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We consider in detail our earlier classical model of multiple-photon excitation of molecular vibra-
tions in an infrared laser field, wherein the observed fluence dependence of the process is associated
with chaotic variations of a pumped mode. We focus our attention first on a quasicontinuum model
of background vibrational modes, which provides us with a dynamical system in which the role of
chaos is neatly interpretable. Then we consider a model with only a finite number of background
modes in order to corroborate the conclusions drawn from the quasicontinuum model.

I. INTRODUCTION

Recently a number of papers have dealt with problems
of energy deposition in driven, classically chaotic systems.
An early example is the work of Casati et al.! in which
the energy of a periodically kicked pendulum was found
to grow, on average, linearly with time. Another interest-
ing example was provided even earlier by Leopold and
Percival,? who considered a classical model of a hydrogen
atom in a sinusoidal electric field. Further work on this
model was recently described by van Leeuwen et al.’, who
report excellent agreement between the classical computa-
tions and the experimental results of Bayfield and Pinna-
duwage* on the microwave ionization of highly excited
hydrogen atoms.

Earlier we described a classical model for the multiple-
photon excitation (MPE) of molecular vibrations by an in-
frared laser field.* The dynamics of this model were
found to be chaotic, with the consequence that the MPE
process was predicted to be fluence dependent rather than
intensity dependent. In particular, the energy absorbed
from the field was found to grow, on average, linearly
with time. Thus the model provides an interesting para-
digm for two important aspects of MPE that have been
observed for some time. (1) It is surprisingly easy to dis-
sociate polyatomic molecules, in spite of the possibility of
bottlenecking due to a mismatch between the field fre-
quency and allowed transition frequencies as the excita-
tion proceeds up the vibrational ladder. Such dissociation
in laser fields of modest power was first observed in ex-
periments of Isenor and Richardson in 1971 (Ref. 6), and
raised the possibility of laser-controlled isotope separa-
tion. (2) The MPE process depends strongly on the flu-
ence of the applied field, i.e., the total energy in a laser
pulse, but not on the detailed variations of intensity
within the pulse. This trend towards fluence dependence
was recently corroborated in the experiments of Simpson
et al.,” who found increasingly strong fluence dependence
as the number of atoms increased in the molecules they
studied.

In this paper we describe in detail our earlier MPE
model, and report results of extended computations on the
model and modifications thereof. We show that the role
of chaos in these classical models is to give rise to “in-
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coherence” in the sense of fluence-dependent excitation.
Although these classical models provide a rather attrac-
tive interpretation of fluence-dependent MPE in large po-
lyatomic molecules, the question, of course, arises as to
their range of validity. Bloembergen® and Lamb’ have ad-
vocated classical approaches to certain important aspects
of MPE, but we feel that the question of the validity of
the classical theory in this context is still not entirely
resolved. We discuss this point in the final section of this

paper.

II. THE QUASICONTINUUM MODEL

We assume that only one vibrational mode of a mole-
cule interacts strongly with an applied laser field, and
neglect interactions of any other “background” modes
with the field. The background modes, which can ex-
change energy with the laser-pumped mode, are further-
more assumed to be harmonic. In the specific case of the
SF, molecule, for instance, there are two infrared-active
normal modes (v; and v,) with a rather large frequency
separation (about 300 cm™!), so that a laser can interact
selectively with one of the modes. In particular, the
v3(v, 4+ v¢) mode lies near 10 um and has been studied ex-
tensively with CO,-laser radiation.!® The nearest back-
ground mode to v; has a small anharmonicity compared
with that of v;, thus providing some justification for the
treatment of the background modes as harmonic oscilla-
tors. Our idealized model for the MPE dynamics is then
based on the following Hamiltonian:

in units in which #=1. Here @ and b,, are, respectively,
the annihilation operators for the pumped mode and the
mth background mode. A is the detuning of the laser
from the pumped mode, and ¢, is the frequency of back-
ground mode m as measured from the pumped mode. X
is the anharmonicity of the pumped mode, corresponding
to about 2 cm~! in SF,. Q is the Rabi frequency associat-
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ed with the applied field, which is treated as a prescribed,
classical monochromatic field. The last term in the Ham-
iltonian (2.1) describes one-quantum vibrational energy
exchanges between the pumped and background modes.
For simplicity we ignore interactions among the back-
ground modes.

The Heisenberg equations of motion following from the
Hamiltonian (2.1) are

G=—i(A—=X)a+2iXa 86 —iQ—i 3 Bub,, (22
m

b= —i(A+en)b, —ifd . 2.3)

The rate at which the molecule absorbs energy from the
field is determined by the rate of change of @ '@ associated
with the third term on the right-hand side of (2.2)

d

E(a“m:ima_a*) ) 2.4)

Thus we define the expectation value

n(0=—201m | [ dr(@u) @.5)

as the number of photons absorbed by the molecule. This
number is determined explicitly only by the pumped-mode
amplitude, because by assumption the background modes
do not couple directly to the field. Of course, they do
couple indirectly to the field via their coupling to the
pumped mode.

In our classical model we replace all operators in Egs.
(2.2) and (2.3) by their expectation values:

d=—i(A—X)a +2iX |a |%a —iQ—i 3 Bubn , (2.6)
m
bpy=—i(A+€p)bm —iBma , 2.7
where a=(&) and b,,=(b,, ). In particular, we ignore
the quantum-mechanical difference (@'@4)— |a |%a in

the anharmonic contribution to (2.6). Thus our classical
model is defined by the ordinary c-number equations (2.6)
and (2.7) together with the equation

n(=—201m | [ dra(r)] 2.8)

for the number of absorbed photons.

There is a further approximation that is useful in either
the classical or quantum-mechanical model, namely the
so-called quasicontinuum approximation. In this approxi-
mation we assume there are an infinite number of back-
ground modes above and below the pumped mode in fre-
quency, and furthermore that these background-mode fre-
quencies are evenly spaced by some amount p~!, with p
representing the density of background modes. We also
assume the background modes have equal couplings 3,, to
the pumped mode. Thus we take

(2.9a)
(2.9b)

Em=00+mp~!, m=—w,...,
Bn=pB forall m,

where A, is the frequency spacing between the pumped
mode and the nearest background mode.
The utility of the quasicontinuum approximation is

easily realized by using the formal solution of (2.7) in the
last term in (2.6):

i(A+Ag+mp~ (' —1)

gﬁmbm(t)=—i32§ [larae

. t i(A+Ay(t —1)
=—ip? fodt’e ° a(t')

i imp“‘(l’ )
X e .

m=—o

(2.10)

According to the Poisson summation formula'' we have

s eimp—'<z'~:)=21,p > 8(t'—t—2wmp)

m=—o m=—c

(2.11)
so that

i mem(l‘)=—27”B2p fotdt,ei(A+A0)(¢‘—t)a(t:)

m=—c
X i 8(t'—t +2mmp) .
T (2.12)

Defining
y=2mB%, (2.13a)
TR=27p, (2.13b)
e=(A+Ag)7R , (2.13¢)

and using (2.12) in (2.6), the classical model in the
quasicontinuum approximation reduces to the equation

a(=—i(A—X)a(t)+2iX |a(t)| Za(z)—m_lz’—a(z)

—y Y e MPa(t —m7g)O(t —m7R), (2.14)

m=1

for the pumped-mode amplitude, together with Eq. (2.8)
determining the number of absorbed quanta. In (2.14)
O(x) is the unit step function.

The quasicontinuum model for the coupling of some
system or quantum state to some background was used by
Bixon and Jortner!? in radiationless transition theory, and
by Stey and Gibberd'® and Lefebvre and Savolainen'* in
somewhat different contexts. Recently it.has been used
and studied further by Eberly et al.,’> Kyrola et al.,'
and Burkey and Cantrell.'”” We have also noted certain
conservation laws and discussed the notion of quantum-
mechanical spreading within the framework of the
quasicontinuum model.!® To our knowledge, however, the
present model® is the first to employ the quasicontinuum
model in a nonlinear setting.

Before exploring the consequences of the present model,
it is worth connecting it with earlier classical models for
MPE. In particular, suppose we proceed to the limit of a
very large density of background modes, so that 74 — co.
In this case (2.14) is replaced by

d=—i(A—X)a +2iX |a |2 —iﬂ—-g—a. (2.15)

Note that the effect of the background modes in this limit
is to introduce an irreversible decay of pumped-mode en-
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ergy at the rate y given by the Fermi “golden rule.”
Moreover, Eq. (2.15) may be regarded as an approxima-
tion to the Duffing equation

X +7% +oix — YoXx3= —40Q cos(wt) . (2.16)
To see this, let

x()=a(t)e "' a*(t)e’®", (2.17)
and assume that ¥y <«<w, |wy—w]|=|A| <«<w, and

|d@ | <<w?|a|. Then we have the Duffing (or van der
Pol, or first Bogoliubov-Mitropolsky) approximation to
(2.16):

d=—iAa +2iX|a | —sz’—a, (2.18)
which is just (2.15) with a trivial redefinition of the detun-
ing A. In quantum optics, of course, the approximation
leading from (2.16) to (2.18) is called the rotating-wave ap-
proximation (RWA). Thus we can say that our model
leading to (2.14) reduces to the RWA Duffing equation in
the limit of a very dense distribution of background
modes.'*

The Duffing oscillator has been considered previously
by Bloembergen® and Lamb’ as a model of a driven
molecular vibrator. It is worth noting that, although the
Duffing oscillator can exhibit chaotic behavior,”® the
RWA Duffing oscillator cannot.?! However, the RWA
Duffing system does share the properties of bistability and
hysteresis in common with the full Duffing equation.?!
Our model amounts to the RWA Duffing oscillator cou-
pled to a background of non-pumped background modes,
and in this sense is an extension of the earlier classical
models of Bloembergen and Lamb.

At the other extreme for the background modes is the
limit 7R —0, corresponding to a sparse distribution. In
this case the sum in (2.14) may be replaced by an integral.
Equivalently, it is clear that the limit 7R —0, or p—0,
means that all background modes except that separated by
A, from the pumped mode are so far off resonance from
the pumped mode that they may be ignored. Then we
may replace (2.6) and (2.7) by the equations

d=—i(A—X)a +2iX|a |%a—iQ—ipb, (2.19a)

b=—i(A+A¢)b—iBa , (2.19b)

which describe a driven anharmonic oscillator coupled to
a single harmonic oscillator.

Neither of these two limits for the background mode
distribution are of particular interest to us here. We now
turn our attention to the predictions of the quasicontinu-
um model for finite values of the background mode densi-

ty p.

III. RESULTS FOR THE QUASICONTINUUM
MODEL

For numerical computations it is convenient to cast
(2.14) in the form

a(t)=—i(A=X)a(t)+2iX |a(t)*|a(t)—iQ

—12/—a(t)—ys(t) , (3.1a)

where s (1) satisfies the recurrence equation

s(t)=e~?[s(t —7g)+alt —1g)] . (3.1b)

In terms of the new independent variable T =vt, and the
scaled variables :

A=%a, S=—gs R

'Z\:—A—, )?:l, (3.2)
y 14

Tr=vTr, a=XQ*/y°,

we have
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FIG. 1. (a) Number of photons absorbed by the pumped
mode for the case =03 cm~!, =02 cm~!, p=4 cm,
A—X=A¢=0, and the anharmonicity a=0. The time is given
in units of the quasicontinuum recurrence time 7z. (b) Total
number of photons absorbed by the molecule. (c) Power spec-
trum of the function a(T), obtained by applying a fast Fourier
transform to the time series a (7).
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A(T)=—i(A—X)A(T)+2ia| A(T)|*4(T)—i

—+A(T)—S(T) (3.3a)
S(T)=e~?[S(T —Tg)+A(T —Tx)], (3.3b)
and (2.8) becomes
2
T
n(T)=—2 9—} im | [ aracr). (3.4)
'y 0

The simplest case of the system (3.3), of course, is the
harmonic case a=0. In this case it is not difficult to ob-
tain a closed-form solution for A(7).?? Figure 1(a) is a
plot of the number of photons absorbed by the pumped
mode [=Q?%|4(T)|%/¥*] in this case, assuming
A—X=Ay=0, and in Fig. 1(b) we show the total number
of photons n (T) absorbed by all the modes. The absorbed

T T T
9r (b) ]
6 _
<
3
0] ] I L
o] 15 30 45
TIME (tg)

I-N

o

1 i

2 4
FREQUENCY (1/1g)

o

POWER SPECTRUM (log,,) OF a(t)
N

FIG. 2. Same as Fig. 1, except the anharmonicity a=0.18.

energy is oscillatory, which is the kind of behavior usually
expected of a system of coupled harmonic oscillators. (It
is possible to have energy growth proportional to T2 for
the special case ¢ =, but this case is nongeneric.) In Fig.
1(c) we show the power spectrum of the time series 4 (T).
The regularity of the spectrum is, of course, a reflection
of the linearity of the system, for in computing the spec-
trum we are essentially looking at the frequency spectrum
of a system of coupled harmonic oscillators.

The situation of real interest, of course, is when the
pumped mode is anharmonic, so that as£0. In Figs.
2(a)—2(c) we show how the results of Fig. 1 are modified
when there is an anharmonicity X =2 cm ™!, correspond-
ing to a=0.18 in the scaled system (3.3). After a few in-
tervals of time TR both the number of photons absorbed
by the pumped mode and the total number of photons ab-
sorbed become quite erratic functions of time, and the
power spectrum [Fig. 2(c)] is considerably richer than in
the harmonic case [Fig. 1(c)]. In Fig. 3 we extend the re-
sults shown in Figs. 2(a) and 2(b) out to 500 intervals. We
find that a saturation regime is reached in which the num-
ber of photors absorbed by the molecule oscillates about a
constant value [approximately 4.5 photons of energy in
Fig. 3(b)].

This saturation behavior, however, is unusual in that it
depends on our choice of @, which enters the model
through the parameter e ~*¢. In Figs. 1—3 we chose ¢ =0,
the case in which one of the background modes is exactly
resonant with the pumped mode. In Figs. 4—7 we show
the results for the total number of photons absorbed when

la(t)|?

TIME (1g)

n (t)

(o] 1 L 1
(o} 150 300 450

TIME (1g)

FIG. 3. Total number of photons absorbed for the case of
Fig. 2, extended out to 500 intervals.
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0 1 1

A
0 150 300 450
TIME (1)
FIG. 4. Same as Fig. 3, except ¢p=m/8.

¢=m/8, w/4, m/2, and T, respectively. For the /2 case
we also show the number of photons absorbed by the
pumped mode and the low-frequency power spectrum of
A(T). From these and similar computations we draw the
following conclusions. First, the total energy (number of
photons) absorbed by the molecule increases with time, on
average, when @£0. This growth is approximately linear,
with a slope that increases as ¢ is varied away from zero.
That is, the number of photons absorbed by the molecule
is proportional to the intensity multiplied by the time, or
the fluence of the laser pulse, which is assumed to be long
in duration compared with 7g. (500 intervals in the fig-
ures shown, for instance, correspond to a time duration of
500< 133 psec=67 nsec.) The energy absorbed by the
molecule goes predominantly into the background modes,
with the pumped mode acting only as an intermediary
channel through which the laser can dump energy into the
background modes. The possible relevance of these re-
sults to actual MPE experiments is discussed in Sec. V;
for the present we continue to focus our attention on the
properties of our model dynamical system.

Consider the following expression for the total number
of quanta in the background modes:

S 160 |2=y [ dr'(a)|?

m

+27Re i B"O(t —mtR)

m=1
' [ Yy ’
X fmfkdta (t'—mrgla(t’) .

(3.5)

(o] 1 ] 1

0 150 300 450
TIME (1g)

FIG. 5. Same as Fig. 3, except p=7/4.

la(0)]®

n

POWER SPECTRUM (log,,) OF a(t)

FIG. 6. Same as Fig. 2, except ¢ =7/2 and a=0.18.
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FIG. 7. Same as Fig. 3, except ¢ =1r.
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Except for the small quantity |a(t)|?, representing the
number of quanta in the pumped mode, this expression
gives the total number of photons absorbed by the mole-
cule. The two terms on the right-hand side of (3.5) are
compared in Fig. 8 for the case of Fig. 6. It is seen that
both terms vary approximately linearly in time (measured
in the figures in units of 7z). Figure 6(b) gives just the
algebraic sum of the two terms in (3.5), except again for
the small contribution |a(#)|2 The result, as shown in
Fig. 6(b), is just an approximately linear growth of the ab-
sorbed energy with time, with a slope much smaller than
either of the lines found in Fig. 8.

In the limit 7g— o0 of a continuum of background
modes, the second term in (3.5) would be absent. In this
case the number of photons absorbed in the background
modes grows at a rate y given by the golden rule:

gt-z | bm(0) | 2= |a(0)]2. (3.6

Our model then reduces to the RWA Duffing system
(2.15). We show in Fig. 9 the number of absorbed pho-
tons (2.5) computed using the RWA Duffing equation for
a(t). As in the preceding figures we have taken A —X =0,
X=2cm™ !, Q=3 cm™~}, and y=1.01 cm~'. Not surpris-
ingly, the result agrees very well with the first term in
(3.5) for the full quasicontinuum model.

The most interesting feature of the results shown in
Figs. 4—7 is that the absorbed energy grows, approximate-
ly linearly, with time (fluence-dependent absorption), even

1 1 ]
__ 400} (a)
wn
P
g 3001 .
w
Z
g 200} .
w
’-
% 100} _
S
'
o] 1 1 1
o 30 60 90
TIME (1g)

SECOND TERM IN EQ.(3.5)

TIME (tp)

FIG. 8. (a) First and (b) second terms of Eq. (3.5) for the case
of Fig. 6.

though the density of background modes chosen is too
small to make the golden rule applicable. That is, we
have not constructed a model in which fluence depen-
dence is expected a priori due to an incoherent, irreversible
decay of the pumped mode into a bath of background
modes. Even without such an a priori assumption, how-
ever, the model does predict, to a good approximation, a
fluence-dependent absorption of energy. In other words,
the absorbed energy is proportional to the time and the in-
tensity of the applied field, as if a simple rate-equation
description were applicable.

To better understand these results, let us write (3.5) in
the form

S | bm(t) | 2=yt{]a(t)]|?)g

m

427tRe S BXn (0 [a(0) ),

m=1

+ [ {at))m |, (3.7
where we introduce a “correlation function”

(a*(t —m7R)a (D)) pm— | (@ (D)) |?

Xn(t)= , (3.8)
(la@®)|®)y,
and define an “average” ( ),, by
(D) =(1/00(t —mrg) f"'”R dr'f(t') . (3.9)

The approximately linear growth with time of the ab-
sorbed energy is a consequence of the fact that both terms
multiplying ¢ in equation (3.7) are approximately constant
after many intervals, as is clear from Fig. 8. In Fig. 10 we
show computed values of X,(¢) and Xs(¢) for the case of
Fig. 6, and in Figs. 11 and 12 are shown corresponding re-
sults for (|a(¢)|?),, and |(a(?)),,|% The results
shown for the correlation function [ X,,(#)] are especially
interesting, because they indicate the role played by chaos
in establishing the linear growth with time, and therefore
the fluence dependence, of the absorbed energy. Whereas
(quasi-) periodic motion gives rise to oscillatory correla-
tions, it is typical of chaotic motion that correlations are

T T T

400 | —
300} -
T 200} _
100} B

(o] 1 1 1

0 30 60 90

TIME (1)

FIG. 9. Number of absorbed photons computed using the
RWA Duffing equation (2.15) for a(¢) (see text).
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/] Il 1
o 200 400 600
TIME (1q)
0.9 T T
(b)
0.6 -
=
0.3+ -
o 1 1
(s} 200 400 600
TIME (1g)

FIG. 10. Correlation function X,,(t) for the case of Fig. 6,
for (a) m=1 and (b) m=25.

decaying functions of the time difference. In particular,
the fact that all the X,,(#) damp to constant values gives
rise to the linear dependence of the absorbed energy with
time, as is obvious from Eq. (3.7). [We note again that in
our model the absorbed energy goes predominantly into
the background modes, with total excitation given by
(3.7).]

It is important to note, because the correlations decay
to constant values, the linear dependence of the absorbed
energy with time will persist for all times. That is, the
energy-versus-time curves shown in Fig. 6(b), for instance,
will not saturate. Also, in such figures we are certainly
not observing an early portion of some oscillatory energy-
versus-time curve.

Although power spectra and correlation functions can
provide strong evidence for chaotic behavior, the sure test
is to compute the Lyapunov exponents: if one of these is
positive, the system is chaotic. We have computed for our
model the maximal Lyapunov exponent, using the tech-
nique described by Benettin and co-workers.?®> Figure 13
shows the result of the computation for the case of Fig. 6.
The computation extends over a period of 10000 intervals
of time 7R, and it appears that the maximal Lyapunov ex-
ponent is converging to a positive value. Thus we have
the property of “very sensitive dependence on initial con-
ditions,” the hallmark of chaotic behavior. In the linear
(nonchaotic) case a=0, on the other hand, the computa-
tion gives zero for the Lyapunov exponent, which is the
signature of regular behavior.

T T
(a)
~ 0.4 -
A
©
v 0.2 -
o 1 i
0 200 400 600
TIME (1g)
T T
(b)
A 0.201 -
<
y o101 —
0 1 1
o 200 400 600
TIME (1)

FIG. 11. Average { |a(t)|?),, for the case of Fig. 6, for (a)

m=1 and (b) m=25.

T T
(a)
~ 0.0} .
A
©
VvV 0.10 .
0 1 \
) 200 400 600
TIME (1q)
T T
(b)
0.20- .
A
® 0.0 -
Vv
o | )
o 200 200 600
TIME (1)

FIG. 12. Function |{a(t)),, | for the case of Fig. 6, for (a)

m=1 and (b) m=25.
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-0.0006 —
| | |
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FIG. 13. Results of the computation of the maximal

Lyapunov exponent for the case of Fig. 6.

IV. MODEL WITH A FINITE NUMBER
OF BACKGROUND MODES

The quasicontinuum assumption of an evenly spaced,
infinite ladder of background modes may seem highly ar-
tificial, but in fact it is not very crucial for our results
about the nature of energy deposition. In this section we
assume a finite number of background modes, which need
not be evenly spaced, and obtain results in good agreement
with the basic predictions of the quasicontinuum model.

The equations of motion are (2.6) and (2.7). Consider
first an example in which there are ten background modes
with energies

Em=—(A=X)+(m —6)p~!, m=23,...,11 4.1

and p=4 cm, B=02cm!,X=2cm™!,and A—X=0as in
all the examples considered with the quasicontinuum
model. Note that in this case one of the background
modes (m=6) is exactly resonant with the pumped mode,
and so we can compare with the results shown in Fig. 3
for the quasicontinuum model for the case ¢=0. We
show the results obtained with (2.6), (2.7), and (4.1) in Fig.
14. The time axis in Fig. 14 corresponds to about 150 in-
tervals g for the quasicontinuum limit. Although the
predictions shown in Fig. 14 differ in detail from those of
Fig. 3, it is clear that the total number of absorbed pho-
tons is again predicted to show a saturation behavior rath-
er than to grow approximately linearly with time.

Suppose, however, that the background mode closest to
the pumped mode is displaced in frequency from the
pumped mode. In Fig. 15 we show the results of the
model with ten background modes, when the background
mode is displaced from the pumped mode by an amount
that corresponds to ¢=m/2 in the notation used for the
quasicontinuum model [Eq. (2.13c)]. Now we observe an
approximately linear growth with time of the absorbed en-
ergy, which is consistent with the prediction of the
quasicontinuum model (Fig. 6).

These results can be made to look more similar to the
quasicontinuum results by increasing the number of back-
ground modes. In Fig. 16 we show the results for the

0.6

0.2 | oLy

o PIPERTINS ALLUMMLI Hikiding wall i o

0 1000 2000 3000
TIME (cm)
T T [
(b)
8H —
[

4 -
0 1 | L

0 1000 2000 3000

TIME (cm)

FIG. 14. Number of photons absorbed by (a) pumped mode
and (b) all modes for a model with ten evenly spaced back-
ground modes, one of which is resonant with the pumped mode
(see text).

number of absorbed photons when the preceding example
is extended to include 20 background modes. The time
axis corresponds to a total of about 250 quasicontinuum
intervals 7z, and there is good agreement with the corre-
sponding prediction of the quasicontinuum model [Fig.
6(b)].

0 L 1

1
0 4000 8000 12000

TIME (cm)

FIG. 15. Number of photons absorbed by the molecule for
the case of Fig. 14, but without resonance between the pumped
mode and any of the background modes (see text).
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FIG. 16. Number of photons absorbed by the molecule when
the number of background modes is increased to 20.

6000

It is not surprising that the quasicontinuum limit is ap-
proached with only a relatively small number of back-
ground modes.'*!® The quasicontinuum model is very
useful because it greatly expedites the computations, and
we have seen that it also aids in the understanding of the
role played by chaos in the predicted fluence dependence.

However, we find that fluence-dependent behavior is
not predicted when the number of background modes is as
small as two or three. We have already considered the
limit (2.19) in which there is just one background mode; in
this limit the absorbed energy is oscillatory rather than
linear with time. Thus a certain number of background
modes must be reached before fluence-dependent behavior
sets in, but beyond this number the results are roughly in-
dependent of how many background modes are present.

The most important predictions of the quasicontinuum
model, for our purposes, are also preserved when the
background-mode frequencies are not evenly spaced. In
Fig. 17 we show the number of absorbed photons obtained
with a model of ten background modes with “randomly”
chosen €, values of —0.98, —0.62, —0.23, 0.054, 0.17,
0.20, 0.31, 0.67, 1.06, and 1.46 cm~'. In general the
growth of energy with time in cases with unevenly spaced
background modes seems to be less accurately linear than
with even spacings. The result shown in Fig. 17 is fairly

n (1)

0 L [

1
o] 3000 6000 9000

TIME (cm)

FIG. 17. Number of photons absorbed by the molecule for a
case with ten unevenly spaced background modes (see text).

typical of such cases. We can also lift the restriction of
equal coupling constants (S, ) without significantly af-
fecting the results.

V. DISCUSSION

We have considered a classical model for multiple-
photon excitation of molecular vibrations by infrared-
laser fields. The model consists of an anharmonic
pumped mode coupled to a background of harmonic,
infrared-inactive modes, and driven by a monochromatic
applied field. For reasonable values of molecular parame-
ters the model typically predicts approximate fluence-
dependent behavior, more or less independently of the de-
tailed assumptions made for the background modes. Al-
though we have focused our attention here on the case of
a quartic (Duffing) nonlinearity, we feel that the basic
model is fairly generic, but this remains a point for more
careful investigation.

To the extent that the classical model is a reasonable
one for a molecular vibrator in a laser field, we can under-
stand the kind of behavior observed experimentally for
some time in MPE experiments.>”!° Perhaps the most
significant experimental result is that a polyatomic mole-
cule can be highly excited (and dissociated) by absorption
of tens of photons in infrared laser pulses of fluence ~1
J/cm? and intensities ~10 MW/cm? or less. In our
model such behavior is predicted for realistic values of the
molecular parameters. Another important feature of the
experiments is that the MPE process in all but the small-
est polyatomics’ depends on the laser fluence. This
behavior is also predicted by our model, as is reflected in
the (approximately) linear growth with time of the ab-
sorbed energy in a field of constant intensity.

Fluence-dependent excitation is naturally predicted by
rate-equation models of multiphoton excitation, where the
vibrational populations are assumed to change at rates
proportional to the laser intensity.!® Such behavior is not
necessarily predicted by the density-matrix (or multilevel
Bloch) equations, except of course when the rate-equation
description is a valid approximation. In particular, the
density of background modes may be insufficient to justi-
fy a golden-rule, rate-equation theory. In fact, there is
evidence that an a priori assumption of the validity of rate
equations may be unjustified in a molecule like SF¢.?* In
our model, fluence dependence is predicted without any
rate-equation or statistical assumptions about background
modes. We have explained this fluence dependence in
terms of decaying correlations associated with the chaotic
time evolution of the pumped-mode amplitude.

The currently accepted description of MPE in polya-
tomic molecules may be briefly summarized as follows.
For the lower vibrational levels of a pumped mode, energy
is absorbed by resonant, stepwise excitation, with the
anharmonic energy defects being compensated for by the
rotational energy levels.”?¢ Due to the large number of
vibrational-rotational modes, the density of states in a po-
lyatomic molecule increases rapidly with increasing exci-
tation, so that after sufficient excitation a quasicontinuum
regime is reached. The large number of levels in this
quasicontinuum regime allows resonant stepwise excita-
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tion to proceed without bottlenecking. This sort of
behavior provided motivation for the present classical
model, which predicts that most of the absorbed energy is
soaked up by the background modes, with very little going
into the pumped mode.

The complexity of the problem has made it difficult to
develop the accepted theory of MPE in a detailed, quanti-
tative way. For this reason there has been frequent resort
to classical models.® The work reported in this paper ex-
tends these earlier models, and shows that fully classical
models can account for the most significant features of
MPE. Furthermore, as noted in the Introduction, our
model is of some interest in connection with the nature of
energy deposition in chaotic systems with external driving
forces.

Although our model system is interesting in the context
of dynamical systems theory, and as a classical model of
MPE, it cannot really be regarded as a realistic alternative
to the standard picture of MPE. For one thing, we have
not accounted here for molecular rotations, which cannot
be treated additively as a kind of inhomogeneous broaden-
ing.2* We have previously considered the case of a
pumped, triply degenerate harmonic vibrational mode and
an uncoupled rigid rotator.”’ In this case the field intro-
duces a vibration-rotation nonlinearity that breaks the
conservation of molecular angular momentum, which can
lead to chaotic behavior when the vibrational angular
momentum exceeds the purely rotational angular momen-
tum.

A more fundamental limitation on our model, of
course, is that it is completely classical. One might expect

reasonably good agreement between the classical and
quantum-mechanical predictions when the molecule is al-
ready highly pumped up the vibrational ladder, but our
computations show that the pumped mode does not get
very highly excited. Support for classical MPE theories is
sometimes sought in the numerical results of Walker and
Preston,?® who compared the classical and quantum re-
sults for the energy absorbed by a driven anharmonic os-
cillator.” However, these computations did not extend
very far out in time, as was possible in our computations
because of our use of the rotating-wave approximation to
eliminate rapidly oscillating terms. In fact, it is precisely
for such long times that one expects the largest differ-
ences between the classical and quantum predictions.
Furthermore, we have strong evidence for chaotic
behavior in our classical model, and it is not yet clear to
what extent our predictions would survive a fully quan-
tum treatment.”’ We hope to be able to address these
questions in the near future.
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and (b) all modes for a model with ten evenly spaced back-
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FIG. 2. Same as Fig. 1, except the anharmonicity a=0.18.
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