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Free-electron-laser radiation induced by a periodic dielectric medium
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Stimulated emission by an unaccelerated electron beam propagating through a periodically modu-

lated dielectric is studied. The laser gain in the low-gain regime is calculated for the case of a cold,
tenuous electron beam by applying the Einstein-coefficient technique in the classical limit A~o. In
the high-gain, strong-pump regime equations for the evolution of the electron beam dynamics and of
the radiation are developed using a self-consistent, one-dimensional model for the interaction. Ana-

lytic calculations of the small-signal gain, and numerical computations of the nonlinear saturation
characteristics, are presented.
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FIG. 1. Schematic drawing of a transition free-electron laser.

In a conventional free-electron laser' ~ (FEL), coherent
electromagnetic radiation is produced by subjecting an
electron hearn in vacuum to a transverse periodic
"wiggler" magnetic field which induces transverse period-
ic accelerations on the electrons. The undulating electron
beam interacts with an incident electromagnetic wave,
thereby generating an axially directed ponderomotive
force which bunches the electrons. Subsequent interaction
of the bunched beam with the incident wave leads to ener-

gy growth of the wave at the expense of the beam kinetic
energy.

In this paper we examine an alternate concept in which
an unaccelerated electron beam traveling at constant velo-
city traverses through, or passes in the immediate vicinity
of, a periodically modulated dielectric medium. The ar-
rangement is illustrated schematically in Fig. 1. An elec-
tron beam traveling along the z axis with velocity v~~

traverses a dielectric whose dielectric coefficient K(co,z)
undergoes periodic oscillations of the form

K(to,z) =Ko(to) +ddsc (to) cos(k~z),

where b,K (~gKo) is the modulation amplitude and
k„=2'/l is the wiggler wave number, with l as the
period. The dielectric coefficient may or may not be a
function of the radiation frequency co.

An electromagnetic wave

E=E,exp J~t —Jk, x —J I ~~~(z)dz

travels through the medium with the propagation vector
k = Rki + z I tt~~dz directed at an angle 8 to the electron
beam velocity. Such a wave may be a transverse elec-
tromagnetic (TEM) wave in an unbounded medium or a
transverse magnetic (TM) waveguide mode. In either case
with 8&0, the axial component of E now provides the
ponderomotive force which bunches the electron beam
and leads to wave growth.

This FEL mechanism is the stimulated manifestation of
the incoherent, spontaneous "resonance transition radia-
tion" studied by many workers, For that reason, and
for the sake of brevity, we shall refer to it henceforth as
the transition FEL. However, it is quite unlike the stimu-
lated Cerenkov FEL (Refs. 9—18) in which an electron
beam passes through or near a homogeneous dielectric
medium. Indeed, the well-known Cerenkov condition
(v~~/c)(Ko)' cos8=1 (Ko&1) need not be satisfied in
the transition FEL, and stimulated emission can be
achieved for dielectrics for which Ko(to) is both greater
and smaller than unity. The latter affords the possibility
of generating coherent electromagnetic radiation by pass-
ing an electron beam through a modulated electron plas-
ma whose (unperturbed) dielectric coefficient is given by

Ko(co) = 1 —(to~/co)

where co& (¹/moro)——' is the electron plasma frequency
of the medium. Such a modulated plasma could be creat-
ed artificially, for example, by microwave or laser break-
down of a low-pressure unionized gas in a quasioptical
resonator; or by use of alternating slabs of material and
operation at frequencies that exceed atomic frequencies
for the materials in question. Indeed, use of such periodic
stacks of material has led Piestrup and Finman' to exam-
ine prospects for stimulated x-ray emission from such a
system. Our analysis is a followup on their work, but
differs both in technique and in some of the results de-
Aved.

In Sec. II of this paper we discuss the frequency charac-
teristics of the transition FEL. In Sec. III we obtain the
gain in the low-gain regime for the case of a cold, tenuous
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electron beam. This gain is calculated by applying the
Einstein-coefficient technique in the classical limit fi~0.
In the high-gain, strong-pump regime discussed in Sec.
IV, we develop equations for the electron beam dynamics
and the radiation field using a self-consistent, one-
dimensional model for the interaction. Analytic calcula-
tions of the small signal gain, as well as numerical compu-
tations of the nonlinear saturation characteristics, are
presented. Section V summarizes the results.

II. RADIATION FREQUENCY

The emission from a transition FEL results from the
interaction between the ponderomotive wave on the beam

nk PiracyCO= )
1 —(P((y) (a/2)

which is shown plotted in Fig. 2(a) for u=2X10 . The
frequency scaling illustrates the -y upshift familiar to
conventional FEL's, but differs from the Cerenkov FEL
whose frequency generally decreases' with increasing y.

As our second example, we take Ko(co) of Eq. (3),
which refers to the highly dispersive electron plasmas. In-
serting Eq. (3) in Eq. (6) and solving for the frequency tu

gives

nk~cP)(

(1—
Pii cos 8)

co = ( k
((
+nk„)P((c (4) &( I+ping cos8 1—con(1 —

P~~
cos'8)

(.k..P, ~)

with k~ as the dielectric periodicity, and an electromag-
netic wave

co K(a),z)=(k(~+kt)c2=k()c +to Ko(to) sin 8, (5)

Here the FEL radiation frequency exhibits two branches,
a high-frequency branch corresponding to the positive
sign, and a low-frequency branch corresponding to the

/c is the normalized electron beam velocity,
and n =0, +1,+2, . . . is the harmonic number of the in-
teraction. Maximum gain occurs near the frequency co

corresponding to crossing points of the above waves. El-
iminating k~~ between Eqs. (4) and (5), and setting
K(z)=Ko subject to the assumption that AK/K ~~1,
yields the radiation frequency

nk P)(c

1 —P&~[Ko(cu)]'/ cos8

Equations (4) and (5) are similar to those encountered in
the conventional FEL (Ref. 1) using magnetic wigglers„
for which n is typically unity, Ko ——1, and 8=0. The ex-
istence of the higher harmonics in the ponderomotive
wave of Eq. (4) comes about, as we shall see later, from
the periodicity of the wave number a~~(z). The axial phase
velocity co/k~~ of the wave is greater than the electron
beam velocity u~~ just as it is in a conventional FEL driven

by a magnetic wiggler. This is unlike the Cerenkov type'
of FEL which must satisfy the resonance condition

co/k~~ ——U~~. In fact, the Cerenkov condition for a homo-
geneous medium is recovered by setting k in Eq. (6)
equal to zero, with the result that p~~(Ko)' cos8=1.

It is clear from Eq. (6) that in order to achieve high ra-
diation frequencies, the electrons must have relativistic ve-

locities with p~~
-1. In this case also the spontaneously

emitted transition radiation is directed into a narrow cone
subtendin an angle 8= 1/y with the z axis, with

y = (1—
~ ~

)
' = I+e V/moc as the relativistic energy

factor, and V the beam voltage.
The FEL frequency tuning characteristics as a function

of electron beam energy depend sensitively on the disper-
sion characteristics of the dielectric, and on whether Ko is

greater or less than unity. %'e consider two cases. First
we take Eo to be dispersionless and slightly greater than
unity as is appropriate, say, to an unionized gas at fre-
quencies well removed from atomic resonances. Writing
Eo —I—=+~&1, and choosing the angle of observation
8=sin '(1/y), one finds from Eq. (6) that
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FIG. 2. Radiation characteristics of a transition FEL as a
function of the electron beam energy parameter y for
K=1+0.002[l+cos(k z)]. Frequency tuning (top), and the
wiggler-strength parameter aT (bottom), as calculated from Eqs.
(7) and (26), respectively, for sin8=1/y. Bottom figure applies
only to the fundamental n =1.
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negative sign. Moreover, there exists a minimum electron
beam energy y below which no FEL interaction can take
place. These features are illustrated in Fig. 3(a) which is
plotted for the case 8=sin '( I/y) and (ei~/nk c} =300.

The reason for the two roots and the low-energy cutoff
are due to the dispersive nature of Xo(co), as a result of
wlilcll the electroiilaglletlc wave of Eq. (5) Ilow becoilles

eP=(kllc/cos8) +a)p,

which shows that no propagation can occur at frequencies
co &cia. The ponderomotive wave given by the straight-
line relationship of Eq. (4) can now intersect the elec-
tromagnetic wave of Eq. (9) at two points. One then finds
that at high energy y, the two interacting waves exhibit
phase synchronism at two weB-separated frequencies, one
low and the other high. As y is decreased the frequency
separation decreases until a single, tangential intersection
occurs corresponding to a minimum beam energy beloved

which Eqs. (4) and (9) have no solution. These manifesta-
tions are similar to those also observed in convention-
al~ ' ' FBI.'s.

The FEL gain is maximum near the tangential intersec-
tion discussed above (see Sec. III). At this point then, and
with 0=sin '(1/y), it follows from Eq. (8) that

nk~cPll1N=
2+Pll

(10)

III. FEI. GAIN IN THE I 0%'-GAIN REGIME

The power gain 6 = b,P/P; (change in output power di-
vided by the total input power) can be conveniently calcu-
lated in the low-gain regime ( 6 & 1) by means of the clas-
sical (i)I~O) form of the Einstein-coefficient method,
which states that

Here 6 yO signifies power gain, and 6 gO, power loss;
t)„=(d W/dcodQ T) is the rate of spontaneous energy
emission per unit frequency interval dec, per unit solid an-

gle dO, by one electron radiating for a time T; f(p'} and

f(p) are the equilibrium momentum distribution func-
tions for the beam electrons, with p' and p as the upper
and lower momentum states associated with the transi-
tion; and d p' is a volume element in momentum space.
L is the interaction length.

In the classical limit, we can expand f(p') around f (p)
in a Taylor series, retain the first two terms, and noting
that d p'~d p, obtain from Eq. (11)

SmcL

where hp=(p' —p) must be computed for the problem
under investigation. Momentum conservation in a period-
ic system with periodicity k and no external fields other
than the wiggler field requires that

b, p=(p' —p) =irt(k+nk~), (13)

0.60 which leads to the sought-after classical form for the gain
applicable to a variety of FEL systems:

6 = I t)(p) (k+~ nk~ }d pi.Sn'c I. df
Ko(ei }ei ~p

(14)
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FIG. 3. Radiation characteristics of a transition FBI as a
function of the electron beam energy parameter y for
K =1—(~~/co) [1+cos(k z)] with (co~/nk c) =300 aud
sin8=1/y. Top: frequency tuning obtained from Eq. (8). Bot-
tom: wiggler strength parameter ar obtained from Eq. (26).
Bottom figure applies only to the fundanmntal n = 1.

We note in passing that on solving Eq. (13) together with
the energy conservation equation

(15)

where E is the total relativistic plus rest mass energy,
yields

ei=(k+nk ) Pc (i)I~O),

which is just the vector form of the pondermotive wave of
Eq. (4).

For present purposes we shall assume that the electrons
have zero temperature in all directions, as a result of
which the distribution function is a 5-function distribu-
tion of the form

f (Pll Pi ) = &(Pi —Poi@(Pl) —Poll) .
2&py
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Here Es is the number density of beam electrons,

pp~~
—

ympP~~c is the axial electron momentum, and

pj =yplpPgc is the transverse momentum. Inserting Eq.
(17) in Eq. (14), noting that for our cylindrically sym-
metric geometry d p =2mpldpjdp~~, and integrating by
parts gives

'9 IP~~~Pj.

dpi'

.~lj —
~oil

Pj =Pop
(18)

where g =k/
~
k i and where the term exp(jI tr~~dz} is de-

rived from Eqs. (1) and (5) followed by a series of expan-
sion in powers of hE/E:

exp J KI( 2

J„(Q)exp jz [Ep(to)]'/ c—os8+nk~
L

n =—co

which states that the &EL gain is proportional to the
derivative with respect to the momentum of the spontane-
ous emission rate. This is a form of Madey's theorem. 23

Thus, we see that this theorem is a special application to
FEL s of the Einstein-coefficient method in its classical
limit. The more general equations (11)—(14},which allow
for finite electron beam temperature, have also been ap-
plied to the cyclotron maser (gyrotron) instability,
the conventional FEL's excited magnetic wigglers, '

and to collisional instabilities. 2 2s 2

To complete the calculation of G we must derive the
classical rate of spontaneous emission rate rl. This is ac-
complished by means of the equation

1 8'N'9=
T 16m' epKp(tp)c

T/2 2

exp —jcot+j x~~ z t

whenever X~O. The case n =0 refers to Cerenkov radia-
tion in a periodic dielectric medium. For a homogeneous
unmodulated dielectric, LK =0, k =0, Q =0, and

t0 [Ep(to)]'i TPi(sin 8 sin Xc
(24)

16m ape XC2

with Xc——IcoT/2)(1 —P~~[Ep(tp)]' cos8I, which is the
familiar expression for spontaneous Cerenkov radiation.

On substituting Eq. (22) in Eq. (18), performing the dif-
ferentiation with respect to p, and requiring that
I )&4P~~c/t0 (interaction time much greater than the
period of the wave} yields the FEL gain for a length I. of
interaction region:

tp&sL

tocsin

8
z d sin2X„

3gp[E (&)]jl2C3 dX„X2
(25)

where tpzs (%be /——mph)' is the nonrelativistic beam
plasma frequency. This result differs primarily from that
of Ref. 19 in that the latter does not contain the Bessel
function. Since J„(Q) for the problems of interest is typi-
cally less than -0.1 our gain is substantially less than
that predicted by the previous authors.

Equation (25) contains gain information for several spe-
cial cases. With n =0, it refers to the gain of a Cerenkov
FEL in a periodic dielectric; and with ddC =Q =k~ =0, it
refers to the Cerenkov gain in a homogeneous, unmodu-
lated dielectric. Cases for which n =1,2, 3, . . . refer to
the fundamental and higher harmonics of the transition
FEL of present interest. Maximum gain occurs when the
detuning parameter X„=1.303 for which value the quan-
tity (d/dX„)(sin X„/X„)has its maximum value equal to
0.5402. From Eq. (25) the maximum gain associated with
the nth harmonic can then be written in terms of the elec-
tron teem current I and the electron ham cross-sectional
area cTb =o'T as2

Ik
G„(max) =0.8485

&bA y

with

(20) 2~ sin'8 ~2(Q)
nk~c [Ep(to)]'~2

co[ddC(tp)]

2k c[Ep(cp)]'i2cos8
(21) Ik„=0.8485

3
L
p

r t

Inserting Eq. (20) in Eq. (19), setting z=P~~ct, and in-
tegrating over time gives

sin 8 2 sin X„
16 @pc X„

X„=—[~0—a)P(([Ep(co)] ~ cos8 nk P((c)—T I /2

is the "detuning parameter" ' and T =I./P~~c is the time
the beam spends in the interaction region (L equals the
system length).

The intensity of spontaneous emission is maximum

where Iz 4mepttt pc——/e =17000 A is the "Alfven
current. '* %'e see that the gain is proportional to the elec-
tron beam current and the interaction length L cubed.
The term in the large square brackets denoted aT is a
measure of the effective wiggler strength of the transition
FEL. The value of aT as a function of the energy variable

y is shown plotted in Figs. 2(b) and 3(b) under the as-
sumption that sin8= 1/y. Figure 2(b) refers to the case of
a modulated nondispersive medium, and Fig. 3(b) to a
plasma medium. In Fig. 2(b) we assume that the modu-
lated dielectric coefficient of Eq. (1}is given by

E=l+a+acos(k z)
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with a=2&(10, and in Fig. 3(b) we assume that it is
given by

g Ei(z)Ji(Q)

K = 1 —(pi&/co) —(co&/co) cos(k~z) (28) X exp[jk~x +j (lk +k() }z jco—t]+c.c. , (31)

with co~ normalized so that (co~/nk c) =300 A. t the
maximum gain frequency pi given by Eq. (10),
ar-n '~ J„(n /2), and is independent of the detailed phys-
ical parameters of the system; for n =1, ar-0. 24 [see
Fig. 3(b}].

It is instructive to compare the above results for the
gain of the transition FEL with the gain of a conventional
FEL employing a magnetic wiggler, and operating in the
so-called "low-gain Compton regime:"'

3Ik~
GFFL=0.8485 (QFEL) q

~b A

(29)

where aFEi ——(0 /k c), and Q~=e8 /mp is the nonre-
lativistic cyclotron frequency associated with a wiggler
magnetic field of amplitude 8 .

Equations (26) and (29) differ only in the form of the
respective wiggler-amplitude coefficients ar and aFEi. .
The value of ar seen in Figs. 2(b) and 3(b) is typically in
the range -0.1—-1. This is to be compared with aFEL
of operating' FEL's, having 2&1 & 10 cm, and 2(8„&8

kG, for which a is typically in the range 1—2. There-
fore, for periodicities of a few centimeters, the gain of
conventional FEL's wiB be generally larger than for the
transverse FEL.

However, short-periodicity wiggler systems, 2 which
can attain high frequencies with moderate beam energies,
are better suited to the transition FEL. The reason is that
whereas az is insensitive to the value of l~, aFEi varies as
l„. As a result, the gain-frequency product Gco, which
should generally be as large as possible, varies as —I/l~
for the transition FEL but is independent of 1„ for the
conventional FEL. One then finds that for periodicities
1 & 1 cm the gain of the transition FEL exceeds the ains
of FEL's using magnetic or electromagnetic wigglers. 2

+ —, sin8 g Ei exp(j p+jlk z)+c.c.
, )~0

where Ei is a normalized electric field amplitude defined
as

Ei=(e/moc Vl(Q)Ei .

The phase P evolves according to

dg =nk +k() —(co/cP()) = —2X„/L,

(33)

(34)

where X„ is the detuning parameter given by Eq. (23).
Since the electron beam is assumed to be resonant with
only the nth harmonic, we average Eq. (32) over the
periodicity l~. This eliminates the rapidly varying second
term on the right-hand side of Eq. (32) with the result
that

where Q is defined by Eq. (21), k(( ——(co/
c)[Ep(co)]'~ cos8, and E&(z) are slowly varying complex
amplitudes which generally satisfy the inequality
dEildz «k~~Ei. In the absence of the electron beam all
the amplitudes Ei are equal to one another and are con-
stant in time.

In order to reduce our equations to one dimension, we
assume that the exponential factor exp(jkix} does not
vary appreciably over the beam radius r, , This implies
that kyar, =tk[Kp(co)j' sin8]r, &1. With 8=1/y, this
means that r, & yA/2m, [Ep(r0)]' where A, is the radiation
wavelength.

Inserting Eq. (31) in Eq. (30) and changing from t to z
as the independent variable yields

dy/dz = ——,
' sin8[E„exp(jp)+c. c.]

dy/dz = ——,
' sin8[E„exp(jg)+c.c.] . (35)

IV. GAIN AND NONLINEAR SATURATION
CHARACTERISTICS IN THE STRONG-PUMP,

HIGH-GAIN REGIME

In this section we model the self-consistent generation
of transition radiation by an electron beam in the high-
gain and/or nonlinear regimes. Our analysis follows that
of Ref. 35 used in conventional free-electron lasers. We
assume that the beam is highly relativistic [1/y=(1
—P(()' '«1] and sufficiently teiluolls so that space-
charge forces are small compared with the ponderomotive
force of the wiggler.

The electron energy evolves according to the energy
conservation equation

e
v "E .

teal OC

The evolution of the radiation field is found by insert-
ing Eq. (31}in the wave equation

V x (V XE) (~/c)'E(co, z)E—=Jcop pJ,

where K(co,z) is given by Eq. (1}. As a result

(36)

= —jmpoeJ~~ sin8/mac 2 (37)

The current density J~~ ———Xeu~~ is determined self-
consistently from the electron dynamics. We multiply by
the factor exp[ —j(nk„+k~~)+j pit] and average, assum-
ing that the electron beam is periodic in f=(nk
+ kii )z cot. Thus, —

dE(
+2J'(lk +k~~) exp[j(lk +k~~)z cot]—

Z

Here v is the electron velocity and E the self-consistent
electric field given by

dE„co~brp sin8
z exp( —jQ)

2c'(nk +k~~)
(38)
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where the average ( ) is over the electrons in one periodi-
city wavelength 2m/(nk +k~~ ).

Equations (34), (35), and (38}comprise a closed system.
They are identical to the equations describing a conven-
tional FEL that uses a magnetic wiggler, except that now
the quantity sin8 replaces the familiar wiggle-amplitude
parameter Q~/kacy (=aFEi /y) (see Sec. III). We can,
therefore, immediately linearize these equations following
the method of Bonifacio, Pellegrini, and Narducci. 3 As-
suming a zeroth-order energy-distribution function with
energy spread hy of the form

tractive for operation at higher harmonic frequencies.
However, this must be weighed against the increase in
launching loss that occurs as n increases. For example,
when the periodic dielectric is a plasma, and the radiation
frequency is given by Eq. (10) where the growth is max-
imum, the launching loss equals J„(0.5n}/9. The launch-

ing loss of successive harmonics n =1,2,3 is -22, 28, and
34 dB, respectively.

The saturation efficiency 71 caused by phase trapping of
the electrons in the potential wells of the ponderomotive
potential can be estimated from the relationship'

(I/»r» lr —rpl &~r
0, otherwise (39)

rl =~&/mpc (yp —1)

=2(Pp))yp)'(«, )/(yp —1)pi, (46)

one obtains the following cubic dispersion relation for the
(complex) spatial growth rate I of the electromagnetic
wave amplitude:

I'3+2kpl 2+[k p n—k~(h y/y) +AT]I +nATk~=0 .

where I, is the real part of the growth rate I given by
Eq. (43) and co is the radiation frequency. Substituting I „
from Eq. (43) yields (for yp » 1)

ri=(cypnk„pub sin 8/2' )' (47)

Here Ar is the coupling strength of the transition FEL
given by

For the special case of the modulated plasma dielectric, at
the frequency for maximum gain specified by Eq. (10),
one finds that

Cab sill 8
AT ——

2C $0
(41) 1 2Npy

nk~c

' 2/3

(yp»1) . (48)

and kp is the detuning parameter

kp ——nk +kii —(ai/CPpij)= 2X„/L . — (42)

We note that the growth rate of a conventional FEL em-

ploying a magnetic wiggler is governed by the same
dispersion equation as that given by Eq. (40) with n =1

2 2 2 3and AFEi coFbaFEL/——2c yp.
For the case of a cold beam (b,y =0) and near the point

of maximum growth ( kp -0), Eq. (40) can be approximat-
ed by

I" =—nATk~, (43)

a result that, for the special case n =1, closely resembles
that of Ref. 19. Of the three roots represented by the
above dispersion equation, only one exhibits an exponen-
tially growing solution with a growth rate given by the
imaginary part of I, namely,

(45)

Here J„(Q) represents the fraction of the input power in
harmonic n available for interaction with the electron
beam, and the three terms in the square brackets represent
the distribution of amplitudes amongst the three (active
and passive) waves. Since only one wave exhibits ex-
ponential growth, the quantity J„(Q)/9 denotes the
"launching loss." The variable Q is defined by Eq. (21).

The fact that the growth rate I; increases with har-
monic number n appears to make the transition FEL at-

(44)

Thus the gain G„=Pp/P;, defined as the ratio of rf out-
put power Pp (z =L) in harmonic n to the total rf input
power P; (z =0) in all harmonics n, is

The efficiency of a conventional FEL at the correspond-
ing maximum gain point is given by
'i}=2 '

yp '(eoFblk c) aFEL. Typically, aFEi —1 and
therefore the efficiencies of the transition FEL and the
conventional FEL are of comparable magnitudes.

In order to observe the FEL evolution towards its non-
linear regime, we performed a computer simulation. 10
kW of radiant power at a wavelength of 10 pm were in-
jected into the first harmonic, n =1, at position z =0.
The electron beam had a current density of 1 kA/cm, an
energy of 11.1 MeV (yp ——22.7}, and an initial energy
spread b,y =0.003. The unperturbed dielectric coefficient
&p=l 002 [ee=2X10 ' in Eq. (27)]. The modulated
dielectric had a periodicity 1 =2 cm and was 100 periods
long. Resonance was achieved for an angle 8 between k
and z (see Fig. 1}equal to 3.24X 10 rad.

The computer simulations are illustrated in Figs. 4(a)
and 4(b). In Fig. 4(a) we plot the radiation output power
as a function of the axial distance z. One observes an ini-
tial exponential growth followed by saturation and syn-
chrotron oscillations of the electrons trapped in the pon-
deromotive wells. Figure 4(b) shows the electron phase
space (y, P), after saturation, at position z =110 cm;
strong electron bunching is clearly visible. The synchro-
tron wavelength is approximately 100 cm. The nonlinear
gain (P,«/P;„) equals 23 dB, excluding that portion of
the launching loss which is associated with the Bessel
function J i (Q). The electronic efficiency ( P„d;«,. „/
Pb } equals 0.43%.

Figure 5 shows what happens when one shortens the
periodicity I . We again inject 10 kW of power at a
wavelength of 10 pm, with b.y =0.003. The beam current
density is now 7.75 kA/cm and the beam energy is 5.7
MeV (yp ——12.1). A 200-period-long "microwiggler" with
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Ko=1.(X)2 and 1„=0.2 cm is employed. Resonance
occurs at an injection angle 8=7.1X10 rad. Saturation
occurs at z 35 cm. The nonlinear gain is 33 dB and the
electronic efficiency is 0.46%.

U. DISCUSSION

IG p 0.5 I.Q l.5
DISTANCE g(m)

zz.eo- (b)

22.70-

22.5Q-

2240 5 2 - I 0 I

PHASE 0 (rod)

FIG. 4. Computer simulation of the transition FEL for a
11.1 MeU, 1 kA/cm electron beam traversing, at an angle
8=3.24X10 ~ rad, a modulated dielectric E =1+0.002[1
+cos[1$hrz(m)]I. initial energy spread b7 =0.003.

The purpose of the present study is to elucidate some of
the physical phenomena involved in the generation of
stimulated emission caused when an unaccelerated elec-
tron beam propagates through a periodically modulated
dielectric medium. The basic radiation mechanism is
stimulated transition radiation. We employ the formalism
developed over the years for use with conventional free-
electron lasers energized by magnetic wigglers. We then
obtain for the transition FEL the frequency-tuning
characteristics, the linear and nonlinear gains, and the sys-
tem efficiency.

Some of the results we obtain are in interesting contrast
to the conventional FEL's. For example, in the transition
FEL the coupling strength A of Eq. (40) is determined by
the angle 8 between the electron beam direction and the
wave-propagation direction; it takes the place of the
wiggle-amplitude parameter aFEt, /y=Q /yk c of the
conventional FEL. Thus, in the transition FEL, the
growth rate I does not depend on the amplitude ~ of
the wiggle modulation, unlike the conventional FEL
where I" is determined by the wiggle amplitude B
through the term a PAL. On the other hand, the launching
loss in the transition FEL is a strong function of the
modulation amplitude ddC, but is independent of the am-

plitude B~ in the conventionalz' FEL. Finally, in the
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FIG. 5. Computer simulation of the transition FBI. for a 5.7
MeV, 7.75 kh/cm~ electron beam traversing, at an angle
8=7.1)(10 rad, a modulated dielectric E =1+0.002[1
+cos[1000nz(m)]). Initial energy spread Ay=0. 003.

FIG. 6. Frequency tuning characteristics of a transition FEL
for the case of a sheet electron beam skirting a modulated
dielectric slab, as calculated from Eqs. (4) and (49). Curve a is

for 1(0——2 and k„a =2mX10 ~; curve b is for Eo——2.5 and

k„a =2ex10; curve c is for Eo——2 and k a =2mX10 3 (a
is the slab thickness).
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where k~~ is the propagation constant parallel to the elec-
tron beam direction. Elimination of k~~ between Eqs. (4)
and (49) yields the frequency-versus-y tuning curves illus-
trated in Fig. 6. Those portions of the curves where oi in-

transition FEL, the growth rate I increases with the har-
monic number n and with k~, in contrast to the conven-
tional FEL where I generally decreases with n (if it de-

pends on n at all), and also decreases with increasing k .
In our paper we assume implicitly that the electron

traverses the periodic dielectric medium. Of course,
stimulated transition radiation can also be induced in an
arrangement in which an electron beam in vacuum passes
in the immediate vicinity of the modulated dielectric.
This eliminates the problem of electron beam scattering
within the dielectric. The interaction then takes place be-
tween the beam and fringing electromagnetic fields just
outside the dielectric surface. An example of this is a
sheet beam skirting a periodically modulated dielectric
slab of dielectric coefficient Eo and thickness a, which
satisfies the (unmodulated) dispersion equation'

creases with energy y are associated with stimulated tran-
sition radiation (cf. Fig. 2). The portions in which co de-
creases with increasing y are typical of stimulated
Cerenkov radiation. ' To achieve good coupling between
the fringing fields and the electrons, and thus good gain,
the electrons must be within a distance -yA, from the
dielectric surface (A, is the radiation wavelength).

Probably the most interesting aspect of the coherent
emission mechanism discussed in this paper is the possi-
bility of using a dense, periodically modulated plasma as
the wiggler. By creating such a fully ionized medium, the
problem of electron scattering in the dielectric is greatly
diminished. For example, it has been demonstrated that
by optically mixing two CQq laser lines one can generate a
plasma wave with a plasma density of 1.15X10' cm
(co&

——1.9X10' sec '). Stimulated transition radiation
could then be achieved by injecting a relativistic electron
beam into the medium at the appropriate angle 8. To be
sure, all our calculations have presupposed a stationary
periodic dielectric. However, by analogy with electromag-
netic wigglers, ' ' ' we believe that stimulated transi-
tion radiation should be possible from a nonstationary
dielectric such as a propagating or standing plasma wave.
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