived will be accurate outside the gaps. The solutions
can easily be generalized for the region inside the gaps.
Inserting Eq. (3.6) into (3.1) we obtain

X"+2(i}}'/{t})X'=uX . (3.7)

The solution to this equation is

X=1+f u, P,X,dx, f dx /iI}', . (3.8)

Now {t} from (2.15) is substituted into (3.8), and account-
ing for f S'exp(iS)dx =exp(iS) one obtains

x
X= 1+ i [cri —exp(&S)@i]Xidx &

—= 1+iNX, (3.9)

The region of q whe~e
I
Re( )

l
& 1 belongs to the gap. To

calculate a specific solution we introduce
another quantity 8:

8= 4i 1 —tX ' xi. (3.14)

0'] dx i (3.16)
Xo

By Eqs. (3.16) aild (3.17), Ao =Bo=0. The derivatives of
Eqs. (3.15) are

a'=o exp( iy) i—Qb, —
b' =Q exp( i y ) +iQ—a,

(3.17)

0 =A exp( —ly), b =8 exp(ly),

Q =@exp( —Ziy) .
(3.18)

A simple transformation employing (1—iN) ' = 1

+ iN(1 iN) ' —and Eqs. (3.9) and (3.10) yields
x x

2 =y+i cT&Aidxi —i @iBidxi
Xo xo

x x x (3.15)
8 = @idxi +I @iA idxi —I 0'iB&dxi

Xo Xo Xo

where

@=aexp{iS), a =u/S'=u/Zp,

so X is given by the operator N defined by (3.9):

X=(1—iN)

Equation (3.6) with X given by Eq. (3.8) is substituted into
Eq. (3.5):

Using (3.18) and (3.16) we can rewrite (3.17):

a = i —iQb, —b =iQ[a i exp( —i—y)],
where the operator Q is defined by

Qf= f Qifidxi .

Finally, Eq. (3.18) gives

(3.19)

(3.20}

cos(K A ) =Re[exp( i a A )H +], — (3.12) a =i exp(iy) —i(1—QQ) (3.21)

Xo+A
HA ——1+i

so+A=I+i f
0 )g)dx]

oi(1 iN) 'dxi =—1+—iAA . (3.13)

Our goal is to derive an equation for H. We introduce

and, by means of Eqs. (3.18) and (3.13),

HA ——exp(iyA) [ 2i sinyA+—exp(iyA)( 1 —QQ }A ] .

(3.22)

Assume that q and U are chosen in such a may that
yA

——0.' Then
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HA ——(1—co)p ', co=DO . (3.23)

Accounting for the definition of co through Eqs. (3.10),
(3.18), (3.20), and (3.23), one obtains the following simple
equation for H:

H" —(»Q)'H'=
( Q ~2H, Ho ——1, Ho ——0. (3.24)

This is the equation that we aimed for. By inserting solu-
tions of (3.24) into (3.12) one can obtain the spectrum of
the Schrodinger equation. In the next sections the effi-
ciency of this equation will be demonstrated.

Xo+A
D = f u(()~dx (4.12)

u(x}= g u„exp( 2@in—x) . (4.14}

and dsc given by Eq. (4.7) becomes

XO+ A

5~=(2/A) f uP dx (4.13)

Since P =P'+'P' ', where (+ ) and ( —) denote the quasi
wave vectors a and —~, Eq. (4.13) is identical with (2.13}.
Suppose A, =A/A, i where A and A, i are irreducible, and

IV. EXACT RESULTS TO LEADING ORDER IN v:
SUCCESSIVE APPROXIMATIONS

Let us first consider a small periodic u:
Xo+A ao

f uP dx= —,
' g u„J„,

n = —ao

(4.15)

u(x+1)=u(x), u «v a/A, . (4.1)
where

Band edges correspond to

Kg A =vm. , v integer . (4.2)

Xo+A
J„= exp 2i ridxi dx/p, r =p mn—. (4.16)

Xp Xo

When u~0 then K~a since H to be inserted in (3.12)
goes to 0. So choose

aA =KA+g, vg A =vA+g

and introduce xA=~, EA=E. Suppose

Hp ——1+h+il,

(4.3)

(4.4)

g+ ——(1+h+D'r )/(1+h —21),

D =(1+h ) +2h (1+h —h —21),
(4.5)

(4.6}

where h =(dh/dg)s 0, etc. According to (4.3) the gap in
K is given by

where h and 1 are real. By inserting (4.4) into (3.12) and
using (4.3), the wave vectors q+ at the gap edges can be
related to h and 1. One finds

Since p(x) =p( —x) then

~1 ] ZO+ ()M. + 1)A,
~ ~ ~

Zp+PA.
p=O

A,
l
—1

exp[2i (x —urn )p A, ]
p=0

Zo+A X

X exp 2i p~x& x p.

a.—nor=em IA, , m integer

[cf. Eq. (2.11)]. In this case
Zo+A

J„=z,f ' T X

exp 2i pidxi dx/p,
Zo

By Eq. (4.3), a = vm/A. Therefore J„&0only when

(4.17)

(4.18)

(4.19)

5m=(1/A)(g+ —g ) =2D'i IA . (4.7)

By Eqs. (3.20) and (3.18),
Xo+A Xl

D=2Re f Qidxi f Qqdx2 . (4.9)

By means of Eqs. (3.23), (3.20), and (3.18), one can reduce
the calculations to successive approximations of
Hg ——(1—co) '=1+co+co + . This is very con-
venient since the terms decrease with u (ai proportional
to u )„and each approximation reduces to a multiple in-
tegral. Start with the leading approximation

(4.8}

and eventually the gaps given by Eq. (4.15) become
Z'

u„ f exp 2i f ridxi dx/p, (4.20)

which is identical to Eq. (2.20}. Hence, we recover Eq.
(2.23) for the width of the type-A bands and Eq. (2.26) for
the size of the gaps. We have thus demonstrated that the
results of Sec. III appear as special limiting cases of the
general formalism. Further approximations of D to
higher order in U can be obtained by decomposing
exp( 2iy) in Q. F—or values of ~ other than those given
by Eq. (4.18) the gaps decap exponentially with qA, ; these
are the type-8 gaps.

F=f Q)dxi, Q=F'. (4.10)

Xo+A
D =2 Re I"]FIdx] —— I'A (4.1 1}

in the leading approximation, by Eqs. (2.15},(2.16), (3.18),
and (3.10), u/v'qadi, « irlk or u(anally. )

'r « ir, (5.1)

Until now we have considered U to be a small parameter
where successive approximations as laid out in Sec. IV
converge quickly. A necessary condition for this ap-
proach to be valid is that the gap 5x is small compared
with the smallest intergap distance m/A, . In the case
where ah, ~~1 [where a =max(u)] this condition reads
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X

Q (U„/2p')exp 2i f (pi —am)dxi
0

(5.2)

since q=vrn .Now consider an arbitrary U in the case
where aA, ~&1 and, for simplicity, u(x)=u( —x). Then
%KB reasoning similar to that in Sec. IV reveals that in
any co" term in the expansion for H defined by Eq. (3.23)
one may replace Q in the expression (3.20) defining the
operator 0 by

into Eq. (5.3). Then

E"+(r +ir' co—)E=O. (5.15)

Note that the potential in this equation involves only the
period A, , not A, which explains why the gaps occur at in-
tervals ir/A, rather than n/A. To have an idea of the
solution, keep (as usual in the leading quasiclassical ap-
proximation) only r and drop r' T.his is valid when

where again p' is the WKB point (2.21). Now Eq. (3.24)
for a =en reduces to

ro =(U„/nn) ))
~

r'
~

=a/A, . (5.16)

0"—2lrH'=CO 8, Ho ——l, Ho ——0,
r =p urn—, co=

i
U„/2p' i, p' =urn .

Substituting

(5.3)

(5.4)

This is essentially the regime defined by Eq. (5.1) where
the perturbative method is not applicable. The two ap-
proaches are thus quite complementary. Then

H exp l '/~de
&

(5 5)

into Eq. (5.3) one obtains an equation for tl:

—g +iq'+2rg =co2 ' & 2 (5.6)

In the leading quasiclassical approximation, g is neglect-
ed. Then

r+(r2 ~2)i/2 (5.7)

Since r' p' nn =0—, Eq. (5.7) has classical turning
points [in contrast to the imaginary turning points enter-
ing (2.29}]at x+ where

r+ ——+N .

Near these points, which are at the boundaries of a classi-
cally inaccessible barrier, the quasiclassical approximation
becomes inapplicable. Near the barrier one can expand r,

This may be seen as an effective Schrodinger equation
vrith zero energy and potential energy U =m —r
= ( U„/p') (p —nn) —Hen. ce, since p =q the quantity
e —U(which was q —u p0 in the absence of U) is lowered
by an amount corresponding to Aq =~n. This allo~s the
effective potential U to become positive for a certain
range of x, such that the system is in the strong-coupling
or tight-binding regime. The reduction of the effective en

ergy is responsible for the gap amplification This. is illus-
trated graphically in Fig. 4, which shows the transforma-
tion of the effective potentials due to u„ in the regime

(0)

r =r'+r' (x —x') =p' (x —x'),
and Eq. (5.3) reduces to

—2lP PH =OP H, g =X —&

The transformation

H =f exp(iyz}H(z)dz

along a properly chosen contour leads to

(zH)'+(i/2p' )(z+co /z)(zH) =0,
implying

H ~z 'exp[(i/2p')( —,'z +~0 lnz)] .

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(

l

I

I

(

0
I

(

C lossical turning point

0

T X0=Eexp i
xo (5.14)

This knowledge of H allows for the matching of djfferent
quasiclassical regions separated by barriers by means of
the transfer matrix between consecutive regions and thus
for determination of HA and the gapa. The resulting gen-
eral formulas are slightly transparent so eve shall no~ re-
strict ourselves to the extreme case where the classically
unavailable region is large and the tunneling through it
weak (tight-binding case). In order to obtain a physically
transparent picture, substitute

0
Sq

FIG. 4. Schematic representation of the "energy reduction"
due to the rapid potential v. (a) In the absence of v,
e=C mn) ~~u and the gaps are exponentially small around these
high energies. (h) In the presence of U ( w ~&v'a/A, ) the effec-
tive e—u is reduced by an amount corresponding to bq =en
bringing the system into the strong-coupling regime, with classi-
cal turning points x+ and x . The tunneling between these
points makes the bands exponentially narrow: There are regions
of width a/A, around mn which are essentially completely filled
with gaps (see Fig. 6).
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v„~~(a /A, )'
The effective Schrodinger equation (5.17) can be written

in an interesting Hermitian form

& +p ct)

E—O (5.18)
CO I' —P

where P = id—Idx, E= (E,F). The Schrodinger equation
is thus equivalent to a two-branch problem with linearized
dispersion in the absence of the coupling tocc v, in com-
plete analogy with the usual equation for the Peierls in-

teraction where Eq. (5.18) corresponds to orbits at q =en
and q= nn—, w.hich interact via cv. The Hermitian form
of (5.18) guarantees real eigenvalues. The dispersion rela-
tion is given in terms of E~ as can be seen by inserting
(5.14) into (3.12) and using x=(p} together with the defi-
nition of r, r =p nn—:

ReEt, ——( —1)""cos(EA) . (5.19)

Clearly, this condition can be met only in the allowed
bands of (5.17). In the tight-binding case the bands are
exponentially narrow. Their width 5q is 5m=v„(qa)I, )

'~2
~

oc(sF mn/2 —n/4)
~

—. (6.4)

the slowly varying field in determining the gap structure,
and the parameter Z must be large for the phase of the

gaps in Eq. (2.12) to have no other m dependence within

the n branches than the one given by the trivial mar/2

phase.
(1) F„&1. In this case a is unimportant. The only

type-A gap is at q =m.n, and the gap width is 5q =v„/mn
[Fig. 5(a)].

(2) F„&1. X„&1fFigs. 5(b), 5(c), and 3J. There are

type-A gaps in an interval

q+ —q =[(~ti)+tt]' ' [(m—n) tt]—' '=tt/mn . (6.2)

The gaps are at a„=n.n +—n.m /A, so there are
Nz ——a)1,/ir n gapa. The branches of type-A gaps are
shown in Fig. 2. The quasi wave vector a is given by Eq.
(2.12):

a=1/m I (q2 acosx—)'~ dx . (6.3)

The widths of the gaps are given by Eq. (2.26} which for
q =n.n reads

x
5q ~exp —2 (to r, } dxi-+ 2 2 ]/2 (5.20)

and they are situated according to the Bohr quasiclassical
quantization rule

2e'/A, —x
(r2i —~v')'"dx, =me. + -,

' . (5.21)
x+

By Eqs. (5.8) and (5.9)

(5.22)

5q=exp( @tv I
~

p—'
~

)=exp( —~„/4p'
~

p'
[ ) .

x+ =x +tv/
i p

where ro/
~

p'
~

=vA. /a ggA, . Using Eq. (5.9) in the bar-
rier we obtain from Eq. (5.20)

(b)

5vr — p, gap ah&{::A=branch
n "-3

P7r —4- gaP a/~ =- A= branch
n"-2

(c} q (d)

3'.

p

(5.23)

VI. SUMMARY

This section summarizes the results of our calculations
mainly for the type-A gaps. Consider for simplicity
u =acos(2mx/A, ) and

~
v„~ ~~1. The spectrum in the

vicinity of q =mnis related .to the parameters

X„=v„(m.

nally,

) '~, Y'„=ah/2m n, ,

Z„=2m' n /a A, .
(6.1)

The parameter X must be small for perturbation theory to
hold, the parameter Y is a measure of the importance of

Thus, the bands are exponentially narrow despite the fact
that the energy is much higher than either of the potentials
fFig. 1(c)], so that naively one might have expected narrow

gaps. This may be our most important result. The ex-
ponent is large and negative in the regime where the ap-
proximation (5.16) holds. The line v„A=2mn&a ,A,
separates the regions of narrow gaps and exponentially
narrow bands, i.e., it separates the S (saturated) region
from the WO (weak-oscillation) and SO (strong-
oscillation) regions in Fig. 2(b).

a/a
a-g p (:==a=b h

(Qerierator ]

O uX. I

gate

FIG. 5. Development of spectrum for fixed small u as a in-

creases. The vertical axis indicates gap positions and the lengths
of the horizontal lines show the widths of the gaps relative to
the intergap spacing, 5q/hq =A, 5q Im. Note the decrease in the
maximal gap width as a increases. For simplicity we have
shown only every second gap with, for instance, m even in Eq.
(2.26). The intervening gaps are shifted by a phase m/2. (a)
F & 1, X ~ 1. Only gaps at mn are important. (b) F ~ 1, X ~ 1,

and Z & 1. Gaps oscillate as a function of aA, , but for fixed aA,

the gap width does not depend on q inside the n branches. The
total width 5q„, thus oscillates vs aA, as demonstrated in Fig.
3(a) (SO regime in Fig. 2). (c) Fg 1, X ~1, and Z ~1. Gaps
oscillate vs q inside the n branches, so the total gaps have weak
oscillations as shown in Fig. 3(b} (%'0 regime in Fig. 2). In be-
tween the gaps shown there are phase-shifted gaps which are
large when the gaps shown are smaJ and vice versa. (d) Same
as (c) but overlapping branches.
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Thy widths oscillate with ak. The period corresponds to
de 2——n. Within each branch, the gaps depend on m

since the phase a)(./2irq in Eq. (2.26) depends on m

through q. For Z & 1, the variation of the phase is small
in the interval (6.2) so all gaps with even m and all gaps
with odd m are in phase. Consequently the tota/ width

5qiot oscillates with a A,:

5q „,= (aX/2n n )[ ~

cos( Y —m /4)
~
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+
~

sin( Y n /4—) ( ] . (6.5)

5q =(m/A, )exp( —X ) . (6.6)

The band positions oscillate with X. The effective gap
width is the total interval (6.2}, i.e., it is U independent
even for very small U g~a (Fig. 6). Branches correspond-
ing to n and n'&n merge when q+ ——q+, i.e., when
a = —,

' ir (n'x —n2). The region qi & a corresponds to
strong coupling (tight binding) and exponentially narrow
bands.

Computer experiments" verify all the conclusions
above.

u» o/

For Z ~ 1, Y depends on m in the interval, and the oscil-
lations of the individual gaps are out of phase. This leads
to weak oscillations of the total width (see Fig. 3). When
n increases, u„usually decreases exponentially, so the lim-

it considered here is fulfilled at least for moderately large
Pl.

(3) Y&1. X &/. In this case A, is the largest parame-
ter. The bands between the type-A gaps shrink to become
exponentially small:

APPENDIX: APPLICATION
TO QUASI-ONE-DIMENSIONAL METALS

IN MAGNETIC FIELDS

E(k ky) irt k /2m 2ti, cos(kgb) (Al)

where 4th is the transverse bandwidth. The Fermi surface
is open for Et; &4th. In the presence of a perpendicular
magnetic field the dispersion can be found by making the
Landau-Peierls substitution k ~ i V —eA /c—. Choosing
the Landau gauge, we arrive at Mathieu's equation:

In Secs. I—VI we studied the spectrum of the
Schrodinger equation for an incommensurate system in

the case where one potential, u, is sizable but very slowly

varying while the second potential, U, has very small arn-

plitude but is rapidly varying. The spectrum was explored
at energies much larger than either potential. This case
arises in the context of quasi-one-dimensional metals in a
magnetic field, and our results may provide insight into
the cascade of phase transitions which have been observed
in the organic metals (TMTSF)2C104 and (TMTSF)2PF6
as the field is varied.

An anisotropic two-dimensional metal with open orbits
can be represented by an electron dispersion that is free-
electron-like in one direction and tight binding in another,

P"+[q —a cos(mx /A, )]/ =0, (A2)

- 0/271'

0/ P, 7T' ')

FIG. 6. Spectrum when A.~ac ( F ~1, X ~1). There are
wide effective gaps independent of U. Inside these gaps there are
extremely narrow bands (Landau levels) arith distance ~/A, . The
gaps thus fill up essentially the whole branch of vridth a j~.

where q =2mE/R, a =4mtsR, and A, =clleHb In the.
relevant materials6 EF-1500 K, 4' =300 K, and ac-
cessible magnetic fields introduce a wavelength of A, =10
A. As we noted in Sec. II [Fig. 1(b)], the gaps produced
by the cosine potential are large for q2 & a and decay ex-
ponentially for energies q &a. Thus, the slowly varying
potential has little effect on the spectrum in the vicinity of
the Fermi energy. However, the magnetic field has
changed the spectrum from two dimensional, and several
authors' ' have noted that such a system should be un-

stable with respect to the usual one-dimensional distor-
tions, Peierls s transitions or spin-density wave. Conven-
tionally, the distortion is introduced by adding a potential
of the form U =Uocos(2k+x), and we arrive at an equation
of the form (1.1) and we can apply the results that we
have derived for the spectrum of this equation.

The region of interest is the first set of gaps ( n = 1) in
Fig. 2, since kz-m, E~-n. , and the physical system cor-
responds to a range q ~+ which is narrow compared
with the distance m between branches since 4tI, «&EF. In
the absence of a potential U(x) the natural periodicity in a
magnetic field is given by A,kF /2m = integer or
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Ez/hro'=integer where co'=eHkFb/mc. In the presence
of the v(x) potential the periodicity is given by ali, /2nq
or 4' /hot' from Eq. (2.26). This reduction in periodicity
is comparable to what is experimentally observed for the
Hall effect, etc , in. a magnetic field

Rather than a single gap, the spectrum contains sizable
gapa over the entire region 4' around Es. If one looks at
only one of the gapa, then the expectation is that the
magnetic-field-induced transition temperature is reduced

to zero periodically with the magnetic field. This was the
original result of Ref. 12. The presence of the mm/2
term in the argument of the cosine in Eq. (2.26) indicates
that ~hen a particular gap is close to zero, there is an ad-

jacent gap which is close to maximum. Thus a simp1e

change of the wave vector with a small amount can reintro
duce a sizable gap at Er. This can explain the series of
transitions, with no interoening normal state, which is seen

expenmen tally.

'M. Ya. Azbel, Zh. Eksp. Teor. Fiz. 46, 929 (1964) [Sov.
Phys. —JETP 19, 634 (1964)]; Dokl. Akad. Nauk 159, 703
(1964) [Sov. Math. —Dokl. 5, 1549 (1964)j.

2For a review, see J. B. Sokoloff, Phys. Rep. 126, 190 (1985).
Interesting treatments of special cases have been given by, for
instance, 8. Simon, Adv. Appl. Math. 3, 463 (1982); E. J. Di-
naburg and Ya. G. Sinai, Funct. Anal. Appl. 9, 279 (1976)
(for weak potentials); D. R. Hofstadter, Phys. Rev. 8 14, 2239
(1976);S. Ostlund and R. Pandit, ibid. 29, 1394 (1984).

J. E. Avron and B.Simon, Phys. Rev. Lett. 46, 1166 (1981).
4P. M. Chaikin, T. Holstein, and M. Ya. Azbel, Philos. Mag. 8

48, 457 {1983);P. M. Chaikin, Phys. Rev. 8 31, 4770 (1985).
5M. Ya. Azbel, P. Bak, and P. M. Chaikin, Phys. Lett. (in

press).
6J. F. Kwak, J. E. Schirber, R. L Greene, and E. M. Engler,

Phys. Rev. Lett. 46, 1296 (1981);Mol. Cryst. Liq. Cryst, 79,
121 (1981);J. F. Kwak, Phys. Rev. 8 28, 3277 (1983).

7P. M. Chaikin, Mu- Yong Choi, J. F. Kwak, J. S. Brooks, K. P.
Martin, M. J. Naughton, E. M. Engler, and R. L. Greene,
Phys. Rev. Lett. 51, 2333 (1983); M. Ribault, D. Jerome, 'T.
Tchendler, C. Acyl, and K. Bechgaard, J. Phys. (Paris} Lett.

44, L-953 {1983);M. Ribault„J. Cooper, D. Jerome, D. Mail-

ly, A. Moradpour, and K. Bechgaard, ib&d. 45, L-935 (1984).
SM, J. Naughton, J. S. Brooks, L. Y. Chiang, R. V. Chamber-

lain, and P. M. Chaikin, Phys. Rev. Lett. 55, 969 (1985).
9L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Part 2

(Pergamon, Oxford, 1958).
iOThis can always be done by renormalization of q and v to q

and U according to
A

q~ —U =q ~—v, U&dx&/p& ——0.
0

l

0
Vide i = Q)dXi =0

0

then the renormalization corrections are exponentially small.
"M. Ya. Azbel and Y. Gefen (unpublished).
' L. P. Gor'kov and A. G. Lebed, J. Phys. (Paris) Lett. 45, L-

533 (1984).
' G. Montambaux, M. Heritier, and P. Lederer, J. Phys. (Paris)

Lett. L-943 (1984).
'~K. Yamaji, J. Phys. Soc. Jpn. 54, 1034 (1985).


