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%'e have carried out some more nonlinear molecular-dynamics calculations of the conductivity of
the Lennard-Jones Quid near its triple point as a function both of the number of particles and of the
external field. %e have employed the subtraction technique and Evans-Gillan algorithm together
with a recently proposed criterion to compare the strengths of impulsive and stationary perturba-
tions. Accordingly, the gradients we used lie in the range 1.2~10' to 5.8g 10' K/cm. Our results

suggest that the response of the energy current at K=o is linear for F up to 5.8)& 10 K/cm. ~e
find nonlinearity for larger values of the perturbation. No dependence of the response on the parti-
cle number is found.

I. INTRODUCTION

In this paper we report a nonequilibrium molecular-
dynamics (NEMD) computation of the thermal response
of a simple fluid near its triple point as a function both of
the imposed perturbation and of the number of particles.

We simulate a set of thermal gradients by mechanical
perturbations using the Evans-Gillan'2 translationally in-
variant algorithm and the subtraction techmque. %e per-
turb the system with an impulsive force of strength F.

In a previous paper a similar calculation of the thermal
response of fluid argon has been reported for perturba-
tions ranging from 9.57X10 '

up to 3.2X10 (in
Verlet's units). Linearity was found throughout the whole
range.

The purpose of the present work is to investigate fur-
ther all possible dependences of the response on the
strength of the perturbation, using the same method and
the same kind of perturbing field as in Ref. 3. We apply a
set of perturbations covering almost 3 orders of magni-
tude, from 3.2X10 up to 1.6. Our lowest value of F
corresponds to the highest value used in Ref 3, whe. re al-
most 6 orders of magnitude had been spanned, beginning
with very weak fields.

The linear region extended up to E=1.6X10 '. For
higher values of the external field we obtain a nearly
linear increase of the ratio between the response and the
external perturbation as a function of F. On the other
hand, we find no significant variation of this ratio due to
a change in the particle number, for F belonging to the
linear region.

In Ref. 3 a numerical comparison between F and real
thermal gradients was made according to the formula
F/h =F=

~

VT
~
/T, where F is the stationary e-like

perturbation employed in Ref. 1 and h is the time step of
the numerical integration (Ii =10 ' sec). Due to this
choice the hnear region of Ref. 3 which resulted was
much larger than in Ref. 1. It has been suggested that
the method used in Ref. 3 to compare field strengths cor-
responding to impulsive or stationary perturbations is not
satisfactory. An exact way to make such a comparison

does not exist but we will apply an approximate method
which has been successfully tested to compute diffusion in
a system of two hard disks. According to the new cri-
terion the range of F values used in Ref. 3 and in the
present work corresponds approximately to thermal gra-
dients from 3.5 to 5.8X10 K/cm, while Evans's range
goes from 1.27X 10' to 1.52X 109 K/cm.

We use the same mechanical coupling as in Ref. 1 to
simulate thermal gradients but there are several differ-
ences between Evans's calculations and ours.

The first one is the time dependence of the perturba-
tion. In Ref. 1 the applied field is a step function, while
we adopt an impulsive force. This is not crucial within
the linear region, because according to the linear-response
theory these two choices are mathematically equivalent
apart from a trivial integration, while for nonlinear per-
turbations there are remarkable differences due to the fact
that we can no longer obtain the stationary thermal
response making a linear superposition of impulsive ef-
fects. This difference is not relevant because the mechani-
cal perturbation simulates a thermal gradient only in the
linear regime.

A second difference lies in the fact that the differential
method uses the first dynamical part of each perturbed
trajectory, while Evans begins to take his averages after
the transient stage, when the response becomes stationary.
The steady state is maintained by removing the hest pro-
duced in the system. This is achieved by rescaling the
second moment of the velocity.

Since we use an impulsive force we do not need any
thermostat for F up to 1.6x10-' (=5.8x10' K/cm).
For higher values of F the variation of the internal energy
is such that the perturbed system decays to a different
temperature. However, this happens in the region that
turns out to be the nonlinear one.

Between the results of Refs. 1 and 3 for the conductivi-
ty there was also a small numerical discrepancy. A possi-
ble reason for this discrepancy could have been the depen-
dence of the response on the particle number and on the
cutoff radius. Evans used a system with N~ ——108 and
Rz ——2.5o, while the values of Ref. 3 were Nz ——256 and
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Rc ——3.35o. In order to isolate all possible sources of
differences we use a cutoff radius Rc ——2 5.tr throughout
our calculations, as in Ref. 1.

Our results suggest that the numerical discrepancy was
essentially irrelevant, at most an effect of the linear extra-
polation used in Ref. 1.

In the first part of our work we study the thermal
response as a function of the number of particles, keeping
the external field fixed and equal to 3.2 X 10

In the second part we set Xp ——108 and vary the
strength of the applied perturbation.

For F in the linear region we obtained values of I,
which are consistent with both Ref. 1 and Ref. 3. For I'
greater than 0.16 ( =5.8 &(10s K/cm) we find a nonlinear
behavior similar to that of Ref. l. On the other hand, our
results show no significant variation due to the change in
the particle number.

In Sec. II we give a simplified version of Evans's exten-
sion of linear-response theory to treat thermal non-
Hamiltonian perturbations with Hermitian propagators.
Section III describes the differential method and estimates
the time dependence of its statistical error. In Sec. IV we
discuss the form of the mechanical perturbation. In Sec.
V we describe the model used in our calculations and im-
plement the method. Section VI presents our results.

~ ~

JJ

84(q;j) q;j

~qlJ qiJ

—IL (t)f = g 'qg + 'p;
Bq; Bq;

+fg 'qi+
~

'pi
i)pi

(2.5)

where f is the phase-space distribution function.

We note that with our choice of C; and D;, and with

the prescription P = g,. p;(t) =0, we have

'qi +
Bqg.

=F(t) g C;+ D; =0. (2.6)
i i}qi 3ipi

The resulting equations of motion are consistent with

periodic boundary conditions and preserve total momen-
tum. If it is zero at t =0 then, for any t,
P(t) = g,.p;(t}=0.

Let us now defme the perturbed operator associated
with the Liouville equation as

II. NON-HAMII. TONIAN
LINEAR-RESPONSE THEORY

We consider a system of Nt particles. with coordinates

q~, q2, . . . , q~ and a momenta p~,p2, . . . ,p~, subjected

to an external time-dependent perturbation E(t). Its
equations of motion are

q;= +F(t) C;= +F(t) C;, (2.1)
Bp;

'
m

aHo
p;= — +F(t) D;=F, +F(t) D;,

qJ
(2.2)

where H =H ( [qj,pj Jj i ~) is the Hamiltonian in the ab-

sence of F(t) and C;=C;([qj,pjI, i') and D;
j=N

=D;(Iqj,pj Ij &~) are tensors of suitable nature. Equa-
tions (2.1) and (2.2) are not necessarily derivable from a
Hamiltonian. In the thermal case ad hoc forins for C;
and D; (Refs. 1 and 2) are

C;=0,
1D;= E; — QEi 1

+— g F;,q;, — g g F,,q,, (2.4)
1

j (+i) & j f (~j)

where E;, the total energy of particle i, F,", the mutual
force, and q;j, the relative position of particles i and j, are
given by

qj=q' qj qj= lqj I

2

Ei —— + —,
' g 4(q;j),

2m '
j{~f)

where iL is the unperturbed Liouville operator and f is
the equilibrium probability distribution which was chosen
as the initial condition [f(0)=f ]. In Eq. (2.7) we have
assumed that F(t) =0 for t &0.

The zero-wave-vector energy current density J (k=O)
1s

J (k=O)= —g — E;+-,' g g F; q;V,. m, (,.) m
(2.8)

Inserting (2.3) and (2A) into (2.7) and taking into ac-
count Eq. (2.8) we have

Af(t)=PVf' f e ' " "J (k=O) F(t')dt'. (2.9)

Given a dynamical variable O=O((qj,pjII, ), with

O(t) =e' '"0, we find for the linear response

(o),=&O).+PV f,'&O(t t')J (k=0))o F(t')d—t'.
(2.10)

Choosing O=J (k=O) Eq. (2.10) becomes

( J~(k=O)), =i6'V f (Jx(k=O, t —t'}JE(k=O)), F(t')dt'

(2.11)

which gives the linear response in energy current to the
perturbation imposed to the system by Eqs. (2.1}and (2.2}.

Thus in the thermal case iL (t) is a Hermitian operator
and we can apply linear-response theory in its standard
form. We find

Qf (t) Pfo f dt's
it it —t )—'

0

X g C; F(t')+ D; F( ')
clq; Bp;

(2.7)
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III. THE SUBTRACTION TECHNIQUE

In this section we review the subtraction technique.
The evolution of a dynamical variable 0 subjected to a
general perturbation which can be non-Hamiltonian can
be written as

0(t) =U(t)0,

where U(t) = U(t, 0) is the evolution operator from 0 to t.
The corresponding time evolution of the probability densi-
ty is

f (t}= U'(t)f',
where Ut is the adjoint of U, even when U is not a uni-

tary operator.
Like in the Hamiltonian case we can exploit the

equivalence between the Schrodinger and the Heisenberg
pictures obtaining, for the nonequilibrium average of an
observable 0, the form

& 0&, -=(O,f(t))=(0,U'(t)f')

=(U(t)O,f )=(0(t),f )=(0(t)&o,

(3.1)

where ( .
&, denotes an ensemble average over f(t),

( &u over f and (, ) a scalar product, i.e., the
integral over phase space. The meaning of Eq. (3.1) is
that we can express the nonequilibrium average of the ob-
servable as the equilibrium average of the observable time
evolved under the perturbed dynalnics.

In the present case

X q+ p
qt ~pt

Therefore the probability density evolves like a 6NP-
dimensional incompressible fiuid and U(t) is a unitary
operator. From now on we will indicate with U (t) the
time evolution of 0 at equilibrium and with U(t} the per-
turbed evolution.

Let us consider the case in which the equilibrium aver-

age of the observable is zero,

IV. FORM OF THE PERTURBATION

The thermal conductivity is defined as

where

J =O, t J =0, 0 t
T 0

(J (k=o) &pV
C~(t)dt,

3k' T
(4.1)

(J (k=o, t)J (k=0, 0)& u
CE(t) =

(J (k=o) &u

and V and r are, respectively, the volume and the tem-
perature of the system. Choosing

u[U(t)0 —U (t)0]=u[U(t)0]+u[U (t)0]
—2cov[U(t)O, U (t)0] . (3.4)

In Eq. (3.4) the two variance terms on the right-hand
side (rhs} have almost the same value while for a certain
time the covariance term can be approximated with the
square root of the product of the two variances. Under
these conditions it can be easily shown that the variance
of the difference is of the order of the perturbation square.
%%en the covariance starts to decay to zero the noise in-
creases. A rough test of the decay law of the covariance
indicates an exponential decay with a characteristic time
slightly larger than the decay time of energy current.

Let rc be the correlation time of the observable over the
two trajectories. The subtraction is successful in the study
of processes involving times not much longer than rc and
for correlations decaying faster than polynomials. For ex-
ample, in the case at hand the decay time of the energy
autocorrelation function CE(t), defined as

rE —I CF(t)dt,

is about 20—25 time steps, smaller than vc and largely
within the precision of the subtraction technique. A de-
tailed study of the range and precision of the subtraction
technique will be published elsewhere.

(0&.—= ( U'(t)0&, =O. (3.1') F(t) =(O,O,P)e(t), (4.2)

60(t) = U(t)0 —U'(t)0 (3.2)

and averaging it over an equilibrium ensemble. Indeed,
making use of Eqs. (3.1) and (3.1'),

& 0&,= &0 &, —(0& = & U(t)0&o —
& U'(t)0&o

We can obtain the response in 0, at a time t since the
switching on of the perturbation, by computing the quan-
tity

where

e( 0, t(0
}, t&0

and inserting (4.2) into (2.11) we find

(J,'(k=o) &,
11mf~ ce I' T

(4.3)

=(~0(t) &, . (3.3)
Another possible choice of the perturbation is

F(t)=(0,0J)5(t) . (4.4)
The advantage of computing 60(t) lies in the fact that

the statistical noise can be reduced by several orders of
magnitude as long as the perturbed and unperturbed tra-
jectories are strongly correlated. To see this we can
analyze the variance of the observable. It is given by

Substituting (4.4) in (2.11) we find

& J, (k=o) &, =PVF(J, (k=O, t)J, (k=0, 0) &, (4.5)
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f &J,'(k=0) ), dtrr
& J,'(k=o) }. . . & J,'(k=o) ), dt.

FT o
& J, (k=O)), 0

(4.6)

In Ref. 1 the first choice has been adopted.
& J, (k=O}}, „ is computed by averaging over the sta-
tionary part of the response, while the transient stage is
disregarded. The system is maintained in the stationary
state subtracting the heat produced by a suitable rescaling
of the second moment of the velocity.

The choice of a e perturbation is possible with the sub-
traction technique too, even though it would prove more
noisy. Therefore, in our calculations we preferred to
adopt the impulsive form. The average is carried out
along the equilibrium trajectory [Eq. (3.1)) thus obtaining
the dynamical response.

These two choices of F(t) are equivalent only in the
linear region. If F is given by (4.2) we obtain the com-
plete response to the mechanical perturbation via (4.3)
also in the nonlinear zone, while when adopting (4.4) and
(4.6) we do not get all the necessary contributions because
the response to a constant field is no longer abtained as a
linear superposition of impulsive effects. However, the
mechanical perturbation gives the thermal conductivity
only in the linear region, therefore this difference is not
relevant.

When we integrate the equations of motion we need ta
be careful at t =0 because in both cases a discontinuity
arises: with a e-like perturbation we have a change in ac-
celeration due to the switching on of F(t), while when
adopting an impulsive force we find a discontinuity in
velocity. The form of the discontinuity in our case is

v;(0+) —v;(0 )

(5.1)

p =gF + E — QZ 1F5(t)
j i

1+— g F~qj — g Fjkqjt, F5(t) .
j (~i) k (+j)

(5.2)

These equations are integrated using the standard
"leap-frog" algorithm, with a slight modification at t =0,
because of the impulsive nature of F(t), given by Eq.
(4.7). Note that the t =0 algorithm is precise to o (h ).

Since we want to reproduce, as far as possible, the con-
ditions of Ref. 1, we set Rc 2 5cr an——d s.tudied the depen-
dence of the conductivity, at Np ——108 fixed, on the mag-
nitude of the perturbation and at I' fixed as a function of
Np (Np ——108, 256, 500, and 864).

We computed the decay of the energy autocorrelation
function by

&J, (k=O)),
Cg(t) =

& Jg (k=O)), 0
(5.3)

To use the differential method5 we perturb the system
with an impulsive force at regular time intervals and
simultaneously foBow the particles' paths both in per-
turbed and unperturbed trajectories. We calculate the
difference in the relevant dynamical variable an each pair
of traja:tories, then we average it over a number of such
pairs. Thus we can observe the decay of the energy
current as a function of t (the time elapsed since the
switching on of the perturbation). With

F(t)=F5(t),

the equations of motion are

1 F+Et 1 ~—
PP2

1 1 F+
2 g Fijq;, —

N g g F;kq, t
i(+i) p j k (+ji

(4.7)

where the quantities depending on the velocity on the rhs
are taken at t =0

V. MODEL AND IMPLEMENTATION

and the thermal conductivity by

A, = kp f CE(t)dt=kpIw(tp),

&J, (k=O)), o

FT

Ipp(tp) is the weighted average of the integral

t
I(t}=f CE(t')dt'

(5.4)

The system of Np particles is enclosed in a cube of side
I., interacting through a I.ennard-Jones potential

12 ' '6

4(r) =4+
r r

Our units are o for length, e for energy, and
~=(rno /48m)'~ for time.

We studied the thermal response of fluid argon
(a=3.405 A, e= 119.8k~, v =3.112)& 10 ' sec) near its
triple point (Npo /V =0.8442, ks Tie=0.721) as a func-
tion of both the number of particles and the perturbation.
Our boundary conditions are periodic in all directions.

over times tI & t (t~,„,and tJ is the minimum time such
that for t) tp I(t) is stationary. The average I~(tp) is
weighted with the inverse of the variance of I(t). This
procedure has been used to reduce the uncertainty in the
choice of the plateau value. This gives a more reliable es-
timate of the integral in Eq. (5.4).

VI. RESULTS

In this section we present the results of two series of
calculations. In the first part of our work we studied the
dependence of the thermal response on the particle num-
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ber, at F fixed and lying within the linear region. In the
second part we investigated ail possible variations of the
response due to a change in the perturbation strength, at
constant Xz.

The perturbations we used cover a wide range of values.
Thus we were able to ascertain the extension of the linear
region and to give an estimate of the numerical relation-
ship betweeen the field strengths corresponding to impul-
sive and stationary perturbations more reliable than that
provided in Ref. 3.

We estimated the error in A, by combining the two stan-
dard errors in kp and in the integral I~(tp) according to
the formula

o (kp) o (Iii )

k2 12
(6.1)

A. Dependence on Xq

The standard deviation on temperature is neglected.
Since a rigorous statistical analysis of the error on the in-

tegral would be somewhat complicated, because the values
of I (t) are time correlated, we estimated it by the error on
I(t" ), where t' is an intermediate tine in the plateau re-
gion. %e chose t'=110 time steps equal to 3.52 in
Verlet's units. As for I(t'), we estimated its error by
considering the standard deviation of the variable

t+ J, (k=O, t)I(t')= J x
'

Ct (6.2)
J, (it=0, 0)

on the assumption, supported by our results, that the
correlation between the form of the relaxation and the
value of J, (k=O) at t =0 is negligible. Throughout our
calculations we maintained the cutoff radius Rc equal to
2.50".

t.2—

1.0—

09—

08'
0

Nq

FIG. 1. Triple-point LJ conductivity as a function of the
number of particles Np. p=0. 8442. The dashed line represents
the average value (see text) %=0.978+0.024.

Thus, by applying standard statistical techniques we see
that we have good consistency with the hypothesis of zero
angular coefficient.

According to our analysis the most reliable value for I,
is the average over the results for different numbers of
particles

A, =0.978+0.024 .

There is no apparent variation in the thermal conduc-
tivity on the increasing of the system size. From a linear
least-squares fit through these results we have found an
angular coefficient

b =8.41y10-'

with standard deviation

s(b)=4 1X10.

B. Dependence on I
Figure 2 shows the results we obtained for the ratio of

the thermal response and the external perturbation as a
function of F compared to some of the results of Ref. 1.
In Table II we list the corresponding values for I, together
with the values obtained in Ref. 3. We set Np ——108
throughout these calculations.

We employed perturbations from 3.2X10 up to 1.6.
Our results show no dependence on F for perturbations up

In Fig. 1 we plot the results obtained by varying the
number of particles. These results are reported in Table I.
The value of the external field was held constant and
equal to 3.2&(10

We get better statistics when we increase the size of the
system, J~ being an additive quantity [see Eq. (2.8)] with
relative fluctuations going as Np

' for large Np Thus, .
to save computer time, for different values of Np the
number of segments we compute decreases as the number
of particles increases, in such a way to obtain conparable
errors.

TABLE I. Results for thermal conductivity as a function of the number of particles Nz. T, temperature; X, total number of time
steps; tp is defined in Sec. V; kp is defined in Sec. V; k, thermal conductivity. E=3.2X10 ', p=0. 8442, E~——2.5o. The last value
of A, is the average of the previous four values (see text).

0.721
0.718
0.721
0.719

15 000 (100x 150)'
12000 (80x 150)

9000 (60x 150}
4500 (30x 150}

80
80
80
75

kp+Akp
(48ek~/mo )

1.384+0.030
1.371+0.020
1.387+0.018
1.409+0.017

[(ks/o)(4ge jmo )'i']

0.941+0.047
0.987+0.033
0.963+0.027
1.020+0.030
0.978%0.024

'The first number in parentheses is the number of segments, the second the length of the segment.



G. V. PAQLINI, G. CICCOTTI, AND C. MASSOBRIO

to F=0.16 and are consistent with those obtained in Ref.
3, after a sinall correction. Indeed, the numerical integra-
tion of Eq. (5.4) was performed in Ref. 3 without consid-
ering that the value corresponding to r =0 has to be taken
with a coefficient 0.5. From Fig. 2 we see that the first
deviation from linearity appears between F= 1.6X10
and 4.8X10 ', and that the increase of the thermal
response ratio is approximately linear.

According to the formula

(6.3)

adopted by Massobrio and Ciccotti' to compare the
strength of the impulsive force F to that of the step func-
tion F the values from F=3.2X 10 i to 4.8 X 10 2 were
supposed to cover the entire range studied in Ref. l.

Since we found a nonlinear behavior in our results cor-
responding to F values somewhat larger than those ex-
pected according to (6.3) we looked for a new criterion for
the comparison. If we consider the phenomenological law
of thermal conduction

together with the relation F=
~
VT

~
/T employed by

Evans and formulas (4.3) and (4.6), we find that a good
way to compare F and F might be

(6.4)

fp
where r= CF(t)dt =0.7 (in Verlet's units) has the di-

g
mension of time and can be considered as a sort of decay
time of the energy autocorrelation function. This pro-
cedure is the one suggested by Hoover et al. in Ref. 4,
where a similar reasoning has been adopted to compute

Ul g
D.e-

8. c a

0
l. . . i

05 1
F

1.5

FIG. 2. Thermal conductivity as a function of the perturba-
tion strength. Cl, data from Ref. 1; Q, our results. Xp ——108,
Ac ——2.50, p=0. 8442. The two scales of the abscissas have
been compared according to (6.4). The dashed lines extrapolate
the linear and nonlinear data, respectively.

the diffusion of a system of two hard disks with both
kinds of apphed fields.

Employing (6.4} to compare our perturbations to those
of Ref. 1 we find an extension of the scale on the abscissas
by about a factor of 20 with respect to that of Ref. 3.
This seems to be a reliable way of comparing F to F, even
though it is not precise since it comes from an a posteriori
estimate of r.

From (6.4} we obtain

F;„=0.0046, VT;„=1.2X10 K/cm,

F,„=2.29, VT,„=5.8X109 K/cm .

According to this estimate the F values of Ref. 1 lie

TABLE II. Results for the thermal conductivity as a function of the external field I'. T, temperature; E, total number of time
steps; kp is defined in Sec. V; A, , thermal conductivity. N~ ——108, p=0. 8442, R~ ——2.5o. PCM, our results; MC, results of Ref. 3,
corrected; EV, results of Ref. 1. F is computed according to {6.4). tp ——80 for all F 's ( tp is defined in Sec. V).

0.721

F
[(m /48~)'"]

9.57' 10-"
to 3.2)&10

10080 (84x 120)

kp+hkp
(48ek~/mo. )

1.373+0.02

[(ka/rr)(48'/mo )' ]
0.970+0.033

0.721

0.721
0.721
0.721
0.721
0.721
0.721

3.2x 10-'
to 8.0X10 2

1.28' 10-'
1.6g10-'
4.8x10-'
8.0x10-'
1.28
1.6

15000 {100' 150)

15000 {100' 150)
15000 (100' 150)
15000 (100~ 150)
15000 ( 100' 150)
15000 (100X150)
15000 ( 100X 150)

1.384+0.030

1.385+0.030
1.386+0.030
1.404+0.031
1.443+0.034
1.539+0.039
1.627+0.045

0.941+0.047

0.941+0.047
0.941+0.047
0.972+0.043
1.035+0.042
1.149+0.042
1.239+0.047

PCM

PCM
PCM
PCM
PCM
PCM
PCM

0.722
0.722
0.723
0.725
0.727
0.729
0.729

3.5 g 10-'
7.0~ 10-'
1.4~10-'
2.1X10-'
2.8 ~ 10
3.5~ 10-'
4.2x 10-'

100000
48000
26000
35 000
48 000
39000

0.955+0.007
0.969+0.006
0.99 +0.01
1.010+0.014
1.042+0.012
1.058+0.012
1.088+0.022

EV
EV
EV
EV
EV
EV
EV
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1.0
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within the range of the perturbations employed in the
present work, as we show in Fig. 2.

We note that the slope of our nonlinear results is small-
er than that found by Evans, in accordance with the fact
that in the nonlinear region the integral of the autocorre-
lation function obtained with an impulsive field according
to (4.6) contains less contributions than it should, for the
reason mentioned in Sec. II.

In Fig. 3 we plot the average over 100 segments of the
decay of the normalized energy current for two values of

0.16, still in the linear region, and 1.6, the highest
value employei. We see in Fig. 3(b) that there is a sort of
"plateau" near t =0 while for higher t the system decays
toward the behavior of the linear case. An example of in-
stantaneous decays of the energy current is plotted in Fig.
4, for linear and nonlinear cases, to clarify the decay
mechanism in the nonlinear case. The two cases take ap-
proximately the same time for a complete decay, but the
relaxation is altered in the nonlinear one, indicating that
the system is unable to dissipate the "heat" induced by the
external field in a single bunch. The integral of the nor-
malized average relaxation of the energy current density is
shown in Fig. 5.

The total energy too is altered in the nonlinear region.
In Table III we report the total energy of the perturbed

50 100 150
Time step

FIG. 3. Cz(t). Normalized average relaxation of the energy
current density. Average over 100 segments. (a) I=0.16, (b)

F=1.6. p=0. 8442.
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FIG. 4. Normalized relaxation of the energy current density

for a single segment. (a) F=0.16, (b) F=1.6. p=0. 8442.

FIG. 5. I(t). Integral of the normalized average relaxation
of the energy current density. Straight line represents the value
of the weighted average I~(tp}: the solid part delimits the set
of' points employed in the average (see text). (a) F=0.16, (b}
I' =1.6. p=0. 8442.
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TABLE III. Trend of the total energy in perturbed trajectories as a function of perturbation strength
F. Er, total perturbed energy;

~
~E

~
/E, variation of the energy relative to the equilibrium average

value; T „estimated value of the temperature of the corresponding microcanonical system at p=0. 85
{interpolation from data of Ref. 9);

~

hT
~
/To, variation of the temperature relative to the equilibrium

average value. E = —5.013390, T =0.721,p=0. 8442.

3.2X 10-'
4.8X 10-'
8.0X 10-'
1.28 X 10-'
0.16
0.48
0.80
1.28
1.6

—5.013
—5.012
—5.010
—5.004
—4.999
—4.880
—4.642
—4.059
—3.521

J
EZ

/

/E'

7.7X 10-'
2.4X10-4
7.0X 10
1.8X10-'
2.9X10-'
2.7X 10-'
7.4X10-'
1.9X 10
3.0X 10

0.722
0.723
0.724
0.726
0.728
0.778
0.879
1.124
1.350

1.4X 10
2.8X 10
4.2 X 10-'
6.9X10-'
9.7X10-'
7.9X 10
2.2 X 10-'
5.6X10-'
8.7X 10-'

system as a function of the perturbation together with an
estimate of the temperatures corresponding to these ener-
gies in a microcanonical ensemble. These values are ob-
tained by linear interpolation from Verlet's data for the
isochore at p=0. 85. We see that the variation of T is
less than 1 K throughout the linear region, and becomes
significant for I' larger than 0.16. For the largest pertur-
bation employed the variation in E is of about 30% with
respect to the equilibrium value, while the change in tem-
perature is almost of 90%. This confirms the general idea
that the onset of nonlinearity is associated with perturba-
tions that alter the state of the system in a way which is
significant up to the microscopic level.

VII. CONCLUSIONS

We have carried out some more NEMO computations
of the conductivity of the I.J fiuid near its triple point as
a function both of the external field and of the number of
particles. We employed the subtraction technique togeth-
er with Evans-Gillan translationally invariant algo-
rithm. "

We use a criterion recently suggested to compare the
field strengths of impulsive and stationary perturbations.
This criterion has been applied to estimate the values of

the thermal gradients corresponding to the 5-like mechan-
ical perturbations used in the present work and in Ref. 3.

We extended the range of the perturbations used in Ref.
3 up to F=1.6 (=5.8X10 K/cm) in order to find out
the size of the linear region and to explain the nature of
nonlinearity. We found linearity from F=9.57X10 ' to
1.6X10 ' (=3.5 to 5.8X10 K/cm). The onset of non-
linearity occurs for F around 4X10 ' (=1.4X10 K/cm)
and appears as a nearly linear increase of the ratio be-
tween the response and the external field. From Fig. 4(b)
we see that this is an effect of the difficulty in dissipating
the heat induced in the system by the external field. The
time range of the decay is not very much altered in the
nonlinear region. It is the speed of the relaxation that
suffers a sensible slowing down.

The various homogenous NEMO algorithms have simi-
lar efficiency and reliability. However, we want to stress
that the differential method, being a dynamical study of
the response, can be particularly useful to show the mech-
anisms behind the onset of nonlinear effects.
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