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Parametric bistable resonance in coherent Raman scattering in crystals

%. Gadomski' and B. Ratajska-Gadomska'
Istituto Xaziona)e di Ottica, Largo Enrico Fermi 6, I-50125 Firenze, Italy

{Received 12 September 1984; revised manuscript received 9 December 1985)

A parametric bistable resonance is shown to occur in a crystal irradiated with two optical beams

of frequencies ~& and ~2, respectively. The square of the amplitude of the lattice vibrations is

resonantly enhanced when twice its frequency equals the difference frequency col —co2. It is shown

that this process results in the generation of an optical wave at the combination frequency 2'& —~2
even when symmetry limitations prevent coherent anti-Stokes Raman spectroscopy. Thus it be-

cornes possible to observe Raman-inactive modes in crystals via four-wave-mixing spectroscopy.
The intensity of the generated optical field exhibits a bistable dependence on the intensities of the in-

cident optical fields and on the difference frequency co~ —co2.

I. INTRODUCTION

It has been shown recently' that a single mono-
chromatic optical field incident on a crystal shifts the am-
plitude and the frequency of the crystal vibrations. These
shifts are dependent on the external field intensity and are
due to the mutual interaction between the dipoles optical-
ly induced in the molecules (or atoms) composing the
crystal lattice. This mechanism significantly contributes
to the crystal susceptibility tensors Xjti( —co,co,co, —co)

and X"~i~„(—co,co,co, co, Qp—, —co).
In the present paper we discuss the same model of in-

teraction, but for two optical waves of different frequen-
cies cubi and co2. In this case both the frequencies and the
amplitudes of the lattice vibration modes are modulated
with the difference frequency ~oi —cot. For the modes of
frequencies t0~—= —,'(coi —co2) the squares of their ampH-

tudes are resonantly enhanced. Moreover, they show bi-
stability with respect to both the field intensity and the
difference frequency cubi

—ro2. We define this process as a
parametric bistable resonance (PBR).

According to the model of crystal polarizability
presented in Ref. 3, PBR accounts for the third-order po-
larization at the combination frequency 2cui —co2. This ef-
fect may be observed in four-wave-mixing spectroscopy.
PBR should not be confused with ordinary coherent anti-
Stokes Raman spectroscopy (CARS), which deals with
the Raman response of the crystal and which occurs for
different resonant condition, co =co, —co2. PBR, in con-
trast, occurs also for Raman inactive modes, for which
CARS is not possible. In the present paper we show that
anharmonicity of the crystal lattice also leads to bistabili-
ty in the Raman resonance, although the intensities neces-
sary to observe it are much higher than those applied in
the known CARS experiments. However, the intensi-
ties required for PBR are significantly lower.

In Sec. II we present the model of the interaction of the
crystal lattice with external fields and a model of the crys-
tal polarizability. In Sec. III we derive the dynamical
equations for the mean square of the vibrational ampli-
tude. In Sec. IV we present the Maxwell equations for the

optical field generated in a crystal. Section V includes the
discussion of the results. The stationary solutions for
PBR are compared with those obtained for CARS assum-
ing the same model of interaction. The transient and
quasistationary solutions for PBR are presented.

II. MODEL OF A CRYSTAL POLARIZABILITY

We assume the crystal lattice composed of identical,
nondipolar and rigid molecules (or atoms) translationally
and rotationally vibrating around their equilibrium posi-
tions. ' If the crystal is subjected to an external optical
field Eo(t) each molecule embedded in the crystal lattice
interacts with a macroscopic local field F~(t)=f;(co)FO;
(the I.orentz factor f;(t0)=[@;(to}+2]/3) and with the
field of dipoles induced in adjacent molecules. This
model corresponds to the interaction of the macroscopic
local field F(t) with the molecules of the effective polari-
zabilities modified due to their surrounding. ' The ef-
fective polarizability tensor of the (In)th molecule in the
crystal ( I is the number of the elementary cell and n is the
number of the molecule in this cell) is given in the form

a';J (In) = g a;k(ln)Tkj(ln),
k

where a;k(ln) denotes the polarizability of an isolated
molecule and Tkj (ln) = gi, „,Tkj (In, I'n' ); Tkj(ln, I'n') be-

ing the (iln,ji'n')th element of the matrix (3.—3) . I is
the unit matrix and A, in turn, represents the dipole-
dipole interaction tensor with the elements given by

3;J(In, I'n ')

akj(I' n') rk(ln, I'n'}r; (ln, r'I') —&k
r (In, l'n'} r (In, l'n')

with the vector r(ln, l'n') connecting the molecules (In)
and (I'n'). The summation in Eq. (2) is taken over the
nearest neighbors of the (In)th inolecule. The total polari-
zability of the crystal is the sum of the effective polariza-
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bilities of the molecules composing the crystal lattice:

H;j = g a',j ( In ) .
l, n

(3)

As the effective polarizabilities [Eq. (1)] depend on the

molecular positions we can expand the crystal polarizabil-
ity in a power series with respect to small molecular dis-
placements from their equilibrium positions. It yields the
following form of the polarization vector P(t) given in
normal-mode representation:

(4)

where Q~ (i) denotes the mass-reduced normal coordinate
corresponding to the vibrational crystal mode (qu), q the
reciprocal-lattice vector, a the mode number, and ( )
denotes the average over all crystal modes. The coeffi-
cients HI~"(a) and HI&'(~~ «) are connected with the
first- and second-order derivatives of a'jj with respect to
molecular displacements by the known transformation re-
lations (see Refs. 3 and 7).

Generally the amplitudes Q«(t) depend nonlinearly on
the external field intensity. If we assume a bihmmonic
optical field Eo(t)=E(coi)cos(cuit)+E(co2)cos(co2t+5) in-
cident on the crystal, the crystal polarizability oscillates
with the combination frequencies ncoi+mco2 (n, m are the
integral numbers). We are interested in the crystal polari-
zation at frequency 2roi —coq. As Eq. (4) shows this
occurs when F(t)=F(roi )cos(cuit) and {Q~(t) ) or
( I Qz I

(t)) have nonzero Fourier components at fre-
quency coi —F02. The second term in Eq. (4) corresponds
to the well known CARS effect. ' The third term, in turn,
is due to the parametric excitation of a crystal (PBR) and
it will be the subject of further discussion. For a suitable
polarization of the optical field towards the crystallo-
graphic axes the coefficient 9";j"(a)=0, which means
that the second term vanishes and we can isolate the con-
tribution of PBR to the combination-frequency polariza-
tion.

III. DYNAMICAL EQUATIONS
FOR CRYSTAL VIBRATIONS

The induced-dipole —induced-dipole interaction Hamil-
tonian was derived in Ref. 3 to be in the form

g ~kjFk+I ~

k, l

where

~kj —i y jzjj(Iji)rjk(bi)~j j(~ji) ~

For two optical waves interacting with the crystal, the
square of the local macroscopic field F~(t)=f;(cubi)Ei;(t)
+ f;(co2)E2j(t) is given by

FkF((t) =(F )kj+(FiF2)kjcos[(a)i co2)t——5],
where we have denoted

(+')kj =
g [fk(~i)fj(~i)Ek(joi)Ej(i)

+fk(aj2)fj(2)Ek(2, )Ej(~2)l

(~1~2)kj Y[fk(1)f j(jti2)Fk(~1)Ej(2)

+fk(ei2)fj(1)Ek(aj2)Ej(~i)l .

The rapidly oscillating terms with double and sum fre-
quencies have been neglected as they oscillate much faster
than the vibrational frequency of the crystal; co„j02-10'
s ' )~co —10' s '. Then, the interaction Hamiltonian
[Eq. (5)] consists of two terms, one constant in time and
the other one oscillating in time with frequency coi —co2.

The total Hamiltonian of the crystal, H =Ho+HI, is
taken as a power series of small vibrational amplitudes
with accuracy to fourth-order terms. Thus, in a normal
mode representation it has the form

H = g 41Q« I
'+

2 (~&.)'I 1 —
C~ cos[(a i

—~2)j —5] l I Q« I
') —g ~aj '(jz)Q~~k+i(&)

~kj ~ ~' Q«Q —q '(+1+2)kjc~[(~1 ~2)j 5]
q, a,a'{+a)

I JtH, „tQ Q ~ Q--a 0. a

(6)
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where the time-dependent anharmonic coefficients
H' ' (qa»a qa ~

I
t) and H' ' (q qa qa- »a-

I
t} are given by

I II

H
Q a Q

where rl» = A—kt '(q»)(Fi)k&/td
On the other hand, the vibrational frequency td is

modulated due to the oscillating part of the square of the
optical field with the modulation coefficient g«,

I II I II
9' 0 q

Ho a Q a ~kI a a a FkFi(t),
Cq

=
(2) &~it" a a (FiFz)ki

(tdq )

ip g g g

a Q Q Q

(4) q 9 9'

0 a Ql all alll

it Iii FkFi(t)a a a a

2 2
(tdqa) =tdqa(I+rjqa» (7)

The general relations between the coefficients

H"(a' '::: ', ) and the succeeding derivatives of thec) c2 ' ' 0'

Hamiltonian H with respect to molecular displacements
are given in Ref. 7, whereas the exact formulas for the in-

teraction Hamiltonian [Eq. (5)) are derived in Ref. 3. As
we can see in Eq. (6) the vibrational frequency cd»a of the
mode ( qa) is shifted by the constant part of the square of
the optical field amplitude;3

As we are considering the resonant interaction of the
optical field with the crystal modes we can deal with one
mode which has a frequency fulfilling the resonant condi-
tions. Thus, we treat this representative mode as the sys-
tem and all other modes as the bath. The system-bath in-

teraction is described by the anharmonic terms in the
Hamiltonian defmed by Eq. (6). In the case of PBR we
are interested in the dynamical behavior of the square of
the amplitude of this representative mode averaged over
the bath (

I Q» I
(t))s (see Sec. II). (( )z denotes

averaging over the bath and will be defined later. ) In the
case of CARS we deal with the dynamical behavior of the
mean amplitude of the representative mode (Q«(t) )~ and
( I Q I 2(t))z+(Q (t))z due to the system-bath interac-
tion.

Now we will derive the dynamical equation for
(

I Q»a I
(t))ii. The Hamilton equations for the system

(see Appendix A) yield the following set of equations for
the second-order products of Qqa and Pqa= Qqa.

I Qqa I =QqaP qa+Q —qaPq—a ~

dt
(9a)

I Pqa I

= —(tdqa) t I —fqacos[(i —2)t —&]I(Q»aP a+Q q Pq )+b(q)A ki "(a)(Pq +P )FkF&(t}

+ g ~kl a ai PqaQ qa +C.C. (FiF2)ktCOS[(tdi tdi)t —5]—I(2)

a'(ga)

q', q",a', a"

I II
Q'

H a a a t P q Qq Qq ~ +c.c.

q', q",q"', a', a",a"'
H(4)E

Q Q a Q
II ill qa q'a Qq a 'Qq' a ' +C, C, (9b}

dt, (QqaP »+Q »aP»a-}=2
1

P«-l' —2(~, }'Il—4» c [(~i—~2}t —&]I I Q»a I'+~(q)~k'z' «)(Qqa+Q»a)FkFi(t)

Q Qq«a+ CC(FiFq)ktc. os[(cd& ader)t —5]—

q', q",a', a"
Q qaQ»aQ» a +

H(4)E Q-.-Q» Q."--Qq---+" (9c)

On the other hand, using the Green function for the harmonic oscillator we can write down the solution of the Hamilton
equations for Qq (t) [(q'a')&(qa)] in the form (see Appendix A)
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(O)
I SIn[CO» ar(t —r )j

Q (r)=Q".' (r)—
Nq ar

IX '—
2

IV V aIV aV,a ,a
IV V Q IVaIV Q Vav(r')Q (&')

IV V Vl aIV aV aVI
IV V V Q»IVaIV Q»Vav Q»VIavl, . (r')Q, .(r')Q, . (t')

I r

e(r ) 5(q )WrrIa (Cr )+ QWrrIrr r IV Q IV(r )

a~ L

qIV qV, aIV aU

IV

mn r IV V

qIY qV qVI aIV aV aVI

IV V VI—q q q q
rrrn r &IV V VI Q»IVaIV

J

XQ V V(&')Q VI VI(&') + ~ (&') 'd&'

where
T V

1, t')0 1, q=0hq= ~

0, '&r0, 0, q&0
e(&')= .

(0)
fo) (O) Qq (0)

Q» (r) =Q» (0)cos(oI» t)+ sin(oI» t)
Q7 r

which means that the external fteld is turned on at time
t=o.

In order to get the dynamical equations for the
representative mode (qa) we have to substitute Eq. (10)
into Eqs. (9) for Q» &Q» and average the equations ob-
tained over all modes (q'a')&(qa) according to the for-
mu1s

is the solution of the harmonic equation. The integration
of the unperturbed system starts at t = —ao. The integra-
tion of the interaction Hamiltonian terms starts at t=O, with

&X&a ——
HBykT

Ho=2 g (IQ, I'+~» IQ .I
)+ —,

q', a*(&q,a) q', q",q"'{+q)
a', a",a"'(&a)

Q' q g~o" ~ ~ - Qq Qq- -Qq--
CX A' El

+ 24

r rr rrr IV
(4)
O i pi iii IV Qq'a'Qq "a"Qq"'a"'Q»I aIV ~

a', a",a"',a (+a)
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being the Hamiltonian of the bath in the absence of exter-

nal field.
In the discussion that follows we will be dealing only

with optical modes q =0. For simplicity we put
4 kl "(a)=0. This condition can be realized either by tak-
ing into account Raman-inactive modes or by choosing
the suitable polarization of the external field E towards
crystallographic axes in the case of Raman-active modes.
Furthermore, we assume that I' '(» ~» )=0 for all
(q'a'), which is always satisfied in Bravais lattices with
inversion symmetry.

We introduce the new dimensionless variables for the
representative mode ( qa) =(Oa):

y = —2z [1—g cos( vr —5)]

—2exz [1—icos(vv —5)]

gy y
l

[1—g cos(v~ —5)],r
1+g

(12b)

z =y —x [1—icos(vr —5)]

~

H' '(»»»-)
~

(for detailed derivation and estimation of
the coefficients to be neglected see Appendix A):

(12a)

& ~a I'&s

&
I

a"' I'&
'

(~')2&
[
g"'

~

2&

—ex [1—Peas(vw —5)]

—2(yz —Z "')[1—g"cos(v» —5)], (12c)

&~.g. &,
where v=(col —a)2)/a) ~,
~a( I + rim)

9= Qas

where co =co +5~ and b, is the frequency shift defined
below, whereas & &s denotes the average over the system
in the absence of external fields, taken in the harmonic
approximation.

Hence, we get the following set of equations accurate to
the terms of the order of H' '(»»»» ) and

0 0 q' —q'
r=r.+/~'i .... .. &la». I2&,

q', a'

is the frequency modulation coefficient including the
second-order correction,

oooo oooo~(4)
a "' a a a a(

2(
—E)2

is the coefficient of anharmonicity,

0000
~kl a a a a (F1~2 )kl

0 0 0 0, 0 0 0 0
H' '

0 a a a a — ki a a a a ( ')klI4) F2

is the coefficient of modulation of e y=(I' /oi .)(1+rl ) and b, ' ' =5' '(I+rl ) are the damping coefficient and the
frequency shift, respectively, and g is its modulation coefficient. In those expressions we have made use of the assump-
tion that

IP
(3 q

(FiF2)kl-4 &o ~ - (1+2) ),

rt I »I
g g g

~kl
CL CK CX

(+ )ki- nHo—
CK

for all (q'a') and (q "a") (see Appendix A).
Using our method the formulas defining the inverse lifetime of the mode I » and the frequency shift h»~ are the same

as those obtained by other authors (e.g., Refs. 9 and 10):
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X
qa q', q"(+q)

a', a"(+a)

I II 2

0 a a' a"

( Ig(0) I2) ( Ig(0) I2&
[5(c0 ~ +0) —t0 ) —5(0) ~ +0) - -+0) )]

N N

Nq ttat t
(13a)

(3) (&).and hq ——4q +4q ',

bqa —— g H()
1

q, a(+q, a)

(3)

I6Nqa qt qtt(~q)
a', a"(~a)

. .. .. &
I Q,".' I'&. ,

0 a a' a

&Q I q'a I'&a & I Q,"a- I'&
+

Nq'a'
+

(0)q'a'+0)q"a" 0 qa)P (q'a'+~q"a" +~qa)P

(Ig(0) I2)

Nq'a' (~qa+0tq'a' t0q
"a")P (t0qa+0)q"a" t0q'a')P

N tt tt Nq'a'

In the c1assical picture we put

& I
Q"' I'& & I

Q"'
+

N t t+N tt

kT
Nq'a'Nq "a"

(13b)
I

[nq being the mean occupation number of the mode
(qa)], which leads to the result of, e.g., Califano and
Schettino. '

The constant terms appearing in Eqs. (12) are the re-
sults of the time integration of the following correlation
functions (see Appendix A):

( I

g(0) I2)

N tt Nq'a'

N tt rr N

2 2Nr tN
m S111(Gl r)a

4I kT= J d~ (f(r)f(0))I), (14a)

into Eq. (13) and we get the result of Maradudin and
Fein. In the quantum picture we have

(
I

g(0)
I

2) (
I

g(0)
I

2)
+

sin(to r)
4 kT= I dr (f(r)f(0))a

Na Na
(14b)

N Nq'a'

=2 (n ~ n-)—
N t rN

=2 (n +n - -+1)
NqtatNq

"a' t

& I Q,".' I'&.
N

f(t) =
q'(&0)
a, a', a"

(a+a'+a" )

0H(), „Qq a (t)Q q a-(t)

fulfills the condition (f(t) )s ——0 and

(k is the Boltzmann constant and T is the temperature);
where

(f(t)f(t')), =
q'(&0)
a,a*,a"

(a+a'+a" )

O
I

~(3)
a a'

L

2

x Icos[(0)q +to I )(t t')]+cos[(toq 0—) q -)(t —t')]I .—
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For Ei ——Ez —0 and @=0Eqs. (12) are just the same as
those obtained by the method of statistical averaging" for
the damped oscillator driven by a random force. Thus,
the given crystal mode (qct) described by Eqs. (12)
behaves as a nonlinear damped oscillator driven by the
random restoring force f(t), where both the damping
coefficient I and f ( t) are due to other crystal modes.

We are interested in the solution x (t) of Eqs. (12) oscil-
lating with frequency co i coi—. The set of Eqs. {12)
reduces to the third-order differential equation for x(t),
where we retain only the terms of the second order in
small values y, e, g, g, P, and b, /co (see Appendix A).
Following the asymptotic method of Krylov-Bogoliubov-
Mitropolsky' we assume

gy 1+2S"'
v I+rj

——(g+ ebb) sini}5

+4 g 1 ——+g cosP .
V 2

IV. DYNAMICAL EQUATIONS
FOR THE OPTICAL FIELD

(16c)

x (t) =a (t)cos[vr 5+—&I}(t)]+b(t) +au (t)

for v =4+@8 (8 is a small detuning), where a (t), b(t),
and P(t) are the solutions of the following equations:

1 3
a =4ya ———+2—b

v 4 v

r
I + rj

b(g+g") (1+2—Z' ') cosP

In this section we will derive the wave equation for the
field Ei ——E(co&,t,z)cos[co3t k3z +lP( tz)] (co)—2coi cop),
generated in a crystal subjected to two external optical
fields Ei ——E(coi)cos(coit —kiz) and E2——E(coz)cos(coit
—kzz +50). The amplitude E(co&,t,z) and the phase
g(t,z) are assumed to be the slowly varying functions of
time and propagation distance. Considering a small crys-
tal sample of length L (L «1/

~
k, —kz

~
) we also can

assume that their dependence on propagation distance is
the same as in the stationary case, that is,

(gb —2—b, ' 'g +ebb )sin{t&,

(4 v'+Sy —+6mb)
2v

+4 b(g+g,")— (1+2K' ') siniIt
va

' I+rt

[gb —2Z'"P+~@(b'+a')]cog,

(16a)

(16b)

E(coi, t,z) =zE(coi, t) and f(t,z) =f(t) .

In this approximation the amplitudes E(coi) and E(coi)
can be treated as being constant. Thus, the dynamical
equations derived in the previous section hold if we put
the phase shift between both fields 5=(ki —kz)z+50.

The nonlinear crystal polarization at frequency
2coi —coz due to the enhancement of the crystal vibrations
in PBR is described by Eq. (5), where we put 8",j '(ct) =0
and substitute (Q (t) ) = (

~

Q' '
~

)sx (t) as given by Eq.
(15). Then we have

PiP (t,z) =
$ y 9'~f (

~ Q~ ~
)s I a (t)Ej(coi)cos[(2coi cop)t —(2k i

——ki)z +i'(t) —50]

+2b(t}Ej(2coi—co&, t,z)cos[(2coi coz)t kiz+—1/i(t, z—)]j .

The total polarization vector is the sum of a resonant part P "and a nonresonant part:

Pi (t&z)=Pc (t,z)+3Xijkl(2coi co2&coi&coi ~ 2)Ecoj(col)Ek(coi)EI(coz)cos[(2coi co2)t (2ki —kz)z —5o]
NL PBR NR

+6Xijki(2coi co2, co&co&2coi —co&)Ej(co)Ek(co—)Ei(2coi co2, t,z)cos[—(2coi cot)t —kiz+g(t—&z)] &

NR
(18)

where X;jkt =Xji i+be;jki', Xjki is the nonresonant susceptibility tensor of the crystal and
NR NR NR. NR

Mjkt(E )ki= ——, 9';j'(ct)il (
~ Q ~ )s is the contribution to the nonresonant susceptibility tensor connected with the

shift of the vibrational amplitudes due to the constant part of the square of the field amplitude.
From the wave equation for Ei(t,z) we find the equations for the amplitudes

A(t) =E(coi, t)cos[g{t)],
B(t)= —E(coi, t}sin[ital(t)] .

Those equations, describing the time evolution of the signal
~
Ei

~

=(A +8 )L,tt to be detected after having passed the
distance z =L ff ( L ff being the distance for which we assume the phase-matching condition to be fulfilled,
kz ——2k, —ki), have the form
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1+ [6X~~j+)(co)E&(co)+ ,
' H—b]3 +A

C fl

( —9 ' ~ g L,rrb + z P '
J~EJ

(cubi

)co [a/ sin(P —5O) a—P cos{P—5O) ]
Ctl

+(2coi —coz)[ —[6X E"(co)E (co).+ —,H ' 'b]B L,ff 3X~jg(E&(m~)Ek(coi)Ei(coz)sin5o

+ —,
' H ~~'Ej(co, )a sin(P —50) I ), (19a)

1+ z [6X~~j+g(co)Ej(a))+—,
' 9'~'b] B +B

ll

( —H ~~+~L,frb+ —,
' H ~'E (cubi)co~[aP cos(P 50)—+a/ sin(P —50)]

+( I 2) [ [6~ hajj crEj(~)Ej(~)+T+ nab]~&rL ffe+ +njklEj(~i )Ek(~1)EI(z)cos50

+ —,
' P ~'E (coi )a cos(P —5&) ) ), (19b)

where n is the refractive index of the crystal, c is the light velocity, and 9,'j '= H,'j '(a)(
~

Q' '
~ )sf (cubi)f (2coi —coz);

V. SOLUTION OF THE EQUATIONS AND DISCUSSION

A. Stationary case

For the duration of the external pulse v much longer than the lifetime of the crystal mode, r ~~ 1/I, we are dealing
with the stationary solutions of Eqs. (16) and (19). Then, we get the following expression for the output field intensity at
frequency 2'~ —coz..

~E3 ~

=
z z L,

'
(rrc2o —

i coz) [[3X jkiEj(coi)Ek(cubi)Ei(roz)] +[—,
' H "j~Ej(~i)as]'

C Pf

NR -' '
+ z+ jkl+nmasEj(~ol)Ek(~1)E (~l)EI(c02)costs I (20)

where as, bs, and Ps are the stationary solutions of Eqs. (16a)—(16c). In the general case the relations between the sta-
tionary values as, bs, and P~ are rather complicated (see Appendix 8). In order to visualize the result we will discuss
more exactly the case when g =@=0,which means that we neglect the modulation of small terms y and e. Then

2
az ——

g bs 1+16

2

v (4y) ———+2—bs + (4 v+6ebs+8y )—1 3 e 1
(21)

costs =

1 y 1 3 e
2v

[4 v'+6mb,—+8y']+16 +—2 —b—s—
4

I /2

(4y)' ———+2—b, + (4 2+6sb, +8y')'—
{22)

where bs is the g-dependent root of the quartic equation. The expression for the component g»z of the susceptibility
tensor corresponding to the particular polarization of the external fields, Ei

~ ~p and Ez( ~p, has the form



34 PARAMETRIC BISTABLE RESONANCE IN COHERENT RAMAN. . .

[ E3~ [ t Lgff{ 2'& —co2) E„(co&)E~(coi)
(cn)

~'

+(4y ) ———+2 bs(4 v—+6ebs+8y )+
12vg~~pp= ( 3X~~ppp)

——+2—b, + {4 2+—6', +8y )
3 1 2 2

4

(23)

where we have put g=
g~„(cot�)E&(co2).

Hence, we can see that the amphtude as [Eq. (21)] and the susceptibility tensor [Eq. (23)] exhibit the resonant
enhancement for 4 v+—6e'bs+ 8yi =0. If we put @=0 the shape of the resonance curve is just the same as in the known
CARS experiments" [see Fig. 1(a) for very small values of e], whereas the frequency separation between the minimum
and the maximum of the curve is given by

p (2)g

NR
12vX~ppp

(3]
an b('=o) 1+26,

1+g

3 1
(4—v +Sy2)

2
(2

1 22 2 3 1

4v
(4—v +8y ) +16y

4

(24)

In contrast to CARS, in this case the frequency separation
depends on the main square of the vibrational amplitude
because P '„'-9"„'(a)(

~ Q,' '
~

'}s, which also involves
temperature dependence. On the other hand, if we take
into account @+0, both the square of the vibrational am-
plitude [Eq. (21)] and the susceptibility tensor [Eq. (23)]
exhibit bistable behavior. Moreover, a+0 accounts for the
significant shift of the resonant fretLuency. This is shown
in Fig. 1{b) for different values of g. The plots in Fig. 1

were obtained numerically for the optical mode q=(},
ate= 1332 cm ', in a diamond lattice, assuming the exter-
nal fields to be polarized along the crystallographic axes,
Eill[100] and E211[l{X)]. For such a polarization of the
external fields CARS does not occur in a diamond lattice.

In order to have a reasonable comparison of the station-
ary results for PBR with those for CARS we have calcu-
lated the susceptibility tensor for CARS following the
same procedure (see Appendix C). Thus, we have derived
the anharmonic equation of motion for the mean vibra-
tional amplitude (Q (t))s and we have substituted its
stationary solution into the definition of the polarization
vector [Eq. (5)] for H,'. ."{a)~0. In the region of CARS
resonance the term H;J'(a)(

~ Q ~
} in Eq. (5), corre-

sponding to PBR, is negligible. Then, for particular po-
larization of the external fields, Ei II@ and E2~ )p, we ob-
tain the following expression for the corresponding com-
ponent of the susceptibility tensor:

={3~~uvs )

a"„'h„,
&PAP

(1—2+ —,
'
eq,')'+4dy'

(25)

3-

a P

3'(0
2 F 00 2 ' 02

detuning v

40

C

0
O

2O

at%
detuning 0

FIG. 1. Parametric resonance effect, magnitude of the non-
linear susceptibility tensor g....(co3,co~, co~,~2), normalized to
unity for infinite detunings, vs the relative detuning v in dia-
mond, for two cases: (a) @=0, /=0. 00024, (b) @=0.05, and
three different intensities of the input fields: (1) /=0. 00024, (2)
/=0.0003, (3) /=0.0005. Other parameters are the same for
both cases: 2y=0.001 (Ref. 13), f =f/E„@2,=10—'2 esu,

esu. The branch u is unstable whereas the
branches s are stable. The points laying on s' and s"' are
reached in the transient case. The points on the branch s" can
be reached only in the quasistationary way giving hysteresis.
CO3 ——2COl —~2.
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where h~=A „~(a)/(6 ), e=e/&
~

Q~'
~
)s, and qs is

the stationary amplitude of the vibration of frequency v,

& Q~(r) )s ——q (t)cos[(coi ~z)t +5]. (For the detailed
derivation of the above formula see Appendix C}.

The results of numerical calculations performed for an
optical mode in diamond crystal (as in Fig. 1}and for the
mutually perpendicular external fields, E, and E2, are
shown in Fig. 2. The value of H"„' was calculated for our
model of crystal polarizability, Eq. (4), and was adjusted
to fit to the experimental value of the frequency separa-
tion he@. As we can see in Fig. 2 also, the CARS effect
exhibits bistable behavior around the resonant frequency
v= 1, due to the nonlinearity of the crystal lattice, @+0.
Nevertheless, the amplitudes of the external fields E(cubi)
and E(co2) necessary to observe it are much larger than
those applied in the known CARS experiments. The
above conclusions are consistent with the general con-
siderations of Flytzanis and Tang'4 on CARS in nonlinear
systems. It shoulds also be noticed that in the case of
CARS the nonlinearity e slightly shifts the resonant fre-
quency from its value for @=0, which means v= l. The
comparison of Fig. 1(b) and Fig. 2 provides that for the
same conditions (diamond lattice) the field intensity neces-
sary to observe bistability in PBR is less than the intensity
necessary to observe it in CARS. In addition, the range of
bistability for the same intensities of the external fields is
about 3 times larger for PBR. The field intensities for
which the effect of bistability is significant are less than
the intensity of the field for which the breakdown in dia-
mond crystal occurs, " E=21.5 MV/cm=7X 10 esu.
The effect of bistability in PBR can be enhanced by
reducing y; that is, assuming a long lifetime of the mode.
As Fig. 3 shows, the dependence on y is very strong. In-
cluding the modulation of the damping coefficient also in-
creases PBR as is shown in Fig. 4.

The resonant effect of PBR permits the investigation of
Raman-inactive modes by four-wave-mixing spectroscopy.
The frequency separation between the maximum and the
minimum of the resonance curve, Fig. 1, provides infor-
mation about the nonresonant susceptibilities of the crys-
tal, similarly to CARS. In particular, PBR could be ap-
plied in the spectroscopy of molecular crystals where all

Al

/PIa

0

2 ' 14
de tuning V

i

2 ' 15

FIG. 3. Parametric resonance effect, magnitude of the non-
linear susceptibility tensor P....(cu3 co) N} 692), normalized to
unity for infinite detunings, vs the relative detuning v for dif-
ferent linewidths of the crystal mode: (1) 2y=0.00075, (2)
2y=0.ool, (3) 2y=0.0015, f=o 0002.4 and other parameters
were assumed as in the diamond lattice, e.g., @=0.05,

=10 "esu, P'"=9.6xlo 'esu. co3 ——2'& —co&.

2 ' 154

40

C

cs 0
a

Al

pC

F

2 136 .
~

2 158
detuning 0

FIG. 4. The dependence of the susceptibility tensor
(ro3, ~~,co1,~2) on the modulation of the damping coeffi-

cient: (1) +=0 (2) P=g. In both cases 2y =0.001 and other
parameters are the same as in Fig. 3.

Cll

C

0
~ a i a ~ ~ i ) i ~ i

F 98 2 ~ Osg~t~ning q 2 ~ 18

FIG. 5. Parametric resonance effect, magnitude of the non-

linear susceptibility tensors, normalized to unity for infinite de-

tunings, vs the relative detuning v in the crystal of benzene for
two chosen vibrational modes (Ref. 3). (a) g....(~3,col, co~, u2)
for the rotational mode 82 (u), ~~=56 cm ', for two possible
linewidths {Refs. 21 and 10): (1} 2y=0.01, (2) 2y=0.008.
Other parameters were calculated to be e= —0.018,

= —5.6X 10 ' esu, P ~'=9.4X 10 4. (b)

g~(cu3, ul, ar&, u2} for the translational mode Au (x), ~ =26.3
cm ', for (Refs. 10 and 21) {1)2y =0.01, {2}2y =0.008. Other
parameters were calculated to be @=0.035, g~

(2, )—2.5X10 "esu, P~ =1.1X10 ' esu. co3 ——2'~ co2—

2
c)

I

1-0 1.1

detunlng 0

FIG. 2. CARS, magnitude of the nonlinear susceptibility
tensor g„~(~3,cot, ~~, co2), normalized to unity for infinite de-

tunings, vs the relative detuning v in diamond, for two intensi-
ties of the input field: (I) /=0. 00024, (2) f=o 0005 2y was. .
assumed to be 0.001 (Ref. 13), other parameters were calculated
to b ~=0.05, I„=l.,/(& ~g."'('),)'"=7.3XIO-" ~u,
H~'(&

~

g'~ &)'"=2.6X 10-'~u. ~,=2~, —~,.
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E& Ez(lu esu )

1 2 4
t

IFORM

g ( 10 m~ t )

FIG. 6. The intensity of the output field
~
Ei

~

i vs the prod-
uct EtE2, in the stationary case, for different linewidths of the
crystal mode: (1) 2y=0,0005, (2) 2y=0.00075, (3) 2y=0.001,
(4) 2y =0.0015. The detuning v was assumed to lie in the region
of bistability in Fig. 3, v=2. 1347. Other parameters were taken
as in Fig. 3.

the translationally vibrational modes of the molecular
centers of mass are Raman inactive and for which the
model of polarizability as proposed here is best suited. '
In order to verify our suggestions we show the results of
our calculations for two modes in the crystal of benzene
Fig. 5. The plots correspond to different lifetimes which
can be realized by changing the temperature. We have
calculated the coefficients of nonhnearity by assuming a
I.ennard-Jones potential for atom-atom interactions.

Figure 6 shows that the intensity of the output field,
given by Eq. (23), also exhibits bistable dependence on the
intensities of the input fields.

B. Transient case

Here we present the time dependence of the full solu-
tions of Eqs. (16) and (19) before the state of equilibrium
is achieved. The incident fields are turned on at time t=0
in a steplike way. The initial values of the variables a (t),
b (t), and P(t) were assumed to be the stationary solutions
of Eqs. (16) and (19) for /=0, which means a(0)=0,
b (0)=ho-—( I/2e)( —1+V'I+4m), tan[(()(0)] =0, and
Ei(0)=0. However, the stationary state achieved by the
system does not depend on the initial phase (()(0).

Figure 7 shows how the crystal chooses different states

FIG. 8. »me dependence of the output field
~
Ei

~

' for the
steplike input field and for the detunings as in Fig. 7.

of vibration corresponding to different detunings of v
from the value vo [Fig. 1(b)] and how the crystal tends to
different states of equilibrium. For negative detuning the
amplitude of vibration reaches its stationary state after
having passed through a state of damped oscillations.
This causes similar behavior of the intensity of the field
E3 generated in the crystal, which is shown in Fig. 8. If
we start with negative detuning the system tends to the
situation corresponding to the branch s' in Fig. 1(b).
Similarly, for positive detuning the system achieves the
branch s"'. The branch s" is never achieved in the tran-
sient case. However, in the quasistationary case, while
changing the detuning infinitesimally slowly from the
negative to positive value the system reaches the branch
s" and one should observe the jump down of the output
intensity to the branch s"'.

C. Quasistationary case

If we assume that the value g changes very slowly in

time, so that dgldr &&a,b, as a trianglelike pulse, we can
observe how the output intensity depends on the input in-
tensity. Figure 9 shows that hysteresis results for dif-
ferent detunings. Once the input field intensity increases,
the output intensity follows the lower branch, increasing
rapidly up to the maximal value corresponding to the top
of the trianglelike pulse. When the input field decreases,
the output goes back along the upper branch. The oscilla-

G. 2

5

cn

2
4J

0 1 2
timeg(10ou„ t )

FIG. 7. Tine dependence of the square of the vibrational
amplitude a =(

~ g ~
(t))s/(

~

Q' '
~ )q, for the stephke input

field, for different detunings: (1) v=2. 1345, (2) v=2. 13465 be-
ing smaller than vo [see Fig. 1(b)] and (3) v=2. 13467, (4)
v=2. 1347 being larger than vo. /=0, 00018, a=0.05,
2y =0.001. Other parameters were assumed as in Fig. 3.

0
2

L) Ez(loesu)

FIG. 9. The intensity of the output field
~
Ei

~

i vs the prod-
uct EI E2, for trianglelike pulse, for two detunings: {1)
v=2. 1347, (2) v=2. 13467 laying in the region of bistability in
Fig. 1. a=0.05, 2y=0.001, and other parameters are taken as
in Fig. 3.
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tions appearing at the end of the loop are connected with
the jump of the system from one state of equilibrium to
the other.

VI. SUMMARY

The effect of parametric resonant enhancement present-
ed in this paper permits the observation of the Raman-
inactive modes in crystals using four-wave-mixing spec-
troscopy. It provides information about the second
derivative of the crystal polarizabihty and the non-
resonant susceptibility tensor. For a relatively long life-
time of the mode in the anharmonic crystal this effect ex-
hibits bistability with respect either to the difference fre-
quency col —aI2 or to the intensities of the incident fields.
In the bistable region with respect to the input field inten-
sities, the output field jumps to the values 1 order of mag-
mtude higher. The four-wave-mixing spectroscopic tech-
niques have recently been applied for investigation of
two-phonon states in crystals' ' {the amplitude of the
two phonon state called overtone' ' corresponds to
(

~ Qq ~
) in our paper) but none of the processes present-

ed in those papers has the features of the parametric reso-
nance. The dynamical equations derived by us for the
material system hold not only for the crystal vibrations
but also describe all the physical systems in which the in-
teraction of the coupled nonlinear oscillators occurs, e.g.,
polyatomic molecules.

polyatomic rnolecules.
Although we call our effect parametric resonance, this

name being usually applied to systems described by the
Mathieu equation, it shows quite different features from
the usual solutions of the Mathieu equation. Our solu-
tions do not tend to infinity for @=0. In our equations e
does not play the role of damping as in Mathieu equation,
but mainly shifts the resonant frequency. Thus, this shift
includes the information about the anharmonic coeffi-
cients for the modes of the crystal for which it is possible
to determine the frequency for a=0, v=2, e.g., from
CARS experiments.

The name bistable parametric resonance seems to be
justified in this case as the resonance occurs due to the
modulation of the parameter to (frequency) and exhibits
bistable behavior.
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APPENDIX A

Using the Hamiltonian for the whole crystal as given by Eq. (6) we obtain Hamilton's equations for the chosen mode
(qa):

0

Qqa=~qa ~ (Ala)

I'q, = —(~q )'[1—
gq cos[(~i —~z)t &]IQ«—+~(p)~kt '(~)+k~/(t)

+ g ~at"
a'(+a)

Qqa'(F I F2 )klcos[(toi —F02)t —'b] ——,
1 (3)E

q', q",a', a" a a' a"

qtl qlII I II III
- Qq Qq- -Qq-- (A lb)

Using the Green's function for the harmonic equation the
formal solution of Eq. (A1) is given in the form

I Sin[COqa(t —t')]
Q(0)(t)+

0 ~qa

&&+(Qqa'I'qa'Qq 'I'q a '. t)«'
(A2)

where F(Qqa, I'qa, Qq a,Pq a, . . . , t) is the right-hand side
of Eq. (Alb) excluding the term (coqa) Q«, Qqa (t) is the
solution of harmonic equation, and to denotes the time
when the force E is turned on. Equation (A2) corresponds
to Eq. (10) in Sec. II.

In order to establish the accuracy of Eqs. (1) we esti-
mate the orders of magnitude of the successive derivatives
of the interaction Hamiltonian and the structural Hamil-
tonian. For the interaction Hamiltonian, Eq. (5), we have
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4 kl "(a)(F )kl

qaQqa

—10 "F esu,

and for the structural Hamiltonian we have (a) for the
Lennard- Jones potential

I tl

( ) q
0 ~ ~' ~" Qqa

2
Nq~

I

(F')
L

2
Nqa,

F' d'
2

mcoqa dt Q
1 ——

p
3

-10 ' F esu,

F'Qqa d'
+m coqa dr

1 ——
p

3

-10 ' I' esu,

I

kl

F'Qq
2 2m Cgqa

qtl ttl

2 2.w (F )klQqaa
2

COqa,

Q'

p
3

—10 )'F2 eau,

I lt
I(3)~kl (F )klQqa

L

2
COq~

(A3)

t pl III Qq'a Qqa
—-0.05;

COqa

(b) for the Morse potential

4)-0.06 and 42-0.005 .

The above estimations were performed for a diamond
crystal assuming m —10 g, co-10' s ', o:-10

Qqa=(A'/20lqa)' -~m X 10 cm. Thus, if we
derive the dynamical equation for & I Qq I &z with an ac-
curacy of the order of H0"'Qqa -0.01coqa we are justified
in retaining only the terms linear in the derivatives of the
interaction Hamiltonian or in Ho ' and quadratic in Ho '.
In addition we will take into account also the products

[H0 'P'kl '(F )kl ], although they are smaller, because
they introduce the qualitative changes to the equation and
will be shown to be responsible for the modulation of
damping and nonlinearity.

%e also must take into account the general result that
H' '(q q q )=0 for Bravais crystals and nonprimitive
crystals in which the atom is at a center of symmetry. In
mole:ular crystals this term has been proven to give a
negligible effect.2' For simplicity we will consider the vi-

brations for which H' '( ~ ) =0 if q=0.
Substituting Eq. (10) into Eq. (9) and averaging the re-

sult over the bath we get the following set of equations
with accuracy to the terms of the order of H' ' and

I

H(3)
I

2.

(A4a)
d

& IQ, I'&s=&Q, ~, +Q-,J',.&s
dt

I'&a= —( )'tl —0, o [( — )I —&1I&Q I' +Q F, & +~(e)~kl &p +p &FkFI(l)—
dt

qwq +q
a'~a"/a

H(3)E
I II

a a' a" &P qa(r)Qq —a (r)Qq a''(r)&a+""c c.

H(4)E
q', a'(~q, a)

q .« IQ,".' I'&. &Q,.~,.+~,.Q,.&,

——0(4)F.
2 & IQq I &s&Qq I' q+Q q I'q &a— —

+ ,'f- II
A 0! CL
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x a'"
III fV I III Pf

1V e(t )~kl i iii 1V FkFl(t

sin[a)q (t —t'))
X &F (t)Q " "(t)Q "' "'(t )Q gy 1y(t ) &ga q'a'

r

IV II III $V

IV e(t )A~kj ii in 1V FkFl(t )

X & q~(t}Q '~'(t)Q "I'+"'(t }Q 1y 1y(t ) &g
q a

'~

sln[coq~ ~~ (t —t )] +c.c. dt',
q"a"

(A4b)

—„&Q,.F,.+Q,.F,.&,

=2&
I Fqn I

'&E —2(~;a)'( I kqe—cos[(~1 ~2}t—b] I & I Qq~ I
'&E+~kI "(~}&Q q~+ Qq~ &g~(e}FkFl(t)

a'+a"Qa

1 g H(4)E

q', a'(+q, a)

—g q
& IQq' 'I &a & IQq I &a

II
g Cj7

a u' o;"

r '1 T

qIV I III IV

IV e(t )~kl i iii 1V FkFl(t )

sin[coq ~ (t —t')]
X &Q'" Q" "(t}Q "' -'(t }Q 1v 1v(t }&a

q a
QPqa

T

II III IV

tv —e(t')~kI" „„,,„FkF,(t')
J

sin[co - -(t —t'}]
X &Q q (t)Qq' '(t)Qq"' "'(t')Q gy 1v(t')&g .+c.c. dt'

q a Q)
(A4c}

where e(t'} is I for t') 0 and 0 for t' & 0. In the anharmonic terms of the order of H' ' we have put
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&
I Q,.I'(g,w,.+g «P«)&a=& I g, .l'&a&g, ~ «+g «P,.&a

I'&a=& IQ I'&a& IQ I'&a

for all ( q'a'). Those equalities are satisfied with accuracy to 0 (H' ') and 0 (H' '), which is consistent with the approxi-
mation applied in Eqs. (A4}.

With accuracy to the terms of the order of
I

H' '
I

we can perform the averaging under the integrals in Eqs. (A4b)
and (A4c) by putting the amplitudes Q~ ~ (t) [defined by Eq. (10)] in a harmonic approximation, Q~

' (t) and P~
' (t):

(P aIE(t)g&IE (t)g&"'II"'(t')g iv rv(t') &a

=(P",',g,'")(t)(
I g,"-' -

I
'&as(q q')—a(q"'+qiv)5 5 ... „

+P' «(t)gq~'(t')(
I Q&~ I & a[6(q'+q"')b(q q'")5~—~-5 (v+5(q'+q' )b(q —q"')5, »5 - ]cos[cos (t —t')]

(ASa)

=
I
Qq"

I
'(t}& I Q,"' -

I
'&a«q q'}~(q"'+—q")5..5 .„.iv

+g"q (t)gq"(t')&
I {?q", I'&a[6(q'+q'")b(q —q'")5 -5,v

+&(q'+q' )&(q —q'")5, »5 -]cos[co, (t —t')]. (Asb)

Substituting Eqs. (A5a) and (Asb) into Eqs. (A4b) and (A4c), respectively, and puttin~ H' '(» ~
~

~ ) =0 we get the fol-
lowing form of the integrals: Ri P'

q
(t)(I——(+Iz+Ii) in Eq. (A4b) and R2 ——Q ~ (t)(Ii+I2+Ii) in Eq. (A4c),

whereas

q'a'~q"a"~qe
0"'

0
OO

(1+i)«)[1 g«co—s[('o(l —cot)t —5]] F(t,r)dr, (A6a)

q'a'+q "a"+qa

2

0 a a' a
9q

~+ 9qa
(A6b)

q'a'+q"a"~qa

P 2

(3
—g ig

0 a a' a J F(t, r}cos[(o(( F02)~ 5]—dr . —
0

(A6c)

The variable of integration in the above integrals has been changed to ~= t t' We have —also. assumed that

q

CK CX CK

II
~(3) q & & 2 r (3)~a( ~ ~ ~- (F }kl- v)qWo—

J

I II—q (3)
kl & &I it (FlF2 )kl g I(~0

for all (q'a') and (q"a");g &~ g~~(1+i)——~~).
The function F(t,r) is the result of some simple trigonometric operations and has the form
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F(t, r) =Q,"'(t) & I Q,".'-
I

'&2)
jslll(COqa+COq a'+COq"a")r+Sln[(COq a +COq a~ —COqa)1 ] I

QPqr~'

II rr

jsin(coq' ' co—q"a'+coq )r+sin[(coq coq—" co—
q )q]I

&
Ig(0) I2&

jcos[(coq +coq ~ ~ coq—)r] co—s[(coq +coq ~ "+coq )q]I
Mqr~r

&
Ig(0) I2&

j COS[(COq'a' —
COq

"a"+COqa)7 ]

—COS[(COq a~
COq

"a—"—COqa)7 ] I

The harmonic vibrational amplitudes Qq '(t) and Pq '(t)
in the expressions on R l and R2 can now be replaced by
the full solutions Qq (t) and Pq (t), which is still con-
sistent with the assumed accuracy. Applying the relations

CO 1
sin cot t=

0 (CO) p

R2 =[ ~qa(P —qaQqa+PqaQ qa) 2~q—a~qa I Qqa I

x(1+q)q ) I
—

gq cos[(co) —co2)t —5]I .

The next terms in Eqs. (A4b) and (A4c) to be discussed
are the following:

q'a'Qq "a"Qqa
H(3)E

a a' a"

Cos Nt t=K N
0 X &Q qa(t)Qqa (t)Qq-a (t)&2),

H(3)E
a a' a"

q'a'+q "a"~qa

x &P, (t)gq"' (t)gq"'-(t) &2),

which do not vanish because the amplitude of the mode
(qa) depends on the amplitudes of the other modes, ac-
cording to Eq. (10). Substituting Eq. (10) into the expres-
sions for F) and F2 yields the following terms, obtained
with accuracy to the terms of the order of

I H0 '
I

and
(II(3)~(3))

Il =[ f'qua(t) —COqa~qagq—a(t)](1+rlqa)

x j 1 —
gq cos[(CO( —CO2)t —5]I, (A7)

where I q and hq
' are the inverse lifetime and the fre-

quency shift of the mode (qct }obtained in the form given
by Eqs. (13a) and (13b). The integrals I2 and I3 can be
neglected for the small pulses of time duration ~ & 10 7 s.
Then the integrals in Eqs. (A4b) and (A4c) become

R l =[ 2~qa I Pqa I COqa~qa(P qagqa+Pqag —qa}]—
X (1+2)qa) j 1 fqaCOS[(CO—( CO2)t ——5]I,

sin[coq (t —t')]
F) —— q~

t'
q~ t g 1+pe~

COq~

r

X 1 g".qco[s(—~, ~2)t S—] e(t—}—
1+g

sin[coq (t —t')]
F2 —

q
t'

q t g 1+pe
Q)q~

(A8)

X 1 —
gq cos[(col —co2)t —5]—e(t')

I

+ fqaCOS[(CO( —CO2)t —5] dt
1+pe~

(A9}

jq (t)= ~&33
0

lt
&03 &03

Qq a ( t )Qq a- ( t )
q'a'Qq "a"+qa

plays a role of a random restoring force exerted on a mode (qa} by the modes of the bath. The time correlation func-
tions are given by
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&fq (t')fq (t) &a =
q'a'Qq "a"~qa

X I cos[(coq a +a)q -)(t —t')]+cos[(toq c—oq )(t —t')] j (A10)

&f (t')f (t) &

q'a'~q"a"~qa

2I II
(3)

—9 0 9'

0 Q CX' a

X I(to a 'c'oq a )"S/"n[(coq a' 'coq"a )(t"t )]+(toq'a'+t//q 'a")Stn[(coq'a'+co "a")(t t )]j

Substituting Eqs. (A10) and (All) into Eqs. (AS) and (A9) and performing the integration we get

(3)

F, =2 kT(1+gqa) [1 gq
—cos[(co/ —co2)t —5]j,Aq

(Al 1)

F2 ——2I kT(1+ri ) I 1 —g cos[(co/ co2)t —5]—I

for & I Qq
'

I &a kT/coq ——. Taking into account the formulas obtained for R/, R2, F/, F2, Eqs. (A4) lead to the fol-

lowing set of equations:

d 2
&

I Qqa I &a = & QqaP qa+PqaQ ——qa &a &

dt
(A12a)

—
&

I Pqa '&a = —( qa)'[1 (kqa+—~Cqa)cos[(~/ ~2)t —&] I & QqaP qa+Q qa-Pqa&a-

4I q I 1 gq cos[(//// co2)t 5]j &
I Pqa I

&a+4I qakT[1 fq cos[(co/ co2)t 5]

~ & IQqal &a&QqaP-qa+Q-q Pq &a[1—
Pq cos[(~/ —~z)t —&]j

+b(q)A // "(a)&Pqa+P qa&aFkF/(t), (A12b)

&Qq P—q +Q —q Pq &a=2& IPqa I &a 2(qa) [1 (Cqa+~kqa)coal(~/ ~2)t &]j& I Qqal &adt

)t —&] j &Q,.P,.+Q,.P,.&

(3)E

+4 kT[ 1 —
gq cos[(a// —co2)t —5]j

hq

~qa

(&
I Qq I &a) Il —g-cos[(~/ —~2)t —&]j

E(4) 2 2

+~(9)~k/ (tt)&Qqa+Q qa &aFkF/(t)— (A12c)

where'/qa a/qa+&qa, H ——'"(a a'a a')=Ho"(a a'a a') —~/I"(a a'a a')(F')k/',

q )a L

is the change of the frequency modulation coefficient and
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H(4)E
0

Introducing the new variables defined in Sec. II into Eqs. (A12) we get directly Eqs. (12).

APPENDIX B

The stationary solutions of Eqs. (16) are given by

g 2+~2
Qg=

e 'az
A(42+&2)+N &+

(Bl)

cosmos =as

L

T

Sy 1+21' '
2 1 2 4y

1+»)
bz — +e(bz+ —,az) = az g+g 1 —— sing+ — (/+@Pbbs)cosgz,

v 2 v

where

(B3)

3~=4y ———+2—bs4

(4 v+6ebs—+gy ),
2V

&+2S"'
1+vi

4y g" bs +
v2

u= —(gb, —2g a"'+ebb,') .
V

Those equations have been solved numerically for $~0, g =+=0 (see Figs. 1—3) and for g A%0, p—=0 (see»g 4).
In this paper we do not discuss the influence of the modulation of the crystal nonlinearity, which means p&0. It will

be treated elsewhere.

APPENDIX C

In order to get the equation of motio~ for &Q» (t)&z we substitute Q» (t) as given by Eq. (10) into the Hamilton
equations [Eqs. (Al)] for all (q'a')&(qa). Averaging the result over the bath and retaining only the terms of the order
of a'41 and

I

a"'
I

' we have

& Q». &a+(~»' )'I 1 —4».«sI(~i —~2)t —&jI &Q». &a+-,'H"" «Q». &a& I Q» I'&s

C

g CX +/AX

'"(a)h(q)F„F (t)+ —, I g H' '
a a' a"

C,CE, CX,CX

—q' q"' q
iv FkFl(t )
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sincoq (t —t )
X ~ Qq "u"(t)Qq"'a"'(t }Q Iv Iv(t ) )s

q a
QP

tl tll
q

IU

—e(t )4 kl
q it

qsl/ IV

iv FkFl(t }

sin[coq -(t —t')]
X ( Qq a (t)Qq" a" (t')Q rv rv(t') )Sq a to ~ -(t —t') (Cl)

I

Mitropolsltyr2 we assume a solution of Eq. (C2) in the

1, t'&0"'='0 t 0

0 0 0 0
~(&)E

a o, o. a
2(ro )'

~1(1)( )
s ~k1

(co )'

Applying the asymptotic method of Krylov-Bogoliubov-

The approximations applied in this equation were ex-
plained in Appendix A. The integral is just the sum
Ir+I2+Ii The i.ntegral Ii was calculated in Appendix
A and is defmed by Eq. (A7), whereas the integrals I2 and
Ii are negligible (see Appendix A). Equation (Cl) does
not include any terms connected with the random restor-
ing force f(t) because (f(t))s ——0. Substituting Eq. (A7)
into Eq. (Cl} and introducing the new time variable,
r=toat, we get the Duffing-Mathieu equation for an opti-
cal mode q=0:

(Q )tl+2y(Q )a[1—("cos(v~—5)]

+(Q )z[l —icos(vr —5)]

+e(Q )a[1 icos(vr 5)—]=hklFkFl—(t),
where

Q)~ —C02 I IE
-E ' ~ -E

CO~ Ql ~

hkl(F1 F2)kt

[(1 ~+ ~eqs)'+~)"]'"
(CS)

1 —v + 4eqs
costs =

[(1—v + —,'eqs) +v y ]'~
(C6)

As we can see qs exhibits nonlinear dependence on the
difference frequency tor —to2. In the stationary case the
square of the amplitude of the optical field generated in a
crystal at frequency 2toi —to2 is given by the formula

( Q (t))tr =q(t)cos[vq+g(r) —5]+au (r),
where v =1+@8 (8 being a small detuning). q(r) and
g(z) are slowly varying amplitude and phase, respectively,
to be found as the solutions of the equations

sing,
2v

1 hkl (F1F2 )kl
(1—v'+ —,kq )— cosg,

2v 2'
where u(~) contains the vibrations with frequencies 2v,
3v, or v=0. In this approximation the modulation of the
frequency as well as of the damping and the nonlinearity
do not influence the vibration of frequency cor —to2.

The stationary solutions of Eqs. (C4a) and (C4b) have
the form

2

IE2~ I'=
2 2 I-crt(2~1 ~2) I [3'jtcrjklE, (~r)Ek(~r }El(~2)]'+[2 &~,'Ej(~r }qsl'

C

+ 3Xrrjkl Hrrrrr qSEj (CO1)Ek(tO1)Em (Nr)EI(&2)COS(s I

where H' j' =H "j'(a )f(d'or}f (2to 1
—ro2); Ei I I

o'. Substitut-
ing Eqs. (CS) and (C6) into Eq. (C7) and assuming the

particular polarizations of the external fields we obtain
Eq. (2S) for the susceptibility tensor.
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