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The observable consequences of percolation models of immiscible displacement in porous media
are discussed, with emphasis on the critical behavior. At the microscopic level, these include the
fractal nature of the nonwetting fluid configuration at breakthrough in drainage, and the size distri-
bution of the residual nonwetting clusters in imbibition. At the macroscopic level, it is suggested
that percolation ideas are consistent with the usual multiphase Darcy equations, and critical
behaviors of the relative permeability and capillary pressure curves are obtained. By using these re-
sults, predictions are made for the shape of the fluid saturation profiles near the percolation thresh-
olds in the presence of buoyancy or viscous pressure gradients. Finally, it is pointed out that very
close to the percolation thresholds, the diverging correlation length requires these macroscopic ideas
to be modified. A simple way of doing this is suggested.

I. INTRODUCTION

In this paper we consider the displacement of one fluid
by another in a porous medium. This process has impor-
tant practical application in many areas, most particularly
in the oil industry where it is the primary mechanism by
which hydrocarbons are produced from underground
reservoirs. It is also of great interest from the viewpoint
of modern physics, since the evolution of the interface be-
tween the two fiuids provides a physical example of the
phenomenon of pattern formation. One such example is
the "viscous fingering" which occurs when a less viscous
fluid displaces a more viscous one. ' A second example,
which is the topic of the present paper, concerns the per-
colation phenomena which occur when the fluids are im-
miscible.

Percolation effects in immiscible displacement in
porous media occur when (1) the flow rate and density
difference are small, so that at the pore level the pressure
drops due to viscosity and buoyancy are small compared
to interfacial pressure differences; (2) the medium is ran-
dom; and (3) the pore space is multiply connected. These
percolation effects have been considered by many authors
in the past few years. " The purpose here is to focus
particularly on the observable effects due to the fact that
percolation is a critical phenomenon with diverging corre-
lation length and universal critical behavior near the per-
colation threshold. '

We first describe briefly how the above three features
lead to a percolation picture of the immiscible displace-
ment process. %e consider a porous medium which is
filled completely (or perhaps at high saturation) with one
fluid of density pi and viscosity p, which is then flooded
with a second fluid of density p2 and viscosity p2 at some
Darcy velocity (volume flow rate per unit area) V. Cru-
cial to the nature of the displacement process are the wet-
ting characteristics of the fluids and the magnitude of the
interfacial tension y. The fluid in which the contact angle
between the fluid-fluid interface and the solid is less than
90' is termed the wetting fluid and the other the nonwet-

ting fluid. If the contact angle is zero we have perfect
wetting. When the displacing fluid is the nonwetting
fluid the process is called drainage, and when the displac-
ing fluid is the wetting fiuid the process is called imbibi-
tion.

We consider the case where the viscosities of the fluids
are comparable, but p, 2~ @,i, so that the displacement is
stable and viscous fingering does not occur. The nature of
the displacement then depends primarily on the competi-
tion between interfacial, buoyancy, and viscous forces. A
typical interfacial pressure difference between the phases
is of order

where y is the interfacial tension and r is a microscopic
length, for example, a typical grain size in the case of a
granular material. Let us define the capillary pressure to
be the pressure difference between the nonwetting and
wetting phases:

Pcap =5'nw —PN ~ (1.2)

Then in the case of buoyancy, the change in the capillary
pressure over a distance r is given by

(1.3)

where bp is the density difference and g is the accelera-
tion due to gravity. Taking the ratio of (1.1) and (1.3)
gives

The quantity B is called the Bond number, and represents
the local competition between buoyancy and interfacial
forces.

For the case of viscous pressure gradients, in the appli-
cations we consider here it is the pressure drop in the
displacing fiuid which is important, so the viscous pres-
sure drop across a grain size r may be estimated as
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P vlsc C
~s .t

where

(1.6)

is the capillary number expressed in terms of the displac-

ing fluid viscosity and the superficial velocity, and

is a geometrical constant. Since the permeability is con-
trolled by the narrow constrictions in the medium, the
constant K is typically rather small, of order 10

When the quantities (1.4) and (1.6) are small, the system
is in local capillary equilibrium. That is, at a given capil-
lary pressure, the individual menisci separating the two
fluids adopt configurations which are determined only by
the local geometry, and are independent of the global
pressure gradients. Percolation effects arise due to insta-
bilities in the capillary equilibrium: there are certain parts
of the pore space which fill with the nonwetting fluid (in
drainage) or wetting fluid (in imbibition) not gradually,
but suddenly, when the capillary pressure rises above, or
drops below, some critical value. Such sudden events are
generically called Haines jumps. ' A detailed discussion
of such mechanisms is given by Lenormand and Zar-
cone, ' who point out that some combinations of them are
percolationlike, and others are not. Here we will assume
the former situation and simply assert that, in both
drainage and imbibition, there is a one-to-one correspon-
dence between the capillary pressure p ~ and the fraction

p of pores (or throats) which are available to the nonwet-
ting fluid (of course the correspondence is different in
drainage from in imbibition because the mechanisms are
different). In the definition of p we say "available" to
mean by virtue of the capillary pressure criterion alone;
the actual fraction of pores (or throats) occupied by the
nonwetting fiuid will be different due to accessibility (i.e.,
percolation} effects. For simplicity we will often refer to
p as the nonwetting fraction.

In the absence of buoyancy or viscous pressure gra-
dients a simple model based on these ideas is the follow-
ing. ' '

(1) Represent the medium as some kind of lattice struc-
ture in which the sites represent pores and the bonds
throats. Initially the whole lattice is occupied by the dis-
placed fluid, except for one face which is occupied by the
displacing fluid. The opposite face is identified as the
outlet face from which the displaced fluid escapes.

(2) Assign a random number A, (uniformly in the unit
interval} to each site to represent the pressure at which
that site will fill with the displacing fluid. (More general-
ly we might assign the random number to the bonds, or to

P2Vr
~J vise =

k

where V is the superficial Darcy velocity of the flood, and
k is the permeability of the medium. Taking the ratio of
(1.1) and (1.5) gives

some combination of the sites and bonds. ) More precisely,
the number A, for a given site is the fraction of sites which
are available to the nonwetting fluid at the capillary pres-
sure at which the site in question fiils.

(3) At each time step the displacing fiuid configuration
grows by occupying the accessible site arith the smallest
(in drainage) or largest (in imbibition) random number.

(4) Regions of the displaced fiuid which become discon-
nected from the outlet face are "trapped" and cannot be
invaded.

(5) The process ends when none of the displaced fluid is
connected to the outlet face. The fraction of displaced
phase remaining is called the residual saturation.

The above is a modified form of percolation which we
call "invasion percolation with trapping. " The term
"trapping" refers to rule (4}, which is concerned with the
connectedness properties of the displaced phase. The ef-
fect of this rule alone has been considered in Ref. 14. The
term "invasion percolation" refers to rule (3) which states
that the displacing fluid grows in a single connected clus-
ter along a path of least resistance. Invasion percolation
is a kinetic growth phenomenon {as opposed to an equili-
brium system such as ordinary percolation) which is of
considerable interest in its own right. ' However, for our
purposes the key feature of rule (3) is that the displacing
fluid grows in only a single cluster. In fact, a restatement
of rule (3} which brings out more clearly the roles of the
capillary pressure and available nonwetting fraction is the
following.

(3') Gradually increase (in drainage) or decrease (in im-
bibition) the available nonwetting fraction p (i.e., increase
or decrease the capillary pressure) until a site accessible to
the displacing fluid becomes available. If this "uncovers"
more available sites at the prevailing value of p, then in
drainage the sites with the smallest I, value are filled first,
and in imbibition those with the largest A, value are filled
first. When no more such sites are accessible, the nonwet-
ting available fraction is increased (decreased} again, and
so On.

The above model treats drainage and imbibition in
essentially the same way. In particular, in both cases
there are two percolation thresholds. The first occurs
when the displacing fluid first percolates (forms a con-
nected path), and the second when the displaced fluid
stops percolating (becomes disconnected). These features
are only physically correct if the connectedness of both
phases is controlled by the Haines jumps which are the
basic ingredient of the percolation model. The point of
view taken here is that this is correct for the nonwetting
fluid, but not necessarily for the wetting fluid since the
latter (at least for small contact angles) can maintain its
connectivity through roughness of the pore walls and/or
surface films. Thus we will only consider the percolation
thresholds corresponding to the nonwetting phase —i.e.,
the first threshold in drainage and the second threshold in
imbibition.

Although invasion percolation with trapping has many
of the same qualitative features as ordinary percolation, it
cannot be analyzed exactly in terms of usual percolation
concepts. This is essentially because the connectedness of
the displaced phase is that which occurs in the presence of
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only a single cluster of the displacing phase, rather than a
randomly placed displacing phase consisting of many
clusters as in ordinary percolation. Ho~ever, at least in
the three-dimensional case we are considering here, if we
are concerned only with the critical behavior the analysis
may be simplifiixl. In drainage we are concerned with the
first threshold when the displacing nonwetting phase first
percolates. At this stage the nonwetting phase is a fractal
and occupies only a vanishingly small fraction of pores.
Thus trapping of the wetting phase will be a very rare
event and we may safely ignore it—i.e., we may treat the
process as invasion percolation without trapping of the
other phase. In imbibition we are concerned with the
second threshold where the displaced nonwetting phase
becomes disconnected. At this stage the wetting fluid will
be well above its percolation threshold and so even in or-
dinary percolation almost all of the wetting phase would
be in a single "infinite" cluster —the finite clusters being
very small. Thus it is reasonable to expect that, as far as
the critical behavior is concerned, the trapping of the dis-
placed nonwetting phase is very simHar to that which
would occur in ordinary percolation, i.e., we may treat the
system as ordinary percolation with trapping of the dis-
placed phase.

In both the drainage and imbibition cases, it is seen that
for the purpose of describing the critical behavior near the
nonwetting percolation threshold, we may treat the system
as if the wetting phase is always perfectly connected, in-
dependent of the bulk occupation of the pores. As ob-
served above, this may actually be physically correct when
the contact angle is small.

The remainder of this paper is organized as follows. In
Sec. II we derive the fundamental macroscopic relation
between the fiuid saturations and the capiBary pressure.
In Sec. III we describe certain microscopic (pore level)
consequences of percolation effects. In Sec. IV these re-
sults are used to derive the shape of the saturation profiles
in the presence of buoyancy pressure gradients. In Sec. V
we discuss the effect of viscous pressure gradients, and
derive the critical behavior of the relative permeability
functions. In Sec. VI these results are used to obtain the
saturation profiles in the presence of viscous pressure gra-
dients. Some of the results of Secs. IV and VI depend on
the way in which the pressure gradients modify the local
behavior of the system; in Sec. VII we suggest an approxi-
mate way in which these effects may be modeled at the
macroscopic level. Finally, Sec. VIII contains a discus-.
sion of these results. A glossary of percolation exponents
and their values in three dimensions is given in the Ap-
pendix.

In this paper we will estimate the fluid saturations by
counting the fraction of pores occupied by each fiuid—
i.e., we neglect the size variation of the pores. This should
not affect the critical behavior, which is independent of
such details.

When discussing the capillary pressure, it is convenient
to introduce a dimensionless capillary pressure P„~ de-
fined by

Reap =
g cap ~

T
(2.2)

where y is the interfacial tension, and r is a typical grain
size. The dimensionless capillary pressure is then a di-
mensionless, order-unity function of the nonwetting frac-
tion p.

As in the other sections of this paper, we treat the
drainage and imbibition cases separately.

A. Drainage

In drainage we are concerned with the first threshold
where the nonwetting fiuid first percolates. As discussed
in the Introduction, near this threshold we may treat the
system as ordinary percolation, but with the displacing
fiuid occupying only a single cluster. The percolation
threshold occurs at some nonwetting available fraction
p', and a corresponding dimensionless capillary pressure
P'p. If wedefine

(2.3)

and

A

Peep

tion such as that considered here, the wetting and nonwet-
ting saturations add to unity:

(2.1)

II. CAPILLARY PRESSURE

As we have seen, the fundamental quantity in the
interfacial-tension-dominated regime is the capillary pres-
sure, since it is this quantity to which the system
responds. In this section we show the critical behavior of
the fiuid saturations as a function of capillary pressure.
The saturation of each fluid (a macroscopic quantity aver-
aged over many pores) is defined as the fraction of the
pore space occupied by that fluid. In a two-phase situa-

I

Sn

FIG. 1. Dimensionless capillary pressure p„~ as a function
of nonvretting-phase saturation 5„„.The curve marked D is the
drainage curve and that marked I is the imbibition curve. The
saturation marked S„*„,is the residual nonwetting saturation.
The critical behavior is indicated in the figure.



PERCOLATION EI.Fj.CTS IN IMMISCIBLE DISPLACEMENT 1383

~Reap=recap I cap p

then we have

~ac.p-~S . (2.5)

buoyancy and viscosity are completely absent. Again, we
consider the drainage and imbibition cases separately.

A. Drainage

For an infinite system the nonwetting saturation at the
percolation threshold is zero, but as the capillary pressure
(and hence the nonwetting fraction) increases, the nonwet-

ting saturation increases as

S„„-(bp)~- (bP„)~, (2.6)

since the nonwetting fluid occupies only the infinite con-
nected cluster. Thus we have

(2.7}

This behavior is sketched in Fig. 1.

B. Imbibition

In imbibition we are concerned with the second thresh-
old where the nonwetting phase becomes disconnected.
Since we will always discuss the drainage and imbibition
cases separately, no confusion need arise if we use a simi-
lar notation in the two cases. Thus we will again denote
the nonwetting fraction at the percolation threshold by
p', and the corresponding dimensionless capillary pres-
sure by p,',p. Of course, these quantities have different
meanings from the drainage case, because the mapping of
the system onto the percolation problem is different in the
two cases. Again we define

In drainage we are concerned with the first threshold
when the displacing nonwetting fluid first forms a con-
nected path. Since the trapping (if any) of the wetting
fiuid is not important, the nonwetting fiuid is an ordinary
percolation cluster at threshold, and so is a fractal. That
is, if we choose an origin in the nonwetting fluid, then the
volume M(R) of nonwetting fiuid within a sphere of ra-
dius R.gro%'s as '

M(R)-R

r &~R gL,
(3.1)

(3.2}

L D —3 L
—p/v (3.3)

S. Imbibition

Here we are concerned with the second threshold where
the displaced nonwetting phase becomes disconnected. If
we let n (s) denote the number of nonwetting clusters con-
taining s pores, then n (s}has the power-law behavior

where r is the grain size, L is the sample size, and D -2.5
is the fractal dimension of ordinary percolation. As a
consequence of this fractal behavior, the nonwetting fluid
saturation shows a finite size-scaling effect6's

(2.8) n(s)-s

1 &&s &&smax p

(3A)

(3.5)

~P cap =pcap P cap (2.9)

As discussed in the Introduction, near the percolation
threshold we may treat the system as ordinary percola-
tion, provided we take into account the trapping of the
displaced phase. In percolation with trapping, when we
decrease the allowed nonwetting fraction from p to
p —dp, the wet ting-phase saturation increases by an
amount P(p)dp, since the wetting fiuid can only enter the
inflnite cluster (i.e., the connected portion) of the nonwet-
ting phase. ' ' Thus, as we approach the percolation
threshold,

b,S„—=S„„(p)—S„„(p')= f, P(p)dp -(~p)' ~+,
P

(2.10)

where S„„(p')is the residual nonwetting saturation S„'„,.
Thus the behavior of the capillary pressure near threshold
1S

gP gp (~ )l/i+P (2.11)

III. MICROSCOPIC PREDICTIONS

This section is concerned with the microscopic critical
behavior when the effects of pressure gradients due to

Since the exponent in (2.11) is less than unity, the capil-
lary pressure has infimte slope at the threshold. This
behavior is illustrated in Fig. 1.

DSmay(

and r is a critical exponent. Previously it was thought, '

based on computer simulations of invasion percolation
with trapping, that r was around 2.07, less than the corre-
sponding exponent

-2.20= 3+D
D

(3.7)

of ordinary percolation. However, more recent analysis of
percolation with trapping'" suggests that the value should
be the same as in ordinary percolation, i.e., 2.20, despite
the fact that the actual size distribution is altered by the
trapping rule. If we estimate the residual nonwetting sa-
turation S„'„,by counting the number of occupied pores
(i.e., we neglect the size variation of the pores) then we
have

S„'„,= g s'n (s') .
s'=1

(3.8)

Since ~ is close to 2, the residual saturation receives con-
tributions from clusters over a wide size range. The best
way to estimate the exponent ~, both in experiments and
computer simulations, is to compute that part of the resi-
dual saturation which is contained in clusters of size
greater than s,
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m (s)= g s'n (s') -s
S =S

(3.9) The behavior (4.6) does not hold for all z, but only in
some range

1 (QS ((Smax s (3.10) zmin (~ (zmax (4.7}

The finite size of the sample causes the residual saturation
to differ from that on an infinite sample by an amount ' If we consider the critical region to extend over the range

&p (e, i.e., S„„(e, then the upper limit is given by

(3.11} zmax
(4.8)

Note that this means that the residual saturation con-
verges much more quickly to its asymptotic value than it
would if the size distribution were simply cut off at
s =s,„, since the latter hypothesis would lead to a
behavior L ~r" for the quantity in (3.11). The result
(3.11) is due to the fact that the larger clusters are not en-

tirely missing from the distribution, but are partially bro-
ken up into smaller ones.

IV. BUOYANCY EFFECTS

In this section we consider the saturation profiles due to
buoyancy pressure gradients. The fundamental assump-
tion is that locally the system responds to the prevailing
capillary pressure in the same way as in the absence of the
pressure gradient (i.e., as in Sec. II), but that the capillary
pressure varies as a function of height:

The existence of the lower limit is due to the fact that the
pressure gradient modifies the critical behavior close to
the threshold. The essential point is that as we approach
the percolation threshold the correlation length diverges
so that eventually, no matter how small the Bond number,
the change in capillary pressure across a correlation
length becomes noticeable. I.et us denote the local corre-
lation length by g. Then, as discussed for the imbibition
case in Ref. 9, the system begins to "see" the pressure gra-
dient when bp becomes so small that the change in p
across a correlation length becomes comparable to bp:

(4.9)

But from (4.5) we have

p p(z)=p„p(0)+hpgz, (4.1) Bp ~leap 8
Bz Bz r (4.10)

where z is the vertical height, g is the acceleration due to
gravity, and hp is the density difference

(4.2)

Since the capillary pressure is simply related to the satura-
tions via (2.7) or (2.11), it is an easy matter to compute the
saturation profiles.

A. Drainage

so that (4.9) becomes

~8-hp .

Since the correlation length scales as

~-(&p) ",
r

we see that the condition (4.9) is satisfied when

(4.11)

(4.12)

hz =z —zo . (4.3)

~pcap ~pcap(Z) Pcap(zo) ~pg ~ ' (4.4)

Expressed in terms of the dimensionless capillary pressure

pea& this becomes

EP„p ——8 (4.5)

We assume that the wetting fiuid is the heavier fiuid
and perform the displacement in the vertical direction
with the nonwetting fluid introduced from above, so that
the displacement is hindered by the buoyancy forces (if
the nonwetting fiuid were the heavier, we would introduce
it from below). I.et z denote vertical height and zo tile
lowest height reached by the nonwetting fluid (i.e., the
height at which the system is exactly at the percolation
threshold). Define

8 i/(i+v)

r r 9

(4.13)

(4.14)

(4.15)

The interpretation of the length g'a in (4.14) is that when
the correlation length exceeds this value, the system sees
the pressure gradient locally. Thus ga is the maximum
correlation length which can be developed at a given value
of the Bond number 8, i.e., it is the maximum length over
which the fractal behavior (3.1) can be seen. A useful way
to think of this length is as an effective sample size. Since
the exponent in (4.14) is around 0.47, this length can be
quite small, even for apparently small Bond numbers 8.
Returning to the saturation profile, we see from (4.5) that
when Ap =Ape ere have

; v/(1+v)
hz ~pa 1 ' gg
r 8, 9 r

(4.6)

where 8 is the Bond number (1.4}. From (2.7) we thus
have the saturation profile

S„„-8 (4.16)

Thus the lower limit z,„ is of the same order as the max-
imum correlation length

v/(1+ v)
z~)a

r r 8
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Since vt (1+v) -().47 we see that if e -10 ' and we want
the allowed range of z to cover one decade, then we re-

quire 8 ~10

B. Imbibition

When the wetting fluid is the heavier fluid we perform
the displacement in the vertical direction with the wetting
fluid introducai from below. This case was considered in
detail in Ref. 9. Here we define zo to be the height below
which the nonwetting fiuid becomes disconnected, and
write

case because the pressure gradients are dynamically deter-
mined by the fluid configurations themselves, rather than
bclng purely hydrostat1c as 1n tllc buoyancy case. Howev-
er we will assume that locally the system is in capillary
equi1ibrium, i.e.,

(5.1)

where p„~ is the same function of saturation as in the ab-
sence of pressure gradients. The second assumption is
that the flow rates and pressure gradients satisfy the mul-
tiphase Darcy equations'

hz =z —zo . (4.17) kk„(S)
Vp;,

Just as in the drainage case we then have

bp ~=hpg bz,

b,P„p——8

(4.18)

(4.19)

From (2.11) it follows that the saturation varies with the
height as

S„„(z)—S„„,—8
T

(4.20)

As in the drainage case this behavior holds only over
some range of z values

z;„gMgz ~ . (4.21)

By arguments similar to the drainage case, we find that if
bp & e denotes the extent of the critical region, then

where u; is the Darcy velocity of phase i (flow rate per
unit area), k is the absolute permeability, k„ is the relative
permeability of phase i, and p; is the pressure measured in
the continuous part of phase i Th.e physical idea behind
the relative permeability concept embodied in these equa-
tions is that when two fluids are occupying the pore space,
the permeability to each is reduced because some of the
flow channels are occupied by the other fiuid. Since our
hypothesis of local capillary equilibrium implies that the
fluid configurations are in one-to-one correspondence with
the capillary pressure, it follows that at a given local sa-
turation the fiuid configurations are always the same (in-
dependent of the flow rate), and so the relative permeabili-
ties for a given system are unique functions of saturation.
The purpose of this section is to derive the critical
behavior of the relative permeability of the nonwetting
phase near the percolation thresholds.

and that z;„is of order
' v/{1+@)z min 4 1

r r 8

(4.22)

(4.23)

A. Drainage

Here we are concerned with the first threshold when
the nonwetting fluid first percolates. Close to this thresh-
old the relative permeability to the nonwetting fiuid has
the behavior

i.e., the limits are essentially the same as in the drainage
case. The interpretation of the length ga in the imbibition
case is that it is the linear dimension of the largest
trapped clusters of nonwetting fluid. The nonwetting sa-
turation at z =z;„differs from the residual saturation by
an amount

k „-hp', (5.3)

where t is the conductivity exponent. Combining with
(2.6) we then have

(5.4)

This behavior is sketched in Fig. 2.
g {&+p)/{ &+v)

QW (4.24)
B. Imbibition

(g) g(&+ti)/(1+vI (4.25)

V. RRI.ATIVE PERMEABILITIES

As discussed in Ref. 9, another effect of the pressure gra-
dient is to lower the residual nonwetting saturation by an
amount of the same order, i.e.,

Here we are concerned with the second threshold where
the nonwetting fiuid becomes disconnected. As we ap-
proach this threshold, the connected infinite nonwetting
cluster is the same as it would have been in ordinary per-
colation (only the disconnected finite clusters are dif-
ferent). Thus the nonwetting-fluid relative permeability
has the behavior

In order to compute the effects of viscous pressure gra-
dients in a way analogous to the discussion of buoyancy
gradients discussed above, it is necessary to introduce a
theoretical picture of how these pressure gradients behave.
This is fundamentally more complex than the buoyancy

k -hp', (5.5)

where t is the conduction exponent of ordinary percola-
tion. Combining this with (2.10) we have
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where So is some initial constant saturation (possibly
zero}. In the one-dimensional case we are considering we
have from (6A) and (6.5)

U&+U2 ——V, (6.7)

so that the pressure fields may be eliminated to obtain a
single equation for the displacing phase saturation S=—Sz,

(6.8)

FIG. 2. Nonwetting-phase relative permeability k„„as a
function of nonwetting-phase saturation S„„. The curve
marked D is the drainage curve and that marked I is the imbibi-

tion curve. The saturation marked S„„,is the residual nonwet-

ting saturation. The critical behavior is indicated in the figure.

with

U =—Uz ——VF(S) G(S}—S
X

where

A,i(S)
A. i(S)+A,p(S)

'

A, i(S)A2(S) Bp„p
G(S)=

A, i(S)+At(S) BS„„

(6.9)

(6.10)

(6.11)

This behavior is illustrated in Fig. 2.

VI. VISCOUS EFFECTS

In order to compute the saturation profiles in the pres-
ence of viscous pressure gradients we have to solve the
one-dimensional version of Eqs. (5.1) and (5.2):

(6.1)

Note that (6.11) is the correct form for both drainage and
imbibition, and that the function G(S) is therefore posi-
tive in both cases. Equation (6.8) is a nonlinear second-
order parabolic differential equation (nonlinear diffusion
equation), and except for certain special choices of the rel-
ative permeability and capillary-pressure functions cannot
be solved exactly. ' However, at long times it is believed
that the saturation profile has the following character. '

First one draws a tangent to the fractional flow curve
F(S) as illustrated in Fig. 3. The point at which the
tangent is drawn is called the Buckley-Leverett saturation

~Pi
v; = —A,;(S)

where the mobilities A,; are given by

(6.2)
F(S}

1.0
(6.3)

(6.4}

where P is the porosity (void fraction) and T is the time.
The boundary condition at x =0 is

U) =0,
U2 ——V,

(6.5a)

(6.5b)

These equations are to be solved in conjunction with the
continuity equation for each phase:

BL

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

8
max

S2 =So (6.6)

where Vis the total imposed flow rate, and the subscript 1

denotes the displaced fluid and the subscript 2 the displac-
ing fluid. The initial condition on the displacing fluid sa-
turation S2 is

FIG. 3. Fractional flow I' [Eq. (6.10}]of the displaced phase
as a function of displaced phase saturation S. The Buckley-
Leverett saturation SqL is obtained by drawing the tangent to
the curve, starting from the point on the curve corresponding to
the initial saturation So. If no such tangent can be dragon, SqL
is taken to be the initial saturation So. If the chord joining the
initial saturation to the maximum saturation S,„does not in-
tersect the curve, then SqL is taken to be S,„.
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SM. Then the saturations between the initial saturation

So and the Buckley-Leverett saturation SM travel with a
common front velocity UF given by

y F(sat ) —F(So)
SBL—So

(6.12)

These saturations thus form a traveling wave which ad-
vances without change of form. The positions of two sa-
turations S& and Sz differ by an amount

(6.21)

+min &~ & +max ' (6.22)

As in the buoyancy case this behavior only holds for the
range of x such that Ap is small enough to be in the criti-
cal region, but not so small that the diverging correlation
length causes the pressure gradient to be seen at the local
level. Let us write the allowed range as

x (S) )—x (Sp)

6 (S)
pUF(S —So)—V[E(s)—F(SO)]

(6.13)

C
(6.23)

If we consider the critical region to extend over a range
bp & e, i.e., S &e, then from (6.20) we have

V dF
U(S) =—„ (6.14}

These saturations thus form a profile which stretches in
time:

x(s)=U(s)T . (6.15)

where So is the saturation ahead of the traveling front-
i.e., the initial saturation. The saturations between SBL
and the maximum saturation S,„ travel with a
saturation-dependent velocity given by

As in the buoyancy case, the lower limit is obtained by
solving the equation

(6.24)

From (2.6) and (6.20) we see that this equation is satisfied
when the nonwetting saturation is of order

P/(, t —P+ 1+v)

SDv
F

E (6.25)

In the following we will use the solutions (6.13) and (6.15)
to derive the shape of the saturation profile (at long times)
in the presence of viscous pressure gradients.

and the correlation length is of order'
v/(t —P+1+v)

gDV

r CF
(6.26)

A. Drainage

In drainage the displacing fluid is the nonwetting fluid
and we assume the initial nonwetting saturation is zero.
Since the exponent in (5.4) is greater than unity, the frac-
tional flow curve has zero slope at S=0 (i.e., at S„„=O)
and so it is always possible to draw a tangent to the curve
as in Fig. 3—i.e., there is always some range of satura-
tions which form a traveling front. If we let xo denote
the leading edge of the front, then from (6.13}we have

(s)=~ y;s v~(s)
G(s) (. )6.16

As S~0 we have

(6.27)

B. hnbibition

As in the buoyancy case, this correlation length is the
greatest correlation length which can be developed at the
given capillary number. Microscopic effects, such as the
fractal behavior (3.1), can be seen only up to this length
scale. Since the exponent in (6.26) takes a value around
0.25 this length can be quite short, even for apparently
small capillary numbers. Substituting (6.25) in (6.20) we
find that the corresponding value of b,x is of the same or-
der as gDv, so that x;„is given by

' v/(. t —P+ 1+v)
+min

r CF

r(s)-"" k „(s)-" s"~,
Pnw Pnw

6 (S) k (S) S"+'Bp

pnw ~s pnw ~

(6.17)

(6.18)

Smax 1 Snwr (6.28)

In the imbibition case the displacing fluid is the wetting
fluid, and the maximum wetting-phase saturation S,„ is
given by

so that

—x (S) —S"+'k

I nwfUF

Thus the desired saturation profile is given by

' p(t+1 —p)

K r
(6.20)

where CF ls the capillary number expressed in terms of
the front velocity and the nonwetting fluid viscosity:

p k (S
F(S) 1

™-w

Pnw &wr
(6.29)

wher«„, (which is of order unity} is the wetting-phase

where S„'„, is the residual nonwetting-phase saturation.
Since the exponent in (5.6} is greater than unity, no matter
what the initial wetting-phase saturation So, there is al-
ways some range of saturations close to S,„which form
the stretching type of solution. From (5.6) and (6.10) we
have as S~S,„,
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relative permeability at residual nonwetting saturation.
Thus as S~S (6.40)

(~)[t/( 1+ii)]—i

4'km' JMnw

where Lh5 is given by

AS =Smax S =Smv Sneer

(6.30)

(6.31)

Substituting in (6.32) we obtain
'

( t —P—1)/(1+ v)
min 1 PN C

VT Pk„, p„„ E„ (6.41)

Thus from (6.15}we have the saturation profile

k
. (1+P)/(~ -P-1)

Nr Pnw x
V JMI„T

(6.32)

The interpretation of the maximum correlation length giv
is that it is the linear extent of the largest trapped clusters.
As discussed in Ref. 9, the pressure gradient causes the
residual nonwetting saturation to be lowered by an
amount of order b,Slv.

Note that (at least at this macroscopic level) the residual
saturation remains at x =0, and does not advance into the
sample. As in the other cases, the behavior (6.32) holds
only for some range of rhx,

' (1+P)/(1+ v)

S„„„—S„,( V)- (6.42)

+min &+ & +max (6.33)

If we consider the critical region to be bp&@, i.e.,
M & e'+~, then from (6.32) we find that x ~ is given by

max I Pu, p
VT tI)k„, p„„

(6.34)

Bp r ~pu r pwV

» r» rkk„, ' (6.35)

As in the drainage case, the system begins to see the pres-
sure gradient when (6.24} is satisfied. In the present imbi-
bition case, use of (6.35) gives

' 1/(1+v)

~p-~plv-=
K~

with a corresponding correlation length of order
' v/(1+v)

r r C
(6.37)

where C is the capillary number expressed in terms of the
wetting fiuid viscosity and the total flow rate

(6.38)

and j'~ is given by

The lower limit is more complex than in the other cases,
because the solution (6.15) is not an exact solution to the
macroscopic equations, but only an asymptotic solution
for large times. In this solution, the saturation gradient
(and hence the capillary pressure gradient) becomes arbi-
trarily small as T~ oo, and the pressure gradients in the
two fluids are almost equal. However, it was argued in
Ref. 9 that near the inlet face where the nonwetting flow
velocity U„„ is zero, the pressure gradient in the wetting
phase always dominates that in the nonwetting phase.
Thus, close to residual saturation we have

VII. MODIFICATION OF MACROSCOPIC
EQUATIONS

The fundamental premise on which this paper is based
is that when the pressure gradients due to buoyancy and
viscosity are small, the system behaves locally in the same
way as in the absence of these gradients —i.e., the system
is in local capillary equilibrium. However, we have seen
in Secs. IV and VI that as we approach the percolation
thresholds this assumption must break down due to the
diverging correlation length. The smaller the pressure
gradients, the closer we can approach the thresholds, but
eventually the systein will always begin to see the pressure
gradient and the behavior is modified. Strictly speaking,
the macroscopic picture must break down when this hap-
pens, because there is no length scale larger than the
correlation length over which macroscopic variables such
as the saturations are effectively constant —i.e., it is im-
possible to define a macroscopic averaging volume. When
the pressure gradients are large, the macroscopic picture
becomes completely meaningless, but when they are small
one might expect that the effects of the diverging correla-
tion length may be modeled approximately by modifying
the capillary pressure and relative permeability functions
in the the region of the percolation thresholds. This is the
purpose of the present section.

The modification we propose here is only appropriate
for a one-dimensional flood at constant flow rate, so that
the total fluid velocity is fixed by (6.7). Also, for simplici-
ty, we mill consider only the situation where viscous pres-
sure gradients alone are acting (i.e., no buoyancy forces).
Generalizations to more complex situations may be possi-
ble, but will not be considered here. %'e will consider the
imbibition case first, since the observable effects of the
pressure gradients are more manifest in that case because
the residual saturation is altered.

A. Imbibition

The corresponding saturation value is

(6.39)
As they system approaches residual saturation, the

correlation length increases until the effect of the pressure
gradient is seen at the local level. As shown in Sec. VI,
this occurs when the saturation reaches a value such that
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FIG. 4. Modification to the capillary-pressure and nonwetting permeability curves near the residual nonwetting saturation thresh-
old in imbibition. The quantity hSI~ depends on the Aow rate and is defined in (6.40).

B. Drainage

The effects of the pressure gradient are not so dramatic
in this case because the critical saturation remains at
S„„=O. Nevertheless, the behavior must be modified
near the threshold. As shown in Sec. VI, the maximum
correlation length occurs at a nonwetting saturation

~nw ~DV ~ (7.2)

where ESli is given in (6.40). Once the wetting saturation
exceeds this value, the behavior is altered from the zero-
gradient situation. In particular, the residual saturation is
lowered by an amount of order (6AO). Thus at the very
least, the relative permeability and capillary-pressure
curves must be modified to accommodate the shifted end
point. The precise way in which this is done is probably
not too important, since the macroscopic equations lose
their validity close to the threshold. A simple idea, ' il-
lustrated in Fig. 4, is to replace the relative permeability
and capillary functions by linear functions in the region

~

M
~

&Siv. Note that this modification implies that the
velocity U (S) is constant as the system approaches residu-
al saturation. This means that the residual saturation ad-
vances into the sample, and regions near the inlet have no
continuous nonwetting phase. Of course, this conclusion
is due to our simple assumption of a linear relative per-
meability near the threshold, but it seems physically
reasonable.

where SDV is given in (6.25). Again, a simple possibility is
to replace the relative permeability and capillary-pressure
functions by straight lines in the region S„„gSDV as illus-
trated in Fig. 5. This modification causes the saturation
profile near the threshold to be linear, as can easily be
checked by repeating the steps (6.17)—(6.20) for the modi-
fied relative permeability and capillary-pressure functions.

VIII. DISCUSSION

The purpose of this paper has been to present a variety
of theoretical predictions of percolation models of iminis-
cible displacement in porous media. These predictions are
of three main types: (a) microscopic predictions such as
fractal dimensions and cluster size distributions, (b} criti-
cal behavior of the macroscopic capillary-pressure and rel-
ative permeability functions, and (c) shapes of the satura-
tion profiles in the presence of pressure gradients due to
buoyancy and viscosity. The beauty of these predictions
is that they are uniUersa/ —i.e., do not depend on the de-
tails of the porous medium and the fluids.

If these percolation effects are not seen, it is possible to
identify three possible reasons.

(1) The physics of the models is wrong. This is most
likely to occur in the imbibition case, where the displace-
ment mechanisms are more complex. In particular, the
displacement may occur via multiple mechanisms, whose
combined effect is not percolationlike. '

(2} The pressure gradients due to buoyancy and viscosi-
ty are too strong, so that the critical behavior is smeared.

(3) If percolation effects are to be seen over a correla-
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FIQ. 5. Modification to the capillary-pressure and nonwetting permeability curves near the nonwetting injection threshold at
S„„=in drainage. The quantity MID depends on the flow rate and is defined in (6.25).

tion length g, then the medium must be statistically
homogeneous over that scale. This may not be the case.

Despite these difficulties, critical percolation effects
have been observed in drainage in two-dimensional artifi-
cial orous media. In particular, l.enormand and Zar-
cone 2 have shown the fractal dimension of the displacing
nonwetting fluid in drainage to be around 1.82, in good
agreement with computer simulations of invasion percola-
tion with trapping in two dimensions. ' To make the
corresponding measurements in three dimensions requires
pore-level observation of the system. The size distribution
of the residual nonwetting clusters in imbibition has been
measured by a destructive technique by Chatsis and Mor-
row, 2s but the data were not analyzed in terms of percola-
tion ideas. While the predictions for critical behaviors of
the capillary-pressure and relative permeability functions
are in qualitative agro:ment with commonly used func-
tions based on experiments, these experiments are not of
sufficient precision to pick out the correct critical
behavior near the threshold. One reason for this is that
the experiments do not usually make saturation measure-
ments inside the sample, but rather rely on external mea-
surements which are strongly affected by boundary ef-
fects. For this reason there seems more hope for seeing
the critical behavior in the saturation profiles, which are
true bulk effects in which the capillary pressure, and
hence saturations, are modulated by the physical pressure
gradients themselves rather than by external forces. Some
initial results for drainage in the presence of buoyancy
have been obtained by destructive technique (using Woods
metal as the nonwetting phase) by Clement, Baudet, and
Hulin. " A promising nondestructive technique using a
transparent porous medium and laser-induced fluores-
cence has been developed by Chen and Wada. All of the

above-mentioned techniques give pore-level resolution and
can be used to test the microscopic predictions of percola-
tion. However, if the pressure gradients are small enough,
the critical behavior of the saturation profiles may extend
over macroscopic distances and be observed by macro-
scopic imaging techniques such as x-ray and NMR to-
mography.

APPENDIX

In this appendix we summarize our definitions of the
critical exponents of percolation, and their approximate
values in three dimensions. i We denote the occupation
fraction by p and the critical fraction by p' and write

In our applications we are always above threshold, so bp
is positive. The order parameter I'(p) is the fraction of
occupied sites in the infinite cluster and scales as

&(p) -(4p)~,
where P-0.45. If the occupied sites are conducting and
the empty sites insulating, then the conductivity X scales
above threshold as

X-(bp)',
where t-1.9 is the conductivity exponent. The correla-
tion length I., which may be taken as the typical size of
the fiiute clusters, diverges as

L-(bp)

where v-0. 88. At threshold the infinite cluster is a frac-
tal with fractal dimension
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n (s)-s

Finally, at threshold the number of finite clusters of size s
scales 3.s
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