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We analyze how phase noise degrades or, sometimes, even creates temporal structures in the laser
with an injected signal and in optical bistability. In the case of a laser with an injected signal, the in-
fluence of the phase fluctuations of the driving field is considerably larger than what one might ex-

pect on the basis of intuitive arguments.

I. INTRODUCTION

Driven optical systems such as the laser with an inject-
ed signal! (LIS) and optical bistability? (OB) can display a
rich variety of dynamical behaviors, from simple period-
doubling bifurcations to the formation of more complicat-
ed structures, including dynamical chaos. In the study of
these phenomena the external driving field has often been
assumed to be in a coherent Glauber state>* with a well-
defined phase which, in turn, sets a reference for the out-
put field. It is well known, on the other hand, that the
phase of the incident field, or equivalently its frequency,
is subject to random disturbances that can be described
with the help of a phase-diffusion model.’

The aim of this contribution is to analyze the effect of
phase diffusion on selected temporal structures that
emerge as a result of instabilities in the LIS and OB sys-
tems. Hence, this work falls within the general heading of
noise effects in nonlinear dynamical systems. Earlier
treatments of this problem® have dealt with the progres-
sive degradation of periodic temporal structures from in-
creasing levels of noise, and with the overlap of external
noise and deterministic chaos. We are not aware, instead,
of studies that have focused specifically on the effect of
phase noise. Our analysis should be valuable especially in
connection with the recent experimental observations of
instasbgliti&s and self-pulsing in OB (Ref. 7) and in the
LIS.*

It is intuitively reasonable to expect that the influence
of phase noise should become appreciable only when the
coherence time of the input radiation becomes comparable
to or even shorter than the period of the deterministic os-
cillations. We find instead that some temporal structures
in the laser with an injected signal are far more sensitive
to phase noise than this argument would lead us to be-
lieve, in the sense that the output signals develop a strong
degradation even when the coherence time of the incident
light is much longer than the duration of a single oscilla-
tion. In OB, instead, the influence of phase fluctuations is
less pronounced, at least for the type of pulsing solutions
considered in this paper.

An interesting result concerns the appearance of noise-
induced oscillations even for parameter values such that

34

the deterministic theory predicts a stable stationary state;
this type of output modulation is reminiscent of deter-
ministic period-1 solutions, apart from the expected irre-
gularities. Thus in this case, noise does not destroy but
actually aids the development of temporal structures.

Our interest in this paper resides with the phase fluc-
tuations of the injected field so that effects that arise from
spontaneous emission or jitter in the cavity length are ig-
nored. An earlier contribution by Chow, Scully, and Van
Stryland'® analyzed the role of intrinsic quantum and
thermal noise in a laser with an injected signal that
operates in a stationary regime. This work accounted also
for the finite linewidth of the external field. In our treat-
ment, spontaneous emission and cavity-length fluctuations
can be included by adding suitable Langevin noise terms
to the right-hand side of Egs. (1). However, the analysis
of this extended model is left for future work.

Spontaneous emission is certainly negligible in OB, and
in most lasers the linewidth effects are overshadowed by
cavity-length fluctuations. Thus in the present paper, we
assume that the driven system (LIS or OB) is sufficiently
well stabilized so that the main source of phase noise is
the external field, and we focus on the analysis of the lim-
itations imposed on the observation of temporal structures
that arise from the finite coherence time of the driven
laser.

II. DESCRIPTION OF THE MODEL

We consider a homogeneously broadened, single-mode
ring laser driven by an injected field. We label with w4
the center of the atomic line, with w the input carrier fre-
quency, and with w¢ the cavity resonance that lies nearest
to w,. The deterministic equations of motion are'! the
following:

dx

= —kl(i6x +x —ye'*+2Cp) , (1a)
dr
P _ (14
e xD—(1+iA)p , (1b)
D
%=~yl[§(xp*+x'p)+D+l], (1c)
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where ¢ is the phase of the incident field and y is the am-
plitude normalized to the square root of the saturation in-
tensity; x is the complex normalized amplitude of the out-
put field; p and D are the scaled atomic polarization and
population difference, respectively; C is the pump para-
meter. The time 7=t is measured in units of the in-
verse atomic linewidth y,; K=k/y, is the scaled cavity
linewidth, and ¥ =y /y, is the ratio between the longitu-
dinal (y,) and transverse (y,) relaxation rates;
A=(w, —awg)/y, is the atomic detuning parameter, and
0=(wc—wq)/k is the cavity mistuning parameter.

In this paper we focus on parameter values for which
the deterministic behavior has already been studied exten-
sively;'? they are C =20, A=1, §=2, £=0.5, and
7=0.05. The unstable range of the variable y is
0<y <ypy with yp~20. For small values of y the system
exhibits regular oscillations with a period of about 27
units of time, corresponding to the beat note between the
frequencies w,4=w0¢ and o, [Fig. 1(a)]. Near the
injection-locking threshold y =y,, the system displays
period-1 oscillations with a period of about 4 units of time
[Fig. 1(c)]. On decreasing the strength of the driving
field, one finds a cascade of period-doubling bifurcations
that eventually leads to chaotic behavior [Figs. 1(e) and
1(g)]. Additional details on the dynamic response of the
LIS for these operating parameters can be found in Ref.
12.

If we replace the equilibrium population value + 1 with
—1 in Eq. (1c¢), we recover the mean-field model of opti-
cal bistability, with C playing the role of the bistability
parameter.!>!* This model predicts the occurrence of an
instability that leads to regular oscillations of the
transmitted intensity; in the range C <150, in particular,
the unstable behavior is favored by detuning and mistun-
ing parameters having opposite signs. Pulsations of this
type have been seen experimentally with a beam of atomic
sodium.’

We now introduce phase noise into this model by as-
suming that the phase ¢ of the input field is a stochastic
variable undergoing a diffusion process.’” The inverse of
the diffusion constant is the coherence time 7. of the in-
cident driving field; note that 7. is also measured in units
of the inverse atomic linewidth ¥ '=T,. Our numerical
simulation of the phase-diffusion process is based on the
iterative process

d(to+8t)=¢(ty)+6¢ , (2)

where ¢(z,) is the phase of the incident field at some time
t, and 8¢ is a Gaussian random variable with zero mean
and a standard deviation selected in such a way as to fit
the required coherence time of the incident light.

III. NUMERICAL RESULTS FOR THE LASER
WITH AN INJECTED SIGNAL

The following results are based on the numerical
evaluation of very long-time series, their power spectra,
and Poincaré sections. For y=35, the distortion of the
deterministic oscillations is appreciable only when 7. be-
comes comparable to the pulsation period, in qualitative
agreement with the argument advanced in the Introduc-

.
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FIG. 1. (a), (c), (e), and (g) show the long-term deterministic
evolution of the mod | x | of the output field for a few values of
the input field y. The horizontal time scale is 40 units of 7 in all
cases. The vertical scales are (a) 4< |x | <11;(c)4< |x | <10;
() 0< |x | <14; (g) 0< | x | <15, respectively. (b), (d), (f), and
(h) show the projections of the phase-space trajectory onto the
plane x,=Rex, x,=Imx; (a) and (b) correspond to y=35; (c)
and (d) to y =18; (e) and () to y =14; (g) and (h) correspond to
chaotic oscillations for y =12.4.

tion [Fig. 2(a)]. The effects induced by the phase-
diffusion process are especially evident from the Poincaré
maps [Figs. 2(b)—2(d)] which have been constructed, as all
the other maps shown in this paper, from sequences of
160000 time steps. Each point in the plane
x;=Rex, x,=Imx corresponds to the crossing of the
phase-space trajectory with a preselected plane D =D, (in
this case Dy= —0.032).

For y =18, the deterministic solution is strongly de-
formed even for 7, as large as 61.7 [Fig. 3(a)]; note that in
this case the coherence time is 15 times longer than the
period of a single oscillation. Clearly, the effect of phase
diffusion is much stronger than in the case y =5, as we
can see by direct comparison of the Poincaré maps shown
in Figs. 3(b)—3(d) and Figs. 2(b)—2(d). Figures 3(e) and
3(f) show 2 power spectra for different values of 7,.; note
that all the spectra shown in this paper are based on the
Fourier transform of x,=Rex and are displayed on a
linear scale.

The larger sensitivity to noise for y =18 can be traced,
in part, to a geometrical effect. The projection of the
phase-space trajectory onto the plane (x;x,) for y=5is a
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FIG. 2. Effect of phase noise for y =5. (a) Time evolution of
| x| for 7.=5.56 over 80 units of 7 (horizontal scale) and for
2< |x | <12 (vertical scale); (b), (c), and (d) show Poincaré
maps for 7,=6.17X10% 7.=61.7, and 7,=5.56, respectively.
The maps are plotted over the ranges —12<x;<12 and
—12<x,<12.
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FIG. 3. Effect of phase noise for y=18. (a) Time evolution
of | x | for r.=61.7 over 80 units of 7 (horizontal scale) and for
2< | x| €12 (vertical scale); (b), (c), and (d) show Poincaré
maps for 7,=6.17X10% 7,=61.7, and 1.=5.56, respectively.
The maps are plotted over the ranges —12<x,<12 and
—12<x,<12. (e) and (f) power spectrum S(w) for 7.=61.7
and 7.=35.56, respectively. The frequency axis (in units of y,)
ranges from 0—314.

deformed circle surrounding the origin of the phase plane
[Fig. 1(b)]. Because a transformation of the type
¢=>¢+8¢ only causes a rotation of the trajectory by a
phase angle 8¢ (or, more precisely, induces a transforma-
tion of the type x =>xe'®, p==pe‘® in the output field
and polarization), a circular trajectory around the origin
would be entirely unaffected by the phase fluctuation.
Thus for y =5, the phase-induced perturbations are rather
small, while for y =18 they are considerably larger; in
fact, in the latter case, the phase-space trajectory, whose
center is well removed from the origin of the (x,x,)
plane, is much more sensitive to phase changes.

For y =14, the period-2 deterministic evolution begins
to be affected by the phase noise even in a situation where
7.=6.17% 10 [Fig. 4(a)]; for 7. =61.7 the period-2 struc-
ture is practically unrecognizable [Fig. 4(b)]. This is con-
firmed by the corresponding Poincaré maps [Figs. 4(c)
and 4(d)] and by the power spectra [Figs. 4(e) and 4(f)].

Figure 5(a) shows a Poincaré map in the presence of
deterministic chaos. This structure, which is already
blurred for 7. =6.17 X 103 [Fig. 5(b)] disappears complete-
ly for 7,=61.7 [Fig. 5(c)]. On comparing Figs. 5(d)—5(f)
we see that for 7.=5.56 the spectrum is dominated by
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FIG. 4. Effect of phase noise for y =14. (a) Time evolution
of | x| for 7.=6.17x10% and 61.7, respectively, over 80 units
of 7 (horizontal scale) and for 0< | x | < 14 (vertical scale); (c)
and (d) show Poincaré maps for 7,=6.17Xx10°, and 61.7,
respectively, (¢) and (f) show power spectrum S(w) for
7.=6.17X 10 and 61.7, respectively. The frequency axis (in
units of ¥, ) ranges from 0—314.
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FIG. 5. Effect of phase noise for y=12.4; (a), (b) and (c)
show Poincaré maps for 7, = w0, 6.17 X 10%, and 61.7, respective-
ly; (d), (e), and (f) show power spectrum for 7,= «, 61.7, and
5.56, respectively. The frequency axis (in units of y,) ranges
from 0—314.

stochastic noise of the 1/f type.

Of special interest is the problem of the correlation be-
tween the phases of the input and output fields (¢;, and
dou> Tespectively). Plots of the output as a function of the
input are shown in Fig. 6 using computer runs involving
160000 temporal iterations. For y =5 the output phase
follows the input phase very closely [Fig. 6(a)]. For
y =18 the correlation is weaker [Fig. 6(b)], but it increases
again when the coherence time becomes as small as 5.56.

For y =14 and 7,=6.17x 10* [Fig. 6(c)], the plot ex-
hibits two distinct regions resulting from the period-2
character of the oscillations [Fig. 6(c)]; this structure
disappears for 7. =6.17 as shown in Fig. 6(d). However,
the correlation between the input and output phases in-
creases as 7. decreases, at least over the range of coher-
ence times explored in these runs (7, > 5). In the chaotic
case, when the coherence time is sufficiently long, the out-
put phase is essentially uncorrelated from the input phase,
as expected [Fig. 6(e)]; nevertheless, a decrease in 7.
brings about an increase of the degree of correlation until,
for 7.,=5.56, the irregular behavior can be ascribed al-
most entirely to the random phase fluctuations of the in-
put field [Fig. 6(f)].

We consider, finally, the case y =30 in the presence of
phase noise [Fig. 7(a)] where the stationary state is stable
according to the deterministic model. Figure 7(b) has
been constructed by marking a point in the plane (x,x,)
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FIG. 6. The phase of the output field is plotted as a function
of the phase of the input field for (a) y=5, 7.=6.17X 10°,
(b) y=18, 7,=6.17X 10 (c) y=14, 7,=6.17Xx 10°, (d) y =14,
7.=6.17, () y=12.4, 7.=6.17X 10%, (f) y=12.4, 7.=5.56.
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FIG. 7. Effect of phase noise for y =30 7,=61.7; (a) long-
term time evolution of the modulus | x | of the output field
over 80 units of 7 (horizontal scale) and for 10< | x | < 15 (verti-
cal scale); (b) phase-space diagram, (c) power spectrum. The fre-
quency axis (in units of ¥, ) ranges from 0—314.
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at intervals of 25 temporal iterations. This figure shows a
remarkable similarity to the Poincaré map in the period-1
regime for y =18 and the same value of 7. [see Fig. 3(c)].
The temporal evolution, however, is much more erratic, as
we see by comparing Figs. 7(a) and 3(a), while the power
spectrum [Fig. 7(c)] does not show any structure which is
evident, instead, in Fig. 3(e).

IV. NUMERICAL RESULTS FOR OPTICAL
BISTABILITY

We study OB using the parameters C =100, A=0,
6= -9, k=0.3, and ¥#=1.6; in this case the unstable
domain corresponds to 61.9 <y < 87.5. We consider two
values of 7,; the first, 7,=538, is meant to simulate the
linewidth of the driving laser field in the experiments of
Ref. 7; the second, 7, =61.7, is introduced to compare the
response of OB with that of the LIS.

For y =80, the period of the deterministic oscillations
is about 2 units of time. The influence of phase noise is
quite small for 7, =538 as we see in Fig. 8(a); for 7.=61.7
it is still considerably smaller than in the corresponding
case of the laser with an injected signal [compare Figs.
8(b) and 3(a)]. Here, qualitatively, the sensitivity to noise
is about the same as observed in the small-y range of the
LIS (e.g., y =5), in spite of the fact that the projection of
the phase-space trajectory on the (xx,) plane is centered
away from the origin.

For y =105, the deterministic theory predicts a stable
stationary state. As shown in Figs. 8(c) and 8(d), and just
as noted with the LIS, the injection of noise produces an
irregular oscillatory behavior in the output signal. The
presence of these oscillations may be an obstacle in at-
tempting a quantitative comparison between the experi-
mental instability thresholds and their theoretical counter-
parts.
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FIG. 8. Optical bistability. Snapshots of the long-time evolu-
tion for (a) y =80, 7.=538, (b) y =80, 7.=61.7, (c) and (d)
y =105, 7.=538. The time scale covers 16 units of 7. The
vertical scale for (a) and (b) is 3< | x | <16, and for (c) and (d) is
10< |x | <13.
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