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A review is given of correlation experiments in optics which explicitly distinguish between the
predictions of classical and quantum theory. In particular, the Cauchy-Schwarz and Bell’s inequali-
ties and the phenomena of photon antibunching and squeezing are discussed. The violation of clas-
sical inequalities is shown to be associated with the nonexistence of a positive Glauber-Sudarshan P
function. An example is given of a dissipative system where a violation of Bell’s inequality occurs.

I. INTRODUCTION

The classical theory of electromagnetism predicts a
variety of inequalities which may be violated according to
quantum mechanics. Single and double beam experiments
measuring, in particular, the degree of second-order
coherence of light are thus known to provide a means of
testing the classical theory of electromagnetism against
quantum theory. A review of such nonclassical effects in
optics is given in a paper by Loudon.! Experiments by
Kimble, Dagenais, and Mandel>~* and Cresser et al.’
have provided evidence for the nonclassical effect of pho-
ton antibunching, thus supporting a quantum theory.

Given that the classical theory of radiation cannot
describe all natural phenomena, Bell’s theorem®~1° and
inequalities refer to a more general question. Bell’s
theorem provides a way to test experimentally the predic-
tion of the whole class of local hidden variable theories
against the predictions of quantum mechanics. Thus, ex-
periments which demonstrate a violation of Bell’s inequal-
ity are of wider significance in physics than those which
show violation of only the inequalities above. The experi-
ments performed by Aspect et al.!!™15 to test Bell’s
theorem support quantum-mechanical predictions, thus
destroying the hypothesis proposed by realists!® that
quantum mechanics has yet to be completed by a local
hidden variable (classical) theory. A review of this topic
is provided in the paper by Clauser and Shimony.!’

In this paper we first present a review of experiments
designed to test classical radiation theory against the pre-
dictions of quantum mechanics. In particular, we exam-
ine photon antibunching and violation of the classically
predicted Cauchy-Schwarz inequality. The phenomena of
squeezing!® is also discussed. In Sec. Il we review Bell’s
theorem as a stricter test of quantum mechanics. Bell’s
inequalities are derived for the general case of fields of ar-
bitrary intensity. We discuss the possibility of violation
of Bell’s inequalities in nonlinear processes such as mul-
timode parametric amplifiers and four-wave mixing, in
which the output modes are in some way correlated. The
results are extended in Sec. V to a model of a system in-
teracting with its environment, thus including coherent
pumping and the effect of dissipation. By examining the
steady-state statistics, we show violation of Bell’s inequali-
ty to be possible in a regime showing strong violation of
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the Cauchy-Schwarz inequality, thus expanding the appli-
cability of the test of local classical theories versus quan-
tum mechanics to a wider class of systems.

II. CLASSICALLY PREDICTED
INEQUALITIES: PHOTON ANTIBUNCHING,
CAUCHY-SCHWARZ CRITERION AND SQUEEZING

Experiments measuring the degree of second-order
coherence of light are important in providing a means of
testing the classical theory of light against quantum
theory. We consider a beam of light with stationary and
ergodic statistical properties described by a time-
dependent cycle averaged classical intensity I,(¢). The
classical degree of second-order coherence with time delay
T is written

g W) =T (t +0I,(D)) /{I|)?. (1)

In a double beam experiment, one correlates intensities
I,(t +7) and I,(t) of two different beams measured by
different detectors

gR (P =T, (t +7),(0)) /{I ){I,) . @

In the classical theory, the zero time delay functions for
single-mode beams may be written generally in the form
[Ii(e)= € | (e)=|&|*]

(I)= [ Ple)I (e))d%,
(I3)= [ P(e) (e)d%, , (3)
(LI)= [ [ Plee)I (e)Iy(e)d% d%,; ,

where the ¢; are fluctuating stochastic complex ampli-
tudes describing the fields and P(e;) is a probability dis-
tribution defined over the entire complex plane. A num-
ber of inequalities are derivable from the classical descrip-
tion [Eq. (3)]. First, the variance of the distribution is al-
ways positive. Hence,

(1Y —(1,)*>0,

g¥0)>1.

Also, the Cauchy-Schwarz inequality is directly appli-
cable:

(I <{I3)(1}) . )

4)
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For the case of time delay ¢ between the two beams, we
have

[8(2) t)]ZSgIZ)(O)g(Z)(O) . (6)

In the single beam case, the equation above simplifies to
the useful result

g ¥ <g?10) . (M

Experimentally, one measures the degree of second-
order coherence of a single beam using the apparatus il-
lustrated schematically in Fig. 1. The beam (of intensity
(1,), for example) to be studied is split into two parts by
a beam splitter (a semitransparent mirror). The intensities
({I4,) and {I,,), for example) of each arm are measured
by two photodetectors whose readings are correlated and
averaged electronically with a fixed positive time delay .
In a classical picture, the incident beam is always split
into two identical beams which show identical intensity
fluctuations {(I,,=1,,). Thus, (I4,I,,) can be written

(IAIIA2)=fP(€)Ijld2€
=1 [ Por}d% ®
and
(LI az) /{T41) {1 43)

is a measure of the function g'?’(0) of the incident beam.
Figure 2 shows the experimental arrangement used to
measure g$3(0) of two beams.

The quantum-mechanical interpretation of second-
order coherence is quite different. For a single-mode

field, we have
g?0)=((aha?)/n? a=(a"a). 9)

a,a’ are boson operators satlsfymg the commutation rela-
tion [@,a’]=1. The average ( ) in this case denotes the
quantum expectation value {0 ) =Tr(0 p) where p is the
density operator for the light field. Using the boson com-
mutation relation, one may derive

((a"a?)y+(afa)—(a'a)?>0
and hence the following lower limit on g‘*/(0):

gX0)> 1—% . (10
n

Considering a double beam experiment, the Cauchy-

Ia BS Ia

1 BS
PM A1 Ia s

a4 a

a; y Ia

c PM

FIG. 1. Test for photon antibunching. BS: beam splitter.
PM: photo detector. C: correlator. S: radiation source.

Schwarz inequality applied to commuting operators a'a
and b'b implies

| (a'ab™b) |2< ((a'a)?)((b'b)?) .

For symmetncal systems such that ((a'a®) =((b'p)?)
and (a'a) = (b ) =, this implies the quantum inequal-

ity

g2(0)<g?(0)4+ 1 . (11)
n

Clearly, the classical inequalities (4) and (6) are too re-
strictive according to a quantum theory which allows (10)
and (11). Light which violates the inequality g?(0) > 1 is
said to display the property of photon antibunching.!®
Light fields violating

(g2 (0P <gP(0)g(0)

are said to violate the classical Cauchy-Schwarz inequali-
ty. Both properties are evidence for the quantum theory
of light.

The difference between the predictions of classical and
quantum theories with regard to second-order coherence
is perhaps best illustrated by the g*(0) measurement
scheme. We adopt a technique developed by Walls?’
Loudon' to describe the system quantum mechanically.
Modes a; and a, correspond to transmission and reflec-
tion at the mirror, the original mode a being written
a=(a;+a,)/V2.

If we consider the mode a to be a single photon number
state | 1), then the combined mode is a superposition

Ig Ip1

PM | P

a2

[ F——{n]

b L PM

Ig2

[P f—" ]

FIG. 2. Test of Cauchy-Schwarz inequality.
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l¢>=a*|0>=-}5~<a1+a£>;o> 10)

1
=50 [D+[1) [0), (12)

where |0) and |0) |0) is the vacuum state for the origi-
nal mode a and the combined modes a; and a,, respec-
tively. The state (12) incorporates a particulate nature of
light. It may be shown, in general, that the measured
correlation function

(alaalay)/(ala; ) (ala,)
is indeed the
g40)={(a"%a?) /(a'a)?

of the original beam. There is no justification in a
quantum-mechanic interpretation to write the correlation
(I4.1,,) in terms of an integral form (8) where I (=1 ,.
In fact, for the idealized single photon number state
described above, {(I,,I,,)=0 implying I,,=1 or 0 and
I1,,=1-—1,,. Thus, a whole new range of statistics is al-
lowed.

Carmichael and Walls?' have predicted that the light
emitted by a single atom undergoing resonance fluores-
cence would exhibit the property of photon antibunching.
The result was confirmed by Cohen-Tannoudji*? and
Kimble and Mandel.*> Carmichael and Walls calculated
the second-order correlation function g'?)(r) in the steady
state for the limits of weak and strong driving fields,
respectively. For small 7 the solutions predict antibunch-
ing. Physically, the explanation is that there is a finite
time required to reexcite the atom and hence to detect a
second photon. Experiments to show this feature have
been performed by Kimble, Dagenais, and Mandel.> Un-
fortunately, the effect of number fluctuations in the atom-
ic beam is to preclude direct observation of photon anti-
bunching [g%0) < 1]. However, violation of the inequali-
ty (7) is possible and good agreement has been attained be-
tween theory including atomic number fluctuations and
experiment. Photon antibunching has been predicted in
other ogtical systems including subsecond harmonic gen-
eration®* and two-photon absorption.?*

Violation of the Cauchy-Schwarz inequality has been
studied by Clauser?S in the radiation emitted in an atomic
two-photon cascade (Fig. 3). Three atomic energy levels
are involved. The atom is pumped from the ground state
to the upper level, and then emits a photon of frequency
®, upon spontaneously decaying to the middle level, and
subsequently a photon of frequency w, upon decaying to
the ground state. Measurements of the intensity correla-
tions within and between each beam of frequency @, and
@, as illustrated in Fig. 2 allows a test of the Cauchy-
Schwarz inequalities. As with the atomic fluorescence
case, the effect of atomic number fluctuations is to de-
stroy violation of the direct Cauchy-Schwarz inequality
(5). However, violation of the inequality (6) is still possi-
ble, and experiments performed by Clauser obtain good
agreement with the theory. Violation of the Cauchy-
Schwarz ine?uality has also been predicted in the two-
photon laser?’ and parametric amplifier.?

In quantum optics, quasiprobability distributions are

J=0

\w,

N 1=
/ >

J=0

FIG. 3. Atomic two-photon cascade.

often employed to describe the field in terms of classical ¢
numbers rather than operators. One such representation
is the Glauber-Sudarshan P function,?®3° in which the
density operator for the field is expressed in a diagonal
coherent state representation as follows:

p=[ P({a})| {a]){{a] |d*(a] . (13)

| {a}) represents a multimode coherent state, the a; be-
ing complex variables and the integration being over the
complex planes of the a;. The advantage of such a P pre-
sentation is that the normally ordered correlation func-
tions are expressed in the form of simple integrals

(a'ra)=fP(a)la]2d2a ,
((@h%a?)= [ P(a)|a|*d%, (14)
(a'ab™)=[ [ P(a,B)|a|?|B|?d?xd?B.

Where P(a) exists as a nonsingular positive function,
comparison with Egs. (3) shows that the inequalities
g%0)>1 and the Cauchy-Schwarz inequality (6) are
derivable. In this case, the statistics of the field may be
described classically. Quantum behavior will occur in a
regime where no well-behaved P(a) function exists. In
this case other quasiprobability distributions are often
used, for example, the Q and Wigner functions. Of par-
ticular interest to us is the generalization of the P repre-
sentation®"3? as follows:

,s=fp({a,aTni(fil,;—f%‘{—;%Ldm{a},{a*n (15)

in which the correlation functions become

(a'a)= [ Pla,a"}aladput{a},{a'}),
((af)2a2)=fP[a,aT}(a*)zazdp({a},{a*}) , (16)
(a'ab'p)= [ P{a,a",B,8"}a'aB'Bdu({a},(a')) .

a,-,a} are independent complex variables (implying an ex-
tra dimensionality) and du({a},{a'}) is the integration
measure. The variable a'a is no longer necessarily real
and positive, and hence the classical inequalities (4)—(7)
are no longer implicit.

Another statistical property to be considered is the fluc-
tuations in the quadrature phases of the field, character-
ized by the variances V(X;) and V(X,) where for a
single-mode field

X,=(a+ah2, X,=(a—ahs2. (17)
The Heisenberg uncertainty principle predicts
VXV (X2 5 .
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Hence, the value 1 is the minimum uncertainty product,
and reflects quantum noise. A coherent state is 2
minimum uncertainty state thh V(X)) =V(X,)=

The phenomena of squeezmg occurs when the vanance
in one of the quadratures is reduced below that of a
coherent state, i.e, V(X;)<+. Squeezing refers to a
reduction in quantum noise which is not present in classi-
cal radiation theory [where V(X;)>0] and thus is not a
direct test of quantum versus classical theories. However,
there is a sense in which squeezing is a quantum property.
We write in the Glauber-Sudarshan representation

ViX))=+++12¢a"a)+(aa)+(a"a")
=+ IH—fP(a)[((a+a")2)—(a+a*)2]d2a
(18)
where
(a;,a;) =(a;a;) —(a;)(a;) .

Squeezing is possible only when P(a) becomes nega-
tive. Such a property is associated with quantum light
fields. Squeezed states of light have been of recent in-
terest as having potential applications in quantum non-
demolition measurement theory>* and in optical communi-
cations.3*33

A simple example of a system which may exhibit pho-
ton antibunching, violation of the Cauchy-Schwarz in-
equality (6), and squeezing is the nondegenerate
parametric amplifier, described by the interaction Hamil-
tonian:

H =i#ig(ab—a'b’). (19)

Time-dependent solutions are

a =a(0)cosh( | g |t)~—l%bf(0)sinh( gln,

b =b(0)cosh( | g |t)-——|’—ggTaT(0)sinh( lg |t .
Photon antibunching is possible if the initial state for the
field is a highly excited coherent state.

To examine squeezing, for simplicity we consider the
field to be initially in the vacuum state. One finds
(a?)=(b?)=(a)=(b)=0 and thus no squeezing is ex-
hibited in the modes a or b. The element {ab ), however,
is nonzero. Upon examining the combined mode
e =(a +e~'%b)/V2, one finds

V(Xy)=5++[(a"a)+(b"b)
+e~"(ab)+e'*(a'bT))]. (1)

(20)

For the optimal choice of phase ¢, and since (a'a)
=(b"p),

ViX)=+++(ala)—|(ab) ). 2)
The rotation of modes and selection of a phase shift has
been necessary to capture the nonzero phase element
(ab). Squeezmg is thus obtained only when
|{ab) | >{a'a). The classical theory represents the sin-

gle modes a and b as stochastic amplitudes €; and e,
respectively, as described in Eq. (3). Consideration of

((e1+Ae3)ef +A%,)) >0
and
A=A(Re(€€;) +i Im(€i€;))/ | (€1€;) |
proves a Cauchy-Schwarz inequality
| (&) |*< (e |2 e]?) .
Quantum mechanically ((a +kb*)(a +A*b)) implies the

inequality (since {(a?)=(ab’)= - =0)
|{ab)|*<(a ta)24(ata) . (23)
Thus, the maxrmum value of the difference

({ab)—<{a'a))is + as (a'a) becomes large. This corre-
sponds to perfect squeezing. In fact, the solution (20) im-
plies satisfaction of the identity

|{ab)|*=(a'a)?*+(a"a) (24)

and the variance V(X,)=te ~2/¢!* shows perfect squeez-
ing in the long-time limit.

The violation of the classical inequality |{ab) |?
< (a'a)? is not a directly measurable violation of a
Cauchy-Schwarz inequality since (ab) is not an observ-
able However, the Cauchy-Schwarz inequality (6)
(atab'b) < ((a%)2a?), predicted by class:cal radlatlon
theory is also violated. In fact, the quantity a ta—b'bis
a constant of motion and the modes a and b are maximal-
ly correlated at all times,

(a'ab’b)=((a"a?)+(a'a),
(ala)=(b"p),

holding for all g and implying the maximum violation of
the Cauchy-Schwarz inequalities according to the quan-
tum result (11).

Quantum models of the degenerate parametric amplif-
ier in an optical cavity, including pump and dissipation
terms have been studied by Drummond et al.,>* Milburn
and Walls,’® and Lugiato and Strini.’’ Analyses of the
nondegenerate parametric amplifier in a cavity have been
given by Graham,”® who used a Wigner representation,
and McNeil and Gardiner,?® who used a generalized P
representation. The features of squeezing and antibunch-
ing and violation of the Cauchy-Schwarz inequality are
shown to be still present in these models. In fact, Gra-
ham* has derived the following forms of the identities
(24) and (25) for the case of nonzero and equal dissipation
from each mode a and b in a steady state

(i) (atab™d)=((a’)a 2y +1¢ata),
(ii) |(ab)|%*=

(25)

(afa)?+1(a"a), 26

showing directly violation of Cauchy-Schwarz inequalities
and squeezing to still be possible, although there has been
a reduction in the cross correlations between a and b
below the maximum allowed value.

The preparation of correlated states of photons imply-
ing violation of the classical Cauchy-Schwarz inequality



1264

are thus important in providing a test of quantum versus
classical theories. As pointed out by Graham® the ideal-
ized lossless Hamiltonian (19) produces a maximally
correlated pure quantum state in which a measurement of
the photon number in a mode a determines completely
and precisely the photon number in mode b. Similar
highly correlated states (spin or polarization states) have
been important in discussions of the completeness of
quantum mechanics and the reader is referred to the
Einstein-Podolsky-Rosen paradox.!® Particularly impor-
tant to the question of the completeness of quantum
theory is that such states allow a violation of another
well-known classical inequality: Bell’s inequality.® We
are concerned with the violation of Bell-type inequalities
in highly correlated states such as produced by a nonde-
generate parametric amplifier and also the effect of dissi-
pation on any violation observed.

III. BELL’S INEQUALITY

The previous section reviewed evidence that the classi-
cal theory of electromagnetism cannot adequately explain
results of all second-order correlation experiments. The
quantum-mechanical interpretation of the violation of the
classical theory of radiation inequalities is considered evi-
dence for the particle nature of light. However, it is the
view of many physicists that quantum mechanics is an
incomplete theory and the reader is referred to discussions
of the Einstein-Podolsky-Rosen paradox.!®!® Bell’s
theorem®—? refers to a very general question. Can the
quantum theory describing the radiation field be complet-
ed by any local hidden variable theory?

A hidden variable theory is defined as any physical
theory which postulates the existence of states |A) in
terms of which the expectation value of a quantum-
mechanical observable O is written

(0)= [ p(M)0(M)dA . 27)

The p(A) denotes a normalizable probability distribution
over the states |A), with hidden variables A defining the
]
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state |A). The integration over A may be continuous or
discrete, and there is no restriction on the number of vari-
ables A. O(A) is the expected value of O, given that the
system is in the state | A) specified by the variables A.

Now consider the modification (Fig. 4) of the experi-
mental arrangement of Fig. 2 used to test the Cauchy-
Schwarz inequality. The 50%-50% beam splitters are re-
placed by double-beam polarizers 4 and B. The polarizer
A (B) transmits light polarized along an axis of 6(¢) to
the reference x axis in the x -y plane, and reflects light po-
larized in the orthogonal direction, in the x -y plane. Pho-
tomultipliers detect intensities (I, ), (I,_), (Ip,),
and (Ip_) as illustrated, and correlators measure
(I4,Ig,), etc. The functions (I,,), (I, Ip.), etc.
depend on the angles 6, ¢ of the polarizers, as well as the
properties A of the incident light. The function p(1) is in-
dependent of 6 and ¢. A hidden variable theory writes, in
general,

(LuIgdas= [ pMILgi(A,0,6)I5;(A,0,8)dA

where we denote, for example, I, (A,0,¢4) the expected
values of the intensity at 4, given the state |A).

It would seem reasonable to assume® =1’

IA,'(A.,G,¢)=IA,'(}\:,0) ’
IB]()\"B)¢)=IBJ()\’¢) .

This assumption is referred to as the locality assumption
and says that, for a given A, the results at B cannot de-
pend on the value 6 the experimenter chooses to select at
A. It prescribes that the measured value of a quantity in
one system is not casually affected by what one chooses to
measure on the other system. A hidden variable theory
satisfying (29) is called a local hidden variable theory.
The assumptions (28) and (29) for a realistic theory seem
quite reasonable and necessary. We note that we are no
longer making any assumptions [of the type (8)] that the
field is wavelike. However, it is well known that these
postulates predict inequalities (Bell’s theorem) which
clearly contradict the predictions of quantum mechanics.
We consider the following expectation value:

(28)

(29)

(T4 Ip Y+ (I T _)—T 4 Ig_)— (I, _Ip.)

E(6,¢)=

AUgy =14 W —1I5_))
T U+ Mg +I5 )

Quantum mechanically, the expectation value is written

((ctey—cte_Ndid,—d*d_):)

((ctep+cte_Ndid, +d*d_)) '

E(6,9)=

(31)
where : : denotes normal ordering and the detected modes
c,,c_ and d,d_ correspond to the fields at 4,4 _
and B ,B_, respectively.

Assuming the existence of a local hidden variable
theory, one may write the observables E(6,¢) as follows:

Ly dp ) +{I_Tp Y +Ty Ip ) +{I4_Ip,)

(30)

—

1
E(9,¢)=—5fp()»)[IA+(7»,9)—IA_(7»,9)]
X[Ip 4 (A¢)—Ip_(A,$)]dA , (32)

where

D= [ p(ML44(A,0)+1,_(1,0)]

X[Ip4+(A,¢)+1p_(A,8)]dA .

The total intensity through each polarizer is written
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Ia, P Ia Is p Ts,
L,
PH S b~ & LPM

B4+
_| d-

FIG. 4. Test for violation of Bell’s inequalities. P:
polarizer/beam splitter.

IA)=I,,(A,60)+1,_(A,0),
Ig(M)=Ig  (A,$)+15_(A,9),

and I,(A) and Ig(A) are, in principle, independent of 6,¢
and, in fact, correspond to the intensity of the light at 4
and B with polarizers removed. Thus,

(33)

D= [ p(MI(MIp(A)dA . (34)
We write

- I, (0L8)—1,_(1,6)

5,40,0)= T, , -

5 gy Jzx R =I5 _(39)

a(h,8)= Ip(A)

and rearrange as follows:
1 — _
E(9,¢)=—D-ff(l)SA(}.,G)SB(A,tﬁ)dk ,

D= [ f(Mdr, (36)

where f(A)=p(A) 4(A)Ig(A). The functions are bounded
at

|S40)|, |Sp(d)]| <. 37

Bell’s original proof® derives an inequality assuming a
local deterministic [ | S4(A,0) | =1, | Sp(A,¢)| =1 for all
6,4] theory, since in the idealized case that Bell con-
sidered initially of a single photon in each direction a and
b and ideal or maximum correlation between the polariza-
tion of each photon for all 6=4¢ [i.e., S,(A,0)=S3(A,0)
for all 6], it is possible to prove determinism is necessary.
The necessity of a deterministic theory [I,,(A,0)=1,0
and I, _(A,0)=1—1,(A,60)] was discussed in Sec. II for
the case of a single photon incident on a beam splitter and
also follows since (I, (A,0)I,_(A,0))=0 for all 6. In
fact, considering the set up in Fig. 2 to test violation of
the classical Cauchy-Schwarz inequality, the maximum
correlation [Eq. (25)] allowed by quantum theory between
modes @ and b also implies a deterministic theory (i.e., the
existence of a pure quantum state). However, such per-
fectly correlated pure quantum states are unlikely to exist
in a real experiment. We have already seen, with refer-
ence to the Cauchy-Schwarz inequality experiment, that
the effect of dissipation on the system is to reduce the in-
tensity correlation [Eq. (26)] between modes below the
maximum value. It was shown that the maximum corre-
lation was not necessary to still show quantum statistics
and a violation of the classical Cauchy-Schwarz inequali-
ty. Similarly, the assumption of determinism is not neces-
sary to derive other forms of Bell’s inequality which are
violated by certain quantum states, and we proceed as in
Bell’s second 1971 proof,®!” allowing for nonperfect
correlation in polarization. We also do not restrict atten-
tion to the single photon [ (A)=I5(A)=1] case, but al-
low IA(A),IB(}\.) >0.

Thus, proceeding as in Bell’s 1971 proof,

E(6,9)—E(6,¢' =%f dAf(A)S4(6,0)Sp(¢,A)[1+5,(6',1)Sp(¢",A)]

— 5 [ R F 546,854, 12548, 1S5(0,]

| E(6,$)—E(0,8")] < —;— [ drf(O[1£5,(0',1)55(8', 1)1+ —}5 [ drf(O[1£5,(6',1)55(4,1)]

(38)

=24 [ dAS(VI54(6,1)S5(8, 1) +5,4(6,1)55(8,1)]

=2+[E(6',¢')+E(6',4)] .

—2<B<2, (39)

where
B=E(0,§)—E(6,¢')+E(6',¢')+E(6,¢)

which is a Bell’s inequality, termed the Bell-Clauser-
Horne-Shimony-Holt (Bell-CHSH) inequality.

The inequality derived above assumes a general local
stochastic hidden variable theory. There has been, howev-

er, another assumption [Egs. (33) and (34)] made which
needs testing in a real experiment where ideal conditions
may not hold. The assumption has been made that the in-
tensities I4(A) and Ig(A) [i.e., the function f(A)
=p(A) 4(A)Ig(A) and the integral D] are independent of
the polarizer angles 6 and ¢. Clauser and Horne* derived
a modified form of Bell’s inequality which does not re-
quire this auxiliary assumption. The inequality refers to
an experiment using single channel polarizers which allow
detection of the mode transmitted in the direction of the
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(a)

@ IA+ : IA S

l Ig.
P

A B
(b) 1 . .
A+ A 8
[P = s {PH]

A B

FIG. 5. Test of Clauser-Horne inequalities. (a) Measurement
of G(6,¢). (b) Measurement of 7 4(6).

polarizer axis only.

Consider the experimental arrangement illustrated in
Fig. 5. The expected value (I, I, )g4 is written in
terms of a local hidden variable theory

G(0,0)=(I4 15 as= [ dAp(MI(A,0)5 (A,8).
(40)

The total intensities measured at A and B, respectively,
without the polarizers present are independent of 6 and ¢.
Hence, I,(A) and I3(A) are independent of € and ¢ and
we have I (M) >1,,(A,0) and Iz(A)>1Ip  (A,4).

Thus,

L+ (A0)5,(A,9)
LI
41)

where f(A)=p(MI (A)Ig(A). Now the expected value of
the intensity products (I, Ip)gand (I,Ig . )4 [Fig. 5(b)]
are

G(8,8)=(I4 15 es= [ dLf(D)

ra@=(I,Ip)e= [ dAp(MI 4 (A,0)I5(R)

14,(A,0)
_fdkf(l) I,A) ° “2)
2
(A, ¢)
LIy Vo= [ drfin)2x2®)
re(@)=(I,Ig )4 f S) AT
The following lemma was used in the Clauser-Horne
proof.
Lemma
if 0<x, x’<X and O0<y, y'<Y (43)
then

0>xy —xp'+x'y+xy'+x'Y —yX > —XY .

Hence defining

L4 (2,0) L (A8)
L YT T,
Ip (A¢) Ip+(Ad")
T YT T L

the lemma (X =Y =1), after multiplying by f(A) and in-
tegrating the left-hand side inequality, predicts the

Clauser-Horne inequality
G(6,)—-G(6,46')+G(6,9")
+G(6,¢)—r (0)—rp(¢)<0. (44)

The Bell-type inequalities above arise from the assump-
tions of any local hidden variable theory, and in this pro-
vide a stronger test of quantum mechanics than the in-
equalities considered previously. One example of a sys-
tem, suggested by Clauser et al.,*! predicted by quantum
mechanics to violate the Bell inequalities is the
J=0—J =1-J =0 two-photon cascade in the singlet
states of an alkaline earth (Fig. 3). Laser radiation pumps
the atom into an excited J =0 state, from which the atom
may decay to the ground state via emission of two pho-
tons. Violation of the Cauchy-Schwarz inequality for the
emitted radiation has been discussed in Sec. II. Because
of parity and angular momentum conservation, it is easy
to show that there is a strong correlation in the polariza-
tion of emitted photons. Conservation of momentum
demands that the photons move in opposite directions,
along the z axis. In terms of a linear polarization basis we
write in quantum mechanics the idealized combined two-
photon state as

9 =—= (a+b++a bt)|o). (45)
a, and a_ are boson operators for modes travelling in
the z direction, with polarization vectors along the x and
y axes respectively. Similarly b, and b_ represent
operators for the mode propagating in the —z direction.
The detected modes at A,,4_,B,B_ are orthogonal

transformations ¢ ,c_,d,,d_, respectively, of the
modes a . ,a_,b,b_:

c,=a_ cosf+a_sinf, d, =b_ cos¢+b_sing, @6)
c_=—a,sinf+a_cosb, d_=—b_ sing+b_cosé .

6 is the angle between the polarizer axis of 4 and the x
axis. Calculation of the joint correlation functions is
straightforward.

(cte,dld, )=cos?y, @)
(cte,dld_)=sin%y,

where y=60—¢. Calculation shows
E(6,6)=cos(2¢) (48)

and on selecting

V=0—0=0'"—¢=0'—¢'=3(60—9¢") (49)
one sees
B =3cos(2¢))—cos(6) . (50)

With ¢=22.5°, B=2V2 showing clear violation of the
inequality (39), |B | <2. One may show similarly a
violation of the Clauser-Horne inequality (44).

Recent experiments by Aspect et al.'' =1 have directly
verified the quantum-mechanical predictions (with no
corrections for features such as atomic number fluctua-
tions necessary), thus providing the strictest test yet of
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quantum mechanics.

We are interested in other states of the radiation field
produced by nonlinear interactions which give violation of
Bell’s inequalities. We point out*>* in the first instance
that such states cannot be described in terms of a non-
singular positive P(a) representation. Consider a test of
Bell’s inequality involving four modes of the field:
a,,a_,b,,b_, for example, and one considers the rotat-
ed modes ¢, ,c_,d,,d_ of Eq. (46). Denoting the ¢

numbers for the @, ,a_,b,b_ modes as a,a_,B,,8_,
|

E0.$)= [ PlaX |y, >~ 7|16, |~ |5_]

respectively, we define the following ¢ numbers for c_,
c_,d ,and d_:

Y4+=a,cos@+a_sinf, &,

=B, cos¢p+P_sing , 51)
Y-=—a,sinf+a_cosh, §_=—pP, sing+B_cosd .
Considering the expression (31), we may write [denoting

a=(a,,a_,B,,B_)] in the Glauber-Sudarshan P repre-
sentation:

2)d’q

=— [ P@)|ay |+ a_ || By |2+ | B |98(r)S 61’ , .

where
X=[P@(|ay|®+ |a_ ||y | >+ |B- | Dd’a
and

|7 P~ 17—

12 < |8, [2—18_]?
lay |2+ |a_|?’

S(6)= .
|B+ |2+ |B-|?

Since y + is a function of 6 and not ¢, and 8. is a function
of ¢ and not 6, the Glauber-Sudarshan representation is a
local one.

The form of Eq. (52) is identical to that for E(0,¢) in-
troduced in Eq. (36). Hence, one can prove the Bell in-
equality provided the P(a) function is positive and nor-
malizable. For fields possessing a singular or negative
P(a) function, the proof breaks down and violation of the
Bell inequalities is possible.

Alternatively, one could use a generalized P representa-
tion (15). In this case the form of the expr&sswn for
E(6,¢) is the same, but replacing y* with y an indepen-
dent complex variable. Thus, one can no longer place the
bounds on S(y) and S(8) and violation of Bell’s mequah-
ty is possible. A solution for the positive P function, in
which P({a o' }) is always gosmve and the integration
domain is over the entire ;,a; complex planes,’! has been
derived for the pure quantum state (45) by Drummond.*

S(y)=

IV. MODEL INTERACTION HAMILTONIANS

In Sec. II we considered the Hamiltonian
H =#i(kab+«x*a'b") (53)

and showed how a system modelled by (53) will generate
statistics violating, in particular, the Cauchy-Schwarz in-
equality, as well as showing other features such as squeez-
ing and antibunching. We are now interested in similar
types of Hamiltonians describing nonlinear interactions
which produce a correlated state of photons and show a
violation of Bell’s inequalities.

A. Four-mode example

The four-mode field is worthy of consideration since
Bell’s test may easily be formulated in this case. We may

[

illustrate Bell’s inequality by a discussion of the generali-
zation of (53) to two pairs of coupled modes

H=#kab', +katbl —x*a b, —k*a_b_), (54

where k=ge €,. For example, a, and b, may represent
two photons of the same linear polarization (along the x
axis, for example) but travelling in opposite directions
(along the z axis), while a_ and b_ represent photons
also travelling in opposite directions along the z axis but
with orthogonal polarization (y axis). The frequency and
phase matched Hamiltonian may thus describe a system
of three-level atoms with selection rules of the type men-
tioned in Sec. III interacting with two counter prop-
agating pump fields €, and ¢, (assumed classical) in a typ-
ical four-wave mixing scheme.

The time-dependent solutions to the equations of
motion are

a.—=a. (0)cosh( | x| 1) _in;(O)sinh( kD),

| k

—'® 4% (0)sinh( |k | 1) .
e =

Next consider the following orthogonal rotation of modes

as may be produced by two beam splitters with transmit-
tivities cosf and cosé:

(55)
by =b(0)cosh( |k |1?)

c,=a cosf+a_sinf, c_
d,=b cos¢p+b_sing, d_=—b_sing+b_cosd .

In the example above, the beam splitters correspond to the
double beam polarizers discussed in Sec. III and illustrat-
ed in Fig. 4. Alternatively, a, and a_ (b, and b_)
could represent modes impinging at right angles on oppo-
site sides of a semitransparent mirror beam splitter 4 (and
B), the modes a, and a_ (b, and b_) being dis-
tinguished by different propagation directions as opposed
to polarization.

Placing photomultipliers behind the polarizers, one is
able to measure the photon number correlation functions
and calculate E (6,4):

((chey—cle_Natd,—dld_))
(ata,+ata_)blb, +b7 b))

= —a sinf+a _cosf ,
(56)

E(6,¢)=

(57)
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For 6=¢, E(6,4) corresponds to a measure C of the
correlation in polarization of the emitted photons, simpli-
fied by symmetry between a and b to

_ (aﬂ_a+b1b+ )—(ala+bf_b_>
(ata,blb, )+(ala bl b )

For the pure quantum state (45) this correlation is perfect,
i.e.,, C=1. The function E(0,¢) for fields of the type (45)
and also (54) with an initial state a vacuum is independent
of the particular reference axes xy chosen for the linear
polarization basis [i.e., E(6,¢) depends only on the differ-
ence y=60—¢). This result follows since the Hamiltonian
(54) is invariant under the transformation (56) (with 6=4¢)
to a different linear polarization basis. Given that the
nonsymmetrical functions such as (ala +bﬁ_b_ ) are
zero, this result is equivalent to the following identity:

(atbla,b,y=(ata bt )—(ata, blb_). (59

=E(6,6) . (58)

Calculation then shows

(cte,dld, ) =Cocos?+C;siny ,

(60)

(cteldldl ) =Cysin®y+C cos?y,
where Co=(a%a blb,) and C;=(ala b'b_). Fi
nally quantum mechanics predicts

E(6,6)=Ccos2y, C Co=C, (61)
,¢)=C cos2y, =—
C0+C1

When one considers
B=E(6,)+E(6,¢')—E(6,¢')+E(6,¢)

one finds with the choice of angles (49) that
B=2V2C.

Thus, fields of the type (45) and (54) (with the initial
state a vacuum), invariant under the transformation (56)
with 6=¢ to a second orthogonal basis, will show a viola-
tion of Bell’s inequality provided the correlation C of po-
larization between modes a and b is sufficiently large
C >0.707. The idealized field (45) produced from two-
photon spontaneous emission from a single atom has
maximum correlation C=1 and shows the maximum
violation of Bell’s inequalities. The four-mode parametric
amplifier (54) (initial state a vacuum) has the solution

1

= . (62)
142 tanh’( |k | 1)

Thus, one obtains a violation of Bell’s inequality for small

|k|t. As |k|t—ow, C—+ and the violation is de-
stroyed.

When dealing with multiparticle fields, the correlation
C decreases even though one can still in some states have
perfect correlation between certain pairs of photons.
Drummond* considered cooperative spontaneous emis-

sion of N photon pairs from N atoms [|¢)
=(al b’ +at67)¥|0)] and showed that violation of
modified Bell inequalities involving higher-order correla-
tions is still possible. We remark that for the four-mode
parametric amplifier (54) discussed above, such higher-
order Bell inequalities are still only violated in the small
| k | t regime.

There are at least two important features of the quan-
tum states discussed above which allow violation of Bell’s
inequalities. First, we have strong violation of the classi-
cal Cauchy-Schwarz inequality, i.e., the modes a, and
b, (a_ and b_) are maximally correlated:

(aha,blb,)=(ah )% )+(ata,).

For example, considering the idealized state (45) in
which one photon is emitted into each mode, we have
(a'a,b'b,)=(a"a,) implying perfect correlation
between the detected polarization of each mode. Impor-
tantly, the correlation is perfect for all 6=¢. No classical
wave field can explain such perfect correlation for all an-
gles 6=¢. The idealized state

l¢)=%2(a’lbl +atbt)|0)

is written in quantum mechanics as a superposition of
states. Although there is no intrinsic phase in the system,
the element (a',b%,a_b_) is nonzero due to quantum in-
terference between states a6, |0) and a' b |0). This
is a second important feature of states showing violation
of Bell’s inequality. To illustrate the quantum interfer-
ence, we introduce phase shifts between the modes a
and a_ and b and b_ as follows:

c4 =a+cos(9+a,sin0ew’ ,
d,=b, cosp+b_singe' ",
_ iv (63)
¢c_=—a_ sinf+a_cosbe ',

d_= --b+sin¢+b_cos¢ei'p2 .
Then calculation shows for states of the type discussed
above where nonsymmetrical elements are zero
E(6,6)=C[cos(20)cos(2¢)
+sin(28)sin(2¢ )cos(¥; +1,)] . (64)
The optimal situation is ¥;+¢,=0. For ¥+ ¢,=7/2

one obtains complete factorization with respect to 8 and ¢
and violation of Bell’s inequality is not possible.

B. Two-mode example

The states shown above to violate Bell’s inequalities
showed two strong features: maximum intensity correla-
tions between linearly polarized modes propagating in op-
posite directions, thus giving a strong violation of the
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classical Cauchy-Schwarz inequality; and the demonstra-
tion of quantum interference. The predictions of local
hidden variable theories via Bell’s inequalities are formu-
lated in terms of correlations of four beams. We are thus
introduced to the possibility of such experiments per-
formed on two-mode output systems showing strong
violation of the classical Cauchy-Schwarz inequality, with
appropriate use of beam splitters to provide the quantum
interference.
Consider the idealized state

v=a'bt|0), (65)

where |0) symbolizes the joint vacuum state for mode a
and b. Such a state models for example the two-photon
cascade where a single excited atom emits a photon of
mode a and of mode b. We consider also the two-mode
Hamiltonian studied earlier

H =#(x*ab +xa'b’) . (66)
The time-dependent solutions for (66) are given by

—IK

b%(0)sinh( |k | 1),
x|

a=a(0)cosh( |k | 1)
(67)

—IK

a'(0)sinh( |k | 1) .
x|

b =b(0)cosh( |k | 1)

Both systems (65) and (66) prepare correlated pairs of
photons and show violation of the Cauchy-Schwarz in-
equality. Violation of the Bell inequalities may be shown
as illustrated in Fig. 6 by splitting each of the two output
modes a and b with a 50%-50% beam splitter. The
modes are then recombined (@ with b) by the second beam
splitters with variable transmittivities given by x and w.
Thus, the final detected modes are defined

ci=ax+by, dy=aw—bv,
(68)
c;=—ay +bx, d,=av+bw ,

where x2+y2=1 and w?+v?=1. For convenience we
express x =cosf, y =sinf, w =cos¢, v =sing. Calcula-
tion shows

J

(a'ab'b)cos[2(6— )]+ ((a')2a?)cos(20)cos(24)

FIG. 6. Test of Bell’s inequalities: two-mode source.

(cleidld,)=(a"ab"b )sin*(0—¢)
+ ((a")?a?)(cos?6 cos’¢ +sin%0 sin%g) ,
(cle,dld,y=(a'ab's Ycos*(6—¢)
+((a")%a?)(cos?6 sin’p +sin6 cos?$)

(69)

since nonsymmetrical terms such as ((a')%ab) are zero
for states of the type (65) and (66) we are considering.
Defining

(:(eley—cley)dld, —dldy):)

E(6,0)=
6:4) (a'ab'b)+{(a Pa?)

The derivation of the Bell inequality

—2<E(6,¢)—E(6,6"+E(6',¢)+E(6,¢')<2

satisfied by local hidden variable theories and concerning
the correlations of the four detected beams is directly
applicable. We select the following values for the parame-
ters

0=0, ¢=7/8, 0'=¢/4, ¢'=3m/8

and find
E(6,¢)—E(0,¢")+E(0',¢")+E(6',¢)
= (atab'b)2v2 (72)
(atab'b )+ ((a)a?) °

E(6,¢)=
<:(CICI+C;C2)(dId1 +d;d2)) ’ (70)
we find
(71)
T
Thus, violation of Bell’s inequality is attained where
t ot
' {a'ab’b) >0.707 . (73)

C'=
(atab™b )+ ((aT)a?)

Clearly a strong violation of the Cauchy-Schwarz inequal-
ity in the prepared state will imply violation of the Bell
inequality. The state (65) has {(a')2a?) zero and hence
C’=1, thus exhibiting the maximum violation possible.
The state (66) satisfies (a'ab'd ) =((a")%a?) +(a'a) and
hence it is seen that the Bell inequality is violated in the
region of small (a'a) or for small |« |t

Highly correlated pairs of photons may be produced by
parametric down conversion in a nonlinear dielectric.
Early experiments were conducted by Burnham and Wein-
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berg.** Recent experiments by Friberg, Hong, and Man-
del*®® have produced photon pairs in a potassium dihydro-
gen phosphate crystal with a correlation time of the order
of 100 psec.

V. VIOLATION OF BELL’S INEQUALITY
IN DISSIPATIVE SYSTEMS

The states demonstrated in Sec. IV to violate Bell’s in-
equalities are pure quantum states with maximum intensi-
ty correlations between two modes a and b. In reality, a
quantum system will always interact with its macroscopic
environment introducing such effects as dissipation. For
example, a more realistic description (discussed in Sec. II)
of the two-mode parametric amplifier (65) would be

H=ih(ca'bt—clab)+ihe(ct —¢)

+a'T, +all +6'T, +6T", (74)

where c is a quantized pump mode, pumped by the classi-
cal laser field €, and I',,T, are reservoir operators model-
ling the environment and introducing a dissipation rate «
of field modes a and b. A strong violation of the classical
Cauchy-Schwarz inequality has been shown to be still pos-
sible in the steady state for small (a a) 2839 1n fact, as
dlscussed above, the identity (a'ab’d)= ((a")2 %)
++{a Ta) holds in the steady state.’® The test of Bell’s
mequahty formulated above for two-mode systems is
directly applicable and the condition (73) on the intensity
correlations for violation of Bell’s inequality can still be
satisfied, for small (a'a ).

In this section, we consider the four mode system
described by the Hamiltonian (54) with two pairs of cou-
pled modes. We include damping of each mode, and also
coherent pumping of the pump mode, which we now
quantize in this more complete model. We illustrate how
the quasiprobability distributions discussed in Sec. II may
be used to describe the system in terms of ¢ numbers rath-
er than operators. By examining the steady-state statis-
tics, we aim to show violation of Bell’s inequalities, thus
expanding the applicability of the test of local hidden
variable theories to systems including dlssx?atxon This
result has been presented by Reid and Walls*? in summa-
rized form.

ot

i=1

where y; are the mode damping rates, and n/ are the
mean numbers of thermal photons in the heat baths I';.

The operator equations may be converted into a c-
number:’! classical-type Fokker-Planck equation by ex-
panding the density operator p in terms of the generalized
Glauber P representation, developed by Drummond and
Gardiner,’!

fP(a,, )——{-'—%(éi}l-Ld ({e },{a}\}), 77
where o«; (i=1,2,3,4,5) correspond to modes a;

2 271"1 (aipar

i=1

s) 1
L 7[H1+H2’P]+2Y¢(2aipat _'az ap— palat)+

The model Hamiltonian we wish to study is, in the in-
teraction picture:

3
H':EHI';

i=l1
H =ific'e,c(a’ bl +a_b_)
—ihk'*e T* cfacb,+a_b_),
H2=zﬁe(c —c),

(75)

5
H3‘—" E(G,F,T—f—a,fr,) .
i=1

H | describes the interaction of a suitable atomic medium
with the fields. For example, a_ and a_ could be cavity
modes of frequency w, propagating in the same direction
z, but with perpendicular polarization vectors (aligned
along the x and y axes, for example). b, ,b_ are modes
of the same frequency  but propagating in the — z direc-
tion, and with polarization vectors defined similarly to the
a modes.

The pump modes €, and ¢ also have propagation vec-
tors in opposite directions, so that the phase and frequen-
cy matched Hamiltonian H; describes a four-wave mix-
ing process. Mode c is pumped by an external laser driv-
ing field of amplitude €, and this process is modelled by
the Hamiltonian H,. The intensity of the driving mode
€, is assumed to be sufficiently large and undepleted that
we may replace the mode operator by the classical laser
amplitude, the complex number ¢,. The atom-field in-
teraction H; may thus describe a four-wave mixing via a
two-photon atomic process, in which a selection rule dic-
tates that the interaction proceeds via modes of the same
polarization. We point out, however, that the solutions to
be presented may be applied to any physical system
described by a Hamiltonian of the form (75). Irreversible
damping of the cavity modes c¢,a4,b+ is described by the
Hamiltonian H;. For convenience, we have denoted the
system modes a,,a_,b, ,b_,c by a; (i=123,4,5),
respectively. I'; represent reservoir operators interacting
with each mode aq;.

Standard techniques*® are employed to eliminate the
heat baths and derive the equation of motion for the sys-
tem density operator p. The master equation is

paiaif"ajaip +ai?P“i) ) (76)

T
(i =1,2,3,4,5). We denote a;=a ,ap=0a_,a;=0,,a,
=pB_,as=n for ready identification. |{a;}) is the five-
mode coherent state |a,) |a_) |B,) |B_) |n). Pis
the quasiprobability function defined over the mtegratlon
domain, yet to be determined, and du({e;},{a]}) is the
integration measure. The stochastic variables ; and «]
are independent complex variables, no longer complex
conjugate as in the usual Glauber P representation. Using
operator rules, identical in form to those used in the usual
Glauber formulation, one may derive the following
Fokker-Planck equation:
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P
%T= {I—-‘,%(e—ysn—xa+3+—xa_3_)— 3a (— 71a++m7/3+)— (——y;,a +m)B)r
+
d t t
_ag-:(._yﬁ++mpa+) -a-ﬁ—_(—y,ﬁ_+m;a_) +c.c.
3 i i 0 ?? 9?
+ 32, 9B, K+ 3a_op_"" +c.c. | +yn§ 3a,da, +7an¥ 3a_da.. +ym¥ 38, 08",
L i (78)
P,
+yand YR B’f +7vsnf anan'

where c.c. means the repeat of terms of immediately
preceding, but interchanging a;<>a;", k<«*, and e—e*,
and we define k=«'g,.

In a semiclassical theory (one in which the electromag-
netic field is considered classical) the double derivative
noise terms of the form (3?/3a.dB,)kn are absent.
These terms are a consequence of the noncommutativity
of boson field operators in quantum electromagnetic
theory and are referred to as quantum noise terms. It is
the quantum noise terms which allow quantum effects
(such as violation of Bell inequalities) in the output statis-
tics, and which force us to use a quantum quasiprobability
distribution such as the generalized P representation. The
work of Drummond and Gardiner®' shows how the quan-
tum noise terms, in the normal Glauber P representation,
destroy the positive-deﬁnite nature of the diffusion matrix
D However, in the extra dimensional P representation,
one obtains a positive definite diffusion matrix.

It is worthwhile examining the deterministic or semi-
classical behavior of the system. This refers to the
behavior in the presence of zero noise, that is, where the
stochastic nature of the variables may be ignored

({a;)=a;). The steady-state (q;
put field intensities is

=0) solution for the out-

2 0’ € <Ethr
lay |*+a_|?=1, (79
;(E—‘Ethr)’ €2 Etpr
where €, =7s5Y/k and we have considered the case of

symmetrical damping: y;=y,=y3=y4=y. It is seen
that there is abrupt transition behavior at the threshold
driving intensity &, (Fig. 7).

At this stage, we assume the pump mode c is heavily
damped (y5>>7), so that it may be adiabatically eliminat-
ed from the equations. The simplest procedure is to con-
vert Eq. (78) to its equivalent Langevin equation using Ito
rules, and then to assume 7 =17 =0 and solve for the am-
plitude . To simplify further, all thermal noise is ig-
nored (nft'=0), a valid assumption at low temperatures.

The final Fokker-Planck equation is

Q.__ _ a — ot _ a _ _ ot _ a _ ot B a 3 o
ar [ da, va,+xknB.) ————aa_( yo_+knB_) 3B+( YBy +KTal) __aﬁ_( yB_ +x7al)
32 32
P
*3a,08_ "t aa_ap_ M|t (80)

with f=(e—ka B,)/ys. The steady-state solution to
(80) can be found by the standard method of potentials.?’
The potential solution is

P=N[(e—ka B, —ka_B_)(e* —KGLBB_ —xa' B}

Xexp(2a1a++2at_a_+ZBLB+ +28" 8., (81)
where
2 €
g="_ 1= ‘—9‘—'— l—l
K K

and N is a normalization constant, yet to be determined.
If we had used the usual Glauber P function, the solution
for P would be identical in form to (81), but replacing

q?(0)

1.5

Input intensity
FIG. 7. Violation of Cauchy-Schwarz inequality vs input

pump mtensxty |x~:/x|2, q—19 (a) Ai={(aja,). (b) g*(0).
© c'=(ata,bib,)/{a"a, Y {(bb,). (@ semiclassical in-
tensity.
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with af (the complex conjugate) and with the integration
of variables being defined over the entire complex planes.
It is seen that the 2 |a, |?, ... terms would make such a
Glauber P solution divergent and unnormalizable.

The statistical properties of the light are provided by
the moments of the quasiprobability distribution. Nor-
mally ordered correlation functions are written, in the P
representations

(@)@t YT bt yaial bmb™ )

where da=da,da' da_da' dB,dp' dB_dB. The
normalization constant N is deduced from the zeroth mo-
ment (i =m =j=n=0): Iyp=N"'. The higher cor-
relations, for example the mean intensity (ala + ), are
then written as the ratio of two moments:

(ala-}-):Il(XJO/IO(XX):NII(X)O .

=Lijmn A method for calculating the reqmred integrals is given
= [ P(a)al, Yol (a! Yol (B mgm (8 8" d in the Appendix. The intensity (a'a,) of photons of
f +) o (B BB VB da , each mode in the cavity is (N'=NyN) and the second-
(82)  order correlation function for each mode is
J
2
AN %
(alay= > Fy(2;g +m +4,g +m +2;2) ,
AP ,,,2"0(q+4)2 e !
2
WV |2 2 . (83)
((a®)a? )= z Fy(3;q+m +5,g +m +5;2) .
O T g 3 g s T 4
Joint mode correlations are
2
N|E .
& z™(m +1)
(aha,blb, )= 2 Fy(l;g +m +4,g +m +4;z) ,
AT T 2 (qar, TR 1
(a:,a+b*_b_)=(a1a+af_a_>
2 (84)
N|E
K o z™(m+1)
= Fy(2;q +m +5,g +m +5;2) ,
(g +9Ag+37 2 q+53 "2 9
where z = | 2e/k | 2.
Calculations reveal certain functions to be zero, e.g.,
(a;)=(a}y=""+=(a,b_)=(ab'a_b, )=0.
However, the values of other nondiagonal elements such as {(a . b ) and (a'.ba_b_) are nonzero
z™(m +1)
b )=N"|— 2) Fy(1; 2, 3;2) 85
{arby)= g+ 2<q+m+2)<q+ ) rbatm A sgtm sz ®3)

and

2
N'|E

S zMm +1)
(g +4)g+3)% %, (g+4)%

(albla_b_)=

These nonzero correlations, although not observables
themselves, are important in the calculation of the quan-
tum properties of squeezing and violation of Bell’s in-
equalities, respectively.

The expressions (83)—(85) have been numerically com-
puted, and results are shown plotted in Figs. 7 and 8. The
mean intensity (a+a+) (Fig. 7) behaves in a similar

Fa(2;9+m +4,9 +m +4;2) .

[

fashion to the semiclassical mean, except that there is a
small nonzero intensity below threshold. At and above
threshold, an interesting property is apparent. The effect
of the quantum fluctuations i xs to decrease the mean inten-
sity above threshold, smce (ata + ) becomes less than the
semiclassical mean, by ~ . This behavior is also exhibit-
ed in both nondegenerate and degenerate parametric am-
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FIG. 8. Squeezing and violation of Bell’s inequality vs input
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The second-order correlation

g20)=((a’ 1a? ) /{ata, )?

is also plotted for a particular value of g =2(gy,/k)—1.
A small amount of antibunching is predicted below
threshold, but only for small values of ¢g. In the limit of
zero driving field €, g'?)(0) is written

2
g2(0)— 24130
(g +4)

Thus, we obtain g?(0)<1 for ¢ in the domain
(—1,v2-2), and the corresponding minimum value for
g?(0) as g— —1is §. Thus this system would not be a
good experimental test for the feature of antibunching.

The property of squeezing is present in the field statis-
tics. This is to be expected since the Hamiltonian (75)
resembles that of the parametric amplifier (74). Consider
the following mode combination e =(a,+b,)/V2
=X, +iX,. The variance AX? is plotted in Fig. 8.
Squeezing is obtained below threshold, but to a much
lesser degree than in the nondegenerate parametric amplif-
ier.

The correlation between intensities of the coupled
modes a_,b,, however, is as strong as in the usual
parametric amplifier [the identity 26(i) holding]. Thus,
the classical Cauchy-Schwarz inequality

as z—0. (86)

C'=(ala,blb,)/(ala ) (blb,)<g®0)

is violated for all values of input intensity (Fig. 7).

To illustrate violations of Bell’s inequality the rotated
modes (56) are considered. Calculation of E(6,¢) [Eq.
(57)] shows E(8,¢)=C cos2(8—¢) where C has been de-
fined according to (61). The selection of the angles (49)
gives the result as before: B =2V"2C, and hence violation
of the Bell inequality |B| <2 1is possible for
| C | <0.707. Figure 8 reveals that for a region below
threshold, corresponding to a strong violation of the
Cauchy-Schwarz inequality, Bell’s inequality is violated.
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VI. CONCLUSION

We have presented a review of experiments in optics
designed to test quantum mechanics against classical
theories. First discussed was the measurement on a single
beam (for example, a single mode a) of the second-order
correlation function [{(at)?a?)]. The quantum property
of photon antibunching cannot be explained by the classi-
cal (wave) theory of light. The double-beam (for example,
two modes @ and b) experiment allows measurements of
the joint second-order correlation function ({a Yab'b)) be-
tween modes and also the second-order correlation func-
tion [((a")%a2)] of each mode. The classical wave theory
of light predicts a Cauchy-Schwarz inequality
[<a'ab™®) |2<((@a"?a?)((6T)»?)] which can be
violated in quantum theory; for example, in two-photon
atomic cascade experiments. The two-mode parametric
amplifier is discussed as a system which exhibits violation
of the Cauchy-Schwarz inequality [ | (atab'b) |2
<((@"a?) (b))

Correlations between the photons emitted in the two la-
teral components of the fluorescence triplet in resonance
fluorescence from a two-level atom have also been shown
to violate a Cauchy-Schwarz inequality.*’ Recently pro-
posals have been made to generate subpoissonian light us-
ing selective deletion from the correlated two-photon pair
prod;xlced in atomic cascades*® or parametric down conver-
sion.

The results of the photon counting experiments show-
ing photon antibunching and violation of the Cauchy-
Schwarz inequality is not confusing in physical terms if
one adopts a particle view of light. However, quantum
mechanics is deeper than this, and experiments designed
to incorporate both phase and particle features of the field
prove more interesting. Bell’s theorem is discussed and
provides a means of testing quantum mechanics against
all possible classical or realistic theories (including particle
theories) which are not in conflict with relativity (local).
In a first description, the Bell experiment is introduced as
a modification of the Cauchy-Schwarz inequality experi-
ment, with the spatially separated 50%-50% beam
splitters being replaced with polarizers. The inequalities
are formulated in terms of four output modes [for exam-
ple, two, (a,a_) and (b ,b_), in each beam], with ar-
bitrary intensity allowed. The polarizers rotate (for
example, at one polarizer, c, =a_cos6+a_sinb,
c¢_=—asinf+a_cosf, where 0 is the polarizer angle)
the modes (e.g., a,,a_) of each beam to new detected
modes (c,,c_). Thus, the detected joint correlation
functions of the two beams can incorporate phase ele-
ments of the original field. States which we predict to
violate Bell inequalities show strong violation of the
Cauchy-Schwarz inequality (particle like) and also quan-
tum interference.

An alternative example of a Bell experiment is also
given. We consider a two-mode source (a and b) with
50%-50% beam splitters to split the system into four
beams (a,,a,,b;,b,). The modes are then combined in
pairs (a; and b,, a, and b,) with two spatially separated
beam splitters (or “rotators”) of variable transmittivities.
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The Einstein-Podolsky-Rosen paradox has been shown®*’
to apply to such an experiment where the two-mode
source exhibits the maximum intensity joint correlation
(a'ab'p) allowed by quantum mechanics. We show ex-
plicitly that violation of Bell’s inequalities is possible for
sources such as two-photon cascade or a two-mode
parametric amplifier which exhibit a strong violation of
Cauchy-Schwarz inequality. The result is an interesting
new example of a system predicted to violate Bell’s in-
equalities. In this case, one does not have a quantum su-
perposition state as an original source. Quantum interfer-
ence effects are provided by the beam splitters.

Lastly, we illustrate that a pure quantum state with per-

fect or maximum correlation (according to quantum
mechanics) is not essential to disprove classical theory.
We show explicitly violation of Bell’s inequalities to be
possible in the steady state in a regime of small photon
number for a system including coherent pumping and
where dissipation into the environment is modelled via in-
teraction with a reservoir.
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APPENDIX
We thus wish to calculate integrals of the type
10000-—"f(E—-K(Z_‘_B_',——Ka_ﬁ_)q(E'—'Ka:.BE_ —KaT_BT_)"exp(2a:_a++2aT_a_+2BT_B_+2BLB+)dg . (A1)
Substituting
t ka . B, KCILBT,_ ka_B_ KaT_BT_
uy=a,, vy=a,, u=a_, v,=a_, L=———, o= T L= , @y= " , (A2)
€ € € €
we find
Lo o
Topo =% | = ]f(l——tl—tz)"(l—a)l—wz)"ul vilus vy exp |20 vy +2uy0, +2 £ £12= du (A3)
K | U0y K | UL,y
where dg=du1 du2 dUl dv2 dtl dtz dﬁ)l d(O2.
We make the further substitutions
3 @)
x=l——t2, g=1——w2, y= , = (A4)
l-—t2 1——0)2
to find
* gh *1—g1
T g0 =€ fu1 o7 luy oy e Mo P2 0+ 1(1 _y)aga+1(1 —hylexp |2 | & | BPXE 4o | & | 1=g)1=x) 1y
Uy K U0,
(AS)
where dv=du, du, dv, dv, dx dg dy dh. The next step is to expand the exponential:
2m
: e
h 0 mhm m.,.m
exp 2]i 8%y ; £ mxmy (A6)
K uvy m=0 m!: ujv]
2m
o2
Toooo =€4 £ i ful—-m—lvl—m—lu2--1')2_1e2uzuze2ulu1
K m=0
g+m+1 q g+m+1 q,m 1—8)(1'-")
XX (1—y)iy™g (1—h)h™exp |2 |— dv . (A7)
K U0y
Consider the integrals in %, and v,:
I“x”:=f ful""'lvl""“ezu'u‘duldvl
°° 2k r -
2 k'fu m 1+"du1fv, 1+k dy, (A8)

With the integration contours in u,v; closed circles about the origin, since*’
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f uiy*du,=2mid(x —1),
we have
2m
Ly, =—4m— = .

The integrals in y and h are
Ly=[(—p%y™dy [(1—h)1h™dh
which are readily seen to be the contour integrals defining the beta functions.*® Thus,
_ [Cg+DP[T(m + D
[(m +q+2)?

where I is the gamma function.
Upon expanding the second exponential, we obtain

I,

’

2m

28| Pm+1P

4

g +1]? ~
Mg+ DF 2 T m g 127 2]

2n
—1—n n 2u,v
ffffuzl 1)21 e 22xq+m+1

Xgitm+(1—g)™(1—x)"

Tooo=— 4% | = £
0000 € P X

Xdu,dv,dxdg .
The integrals in u,,v, are defined similarly to u,v,:
f f uyt =" =™ gy, dy, = —44r2%’-:- .
The integrals in x and g are similar to those in y and A.

T(1+m +2)P[C(n +1)]?
X9 _x)dx [ ge+m+i(1_gydg =L :
J Je gree [T(g+m +n+3)]
The final expression for the zeroth moment is (z = | 2e/k | %)

4 © m 2 2 o n 2
Plgi1p § 20 tDPIG +m 2§ 2(L(nt 1)

=y (mD[Dm+q+2) o) T(g+m+n+3)]

10000 = 1674€2q

£
K

This expression may be simplified. Recalling the definition of the hypergeometric function

az ala+1)z2
Fy(a:b,c;z)=1+— cee
Faasbes =1+t s ee 1) T
the last series can be abbreviated

S [T(n+D]? _ 1
o T(g+m+n+3)* [T(g+m+3)]?

1Fall;g+m +3,9g+m +3;2) .

Thus,

Ioo=N"'=Ny 3, z™Fy(1;q+m +3,g +m +3;2)/[(g +3)4],
m=0

where the Pochhammer symbol is defined as (x)y =x(x +1)--- (x +k —1) and (x)y=1 and
4

No=16m€4 /(q +2)Hg +107.

£
K

Higher moments may be calculated similarly.
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