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Focusing singularity of the cubic Schrodinger equation
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The cubic Schrodinger equation has singular solutions in two or more space dimensions. The
singularities occur at points of intense self-focusing. In this paper we present numerical results that
describe the nature of the focusing singularity.

I. INTRODUCTION t =t, and if
~

x
~

= r then

In various physical contexts nonlinear propagation phe-
nomena are modeled by the cubic Schrodinger equation
(CSE)

i +bib+ ~f~ /=0, t &0
Bt

P(0,x)=lbo(x),

xaam'

whose main property is that in any dimension N & 2, solu-
tions may develop a singularity at some finite t =t, . In
nonlinear optics N =2 and Eq. (1.1) describes propagation
of electromagnetic beams in media whose index of refrac-
tion increases in proportion to the field amplitude. '

The variable t in this case is distance along the beam and
x=(xi,xz) are transverse-beam coordinates. In this con-
text, a singularity corresponds to narrowing of the beam
and increase of the field amplitude due to self-focusing.
%hen %=3 the cubic Schr6dinger equation can be
viewed as a limit of the Zakharov system for Langmuir
waves in plasmas. s Here time is represented by the
variable t and the singularity is usually called filamenta-
tion or collapse. Note that in one dimension, CSE can be
solved explicitly by the inverse scattering transform. '

The main result of this paper is an accurate description
of the nature of the focusing singularity in three dimen-
sions for radially symmetric solutions. This is done by us-

ing an adaptive grid defined by a nonlinear change of
variables which transforms Eq. (1.1) to a similar one that
has no singularities. This enables us to integrate numeri-
cally Eq. (1.1) up to times very close to blowup where the
maximum initial amplitude has been amplified by factor
larger than 10 . We find that if the singularity occurs at

e"v C &Cr

Qp(t, t) -Qp(t, - t)

i ((c'/n)lnI c/(t+ —t)]ye (1.2)

Here tz, P, l9, and C are constants that depend on the ini-
tial conditions and Q(rl), ri&0, is the complex-valued
solution of the equation

d 2 d . d

(1.3)
g d'g dri, +— —Q+tE (riQ)+

~ Q ~'Q =0, ~&0

(0)=0, Q(~)=0, Q(0) real.
d 'f/

We find that the constant K in (1.3) is independent of the
initial data and has the value E -0.917.

There is no mathematical proof that locally the focus-
ing singularity in three dimensions has the self-similar
form (1.2) although this has been expected. ' Growth of
the peak amplitude according to a (t, t) '~ law has-
also been observed in direct numerical integration of Eq.
(1.1)."' The determination of the constant E in (1.3)
and of the logarithmic phase in (1.2) is a consequence of
our ability to integrate (1.1} up to times very close to
blowup.

At the critical dimension %=2, the nature of the
focusing singularity is much more difficult to analyze
both numerically and analytically. Contradictory predic-
tions have been made based on heuristic considerations
and direct numerical integration. ' ' %"e summarize our
numerical results for this case up to now in Sec. VI.
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FOCUSING SINGULARITY OF THE CUBIC SCHRODINGER EQUATION

II. BASIC PROPERTIES OF THE CUBIC
SCHRODINGER EQUATION

Regular solutions of (1.1) have two invariants: the L
norm

(3.1)

where L(t) is a positive function that will be specified
later. Let u (g,r) be defined by

~
P(t) [,= f ~

g(x, t)
~

dx=const, .

and the Hamiltonian

8= x, f ——, x, i x=consi .

(2.1)

(2.2)

u (g,~)=L (t)g(r, t), (3.2)

(3.3)

where f(r, t) solves (1.1). The conservation laws (2.1) and
(2.2) imply

«) I fo I 2

The first conservation law is obtained by multiplying the
CSE by |T, the complex conjugate of g, and taking the
imaginary part, the second by multiplying by Bg/e)t, and
taking the real part. We also have the "variance" identity

2

, Jl*i'tv~* t~i'd*. H ="-' ilk~*.&~l'd*.
& dt's

(2.3)

From these identities one can deduce' that blowup may
only occur at or above the critical dimension N =2. Glo-
bal existence results are given in Refs. 20—22. We give
briefly the argument for blowup here.

Suppose that the initial function Po{x) has fmite vari-
ance J )

x
)

'
( go(x) ['dx»d that the Hamiltonian H is

negative. In two or more dimensions, (2.3) implies that
there are constants Ci and Cq such that

f i
x

i

'
i P(x, t) ),'dx & SHt'+ C, t+ C, . (2.4)

Since H &0, there will be a first time t at which the left
side becomes zero. '9 z2 The uncertainty inequality

I f I,', & ~ I Vf I,, I xf I,,

and (2.1) imply now that

X,t X~ 00

(2.5)

(2.6)

and

sup
~
f(x,t)

~

~an,

III. NONLINEAR SCALING

In this section we describe the scaling of the nonlinear
Schrodinger equation that allows us to integrate up to
times very close to the singularity. %e restrict attention
to radially symmetric solutions g(r, t) with

~

x
~

=r
Introduce the variables

as t~t. This argument proves that for initial conditions
with finite variance, blowup must occur at a finite time if
H is negative. Nevertheless, this time need not be t:
blowup could occur at an earlier time and it generally
does. Furthermore, this condition on the initial variance
docs not seem necessary —singularities were obtained nu-
merically with data that have infinite variance and also
when CSE is considered in a periodic domain. '

As noticed in Ref. 25, the singularity of the nonhnear
Schrodinger equation can be viewed as an extension to
continuous systems of the collapse of point masses in the
classical N-body problem.

dL 1 dLa(r)=L
dt L dr' (3.6)

where we think of L as a function of t or of r using (3.1).
The simplest choice for L(t) making

~

u
~

uniformly
bounded is L (t) =

~
Q(O, t)

~

'. This procedure is, howev-

er, not suited for numerical computations because of the
instability resulting from the local character of the scaling
factor. The idea is thus to require the conservation of a
suitable integral norm (depending on the space dimension)
which as a consequence will control the sup norm.

In three dimensions, we choose L (t) so that the

~

du
~ ~, is constant, independent of i. In view of (3.2),

this is accomplished if we take

L'(t) = (3.7)
r, t r r

with k a constant. The function a (r) in (3.5) is obtained
by substituting (3.7) in (3.6) and using (1.1) and (3.2).
This gives

a (~)=——Im (hu ) u +46,uu
21 ~ 2t Bu

3k ag

+2(hu) ubu g dg, (3.8)

8 2 8

The original equation (1.1) has been transformed to (3.5)
with a(r) given by (3.8). This equation has the advantage
of being nonsingular. The uniform boundedness of

~
u

~ ~ cannot be derived using a Sobolev inequality from

the conservation of
~
hu

~ z2 because of the growth of

~
u ( ~,. Nevertheless, our numerical computations show

and

Q —
2 Q

(~) f (I~Col' —
~ Idol')dx

It is easily seen that u (g, r) must satisfy the equation

i + 2+ ia—(~) (gu)+ ~u
~

u =0.. Bu Bu N —1 Bu . 8 2

ag'

(3.5)

The initial condition is u($, 0)=L(0)go(L(0)g). The
function a (~) is given by
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that
I

u
I

„stays bounded.

The large r-behavior of a (r) reflects the way L (t)~0
as t +i—, or ~ +—oc. Suppose, for example, that a (r) tends
to a constant as ~~ ao, which as we will see is what hap-
pens. Then L(t)-(t, t)'~—.

In two dimensions we arrange that the L norm of u be
independent of v by choosing

stepping, similar to one of the schemes used in Ref. 17:

+ n+]. n

L'(r) = k

f I
V'g(r, t)

I
rdr

'

where k is a constant. The Sobolev inequality

(3 9)

(3.10)

+-'
I

~"I'~"—-'
I

u"-'I'u"-'=0 (41)

To implement a collocation method, the spatial domain
[0, ao ) is mapped on the interval ( —1, + 1] by the
transformation

(4.2)

insures that the maximum of
I

u
I

is bounded for all v.
In this case, the function a (r) is given by

2 1
a (~)=——Im3K

3 4)Q BQ ~
ag 5g ag

"~"~ (3.11}

The systein to be solved now is (3.5) (with N =2) and
(3.11).

In the two-dimensional case we also used the scaling
th«makes

I
&u I,'~ independe«« ~ by «king

L (r)= f I
Vy(r, r) I'rdr

The corresponding a (r) is now

1 " i Bua(v)= ——Im f ui /de.
C 0 ag

(3.13)

L C,(t„—-t)'~' ln, r~t,
E~ —lf

(3.14)

With this choice of scale factor, the maximum of
I

u
I

is
no longer bounded for all ~. However, it grows very slow-
ly with ~ and in practice the scaling (3.12) is as efflcient as
(3.9).

In the two-dimensional case the decay of a (&) to z«o
as r~ac determines the behavior of L(t) on t~t, and
hence the nature of the blowup. If, for example,
a (~)— Cia ", y &—0, with Ci some constant, then

where I is an adjustable parameter. We used 1=64 in
three dimensions and 1=128 in two dimensions. The
functions are then expanded in a series of Chebyshev po-
lynomials. %e retain 65 polynomials in three dimensions
and 129 in two dimensions. Half of the collocation points
are between 0 and 1. The time step is 5r=2X10, in
three dimensions and 5~=10 in two dimensions.

The explicit part of Eq. (4.1) is computed by colloca-
tion: multiplications are done in physical space and dif-
ferentiation in Chebyshev space. Concerning the implicit
part, we first construct an approximation of the operator

i 1I =
5~ 2

(4.3)

from a collocation approximation of the derivative opera-
tor D. The boundary conditions (a/ag)u" +'(O, r)
= u" +'( oo, r}=0 are taken into account by replacing the
first line of the L matrix by the first line of the D matrix
and the last one by (0,0, . . . , 1). The resulting matrix Lii
is inverted once and stored. Time stepping is made (in
physical space) by multiplying La with the X vector
consisting of the explicit part of Eq. (4.1) when the first
and last components have been replaced by zero to impose
the boundary conditions.

The global precision of the calculation can be controlled
in various ways. In two dimensions,

I
u

I ~2 is an invari-

ant. We thus check its conservation together with that of
the norm that the scaling makes constant. Table I
displays the case corresponding to an initial condition
$0(r)=4/(1+r ' when the scaling (3.9) is used. We ob-
serve the

I
Vu(~)

I ~4 is conserved well until the end of the

computation (~=120). In contrast,
I

u
I ~2 abruptly de-

where a=y/2(1 —y) and Ci is another constant. How-
ever, our numerical calculations so far are not adequate to
accurately determine the large-r behavior of a (r). As we
discuss in Sec. VI, we observe that a (v.) goes to zero much
slower than a power, which suggests that L(t) behaves
more like (t, t)'~ g (t, t) whe—re g(r, t) chan—g—es
more slowly than in[1/t, —i)] to a negative power.

IV. NUMERICAL METHOD

Equation (1.1) is solved numerically by using a pseudo-
spectral method for the space variable and a second-order
Adams-Bashforth, Crank-Nicolson scheme for the time

0
20
40
60
80

100
120

8.0
7.999977 1

7.999977 2
8.000 023 8
8.009 603 6
6.002 097 7
2.398 769 7

0.380962 38 x10-'
0.380952 37~ 10
0,380952 37~ 10-'
0.380952 37~ 10-'
0.380952 37x 10-'
0.380952 37x 10-'
0.380952 38~ 10-'

TABLE I. Behavior of the invariants in tvvo dimensions for
Lorentzian initial conditions.

I
~~ I', 4
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L computed
from (3.3)

I. computed
from (3.4f )lou

f

0
1

2
3

5

6
7
8

0.353 556
0.794 562 X10-'
0.235 292 X10-'
0 749 AA A y 10- l

0.253 568' 10-'
0.880091&&10-'
0.309466X 10-'
0.110497g 10-'
0.370935X 10-'

0.353 553
0.794 502 ~ 10
0.235 257 y 10-'
0.749466 X 10-'
0.253 311X 10
0.877 596g10-'
0.306966x 10-'
0.107778' 10-'
0.377005 X10-'

3.748 68
3.748 66
3.748 69
3.748 70
3.748 71
3.748 71
3.748 71
3.748 71
3.748 73

L(r) and invariant ~hu
~ i inTABLE II. Scaling factor v a

t ree
' f Lorentzian initial conditions.three dimensions j,or oren

imensions, the only conserved quantity is

I of I. ediComparison of the resulting va

h mputation, the agree-
r the initial condition Po(r =

en though fo „sit tio

2d tends to zero as t e
'

h olution with moreuantities. Big er reso u
pomts a

'
l ws integration over longerpoints at large distance, allows m eg

times.

V. RESULTS IN THREE DIMENSIONS

v=90. This suggest that the large-gteriorates around v= . lar e-
es im ortsnt. isbehavior of u becomes imp

I that at this time u(g, r) is compu
crate vallles 0, sitlce

'vel faster decay at in-which a is the integral has a relative y as er
finity.

e been erformed with initial conCh-Computations hav p
2e ' (referred to as antions l(o(r) =6 2e

The Gaussian initial

p y

Fi 2 ho thtfo Ip aseh remains r-dependent. Figure s o

3.0—

f5.0

12.0

f.5

r,O

f00

e.O

l
P 60

O,OI—

-Q, 5—

f 5
O.O

3,5I-
I-

3,OI—

I

OT f.C 2 f 2.8 3'.5 +2
I

+9 5.6 6 3 7.0

-2Q—

I-C.OI
0.0 0.6 f 2

f6.0—

1C0

I i I i I

C8 5+ 60
I i I ~ I

f.8 2.+ 3.0 3.6
'r

(a)

2,0

WO

f.O
8.0

Q 6.0

r.o,
I

I i I I

0.0 0.7 r. + g..r
II

2S 3.5 C.2 C9 56 63 70

(h)

~) vs g in three dimensions. (a)FIG. l. Amplitude
I u(g, ~)

I
vs in

63 initial conditions or ~= . '
s o

tial conditions for ~=4.5 to 8 in steps o

-C,O
0.0 0.8

FIG. 2. Phase
initial conditions.

I

Ca 56r, s Z,.C 3.2 C.O

Y(b)

at the origin vs ~ in three dimensions. (a} G3
(b) L3 initial conditions.
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~ the phase at the origin (()(0,1.) behaves like Cr. A
mean-square fit gives C=1.81 for the Gaussian initial
conditions and C= 1.140 for the Lorentzian initial condi-
tions. In Fig. 3, p(g, 1) C—1. is plotted for different values
of ~. %e see that this quantity is asymptotically indepen-
dent of ~. The scaling factor L is obtained from one of
the equations (3.3) and (3.4). We observe in Fig. 4 that
1nL -a~, o.=1.66 for G3 initial conditions and a=1.04
for L3 initial conditions. From Eq. (3.1) we can compute
t and see in Fig. 5 that L2-p(r, r) —with p=3.3 for the
Gaussian initial condition and p=2. 1 for the Lorentzian
initial conditions. As a consequence, a (1) should tend to
a constant —A. This is seen in Fig. 6. The limit value is
A = 1.66 for the Gaussian initial condition and A =1.045
for the Lorentzian initial condition. Note that the max-

u((, r)=S(g)e" + " fOr1~ce (5.1)

where (9 is a constant. Substituting in (3.3), we obtain

imum integration time 1 =6 for the Gaussian initial con-
dition corresponds to I, =0.034301966. . . and to an am-
plitude at the origin

~
f(0,1)

~
=2.485X10 . The max-

imum integration time is 1 =8 for Lorentzian initial con-
dition and corresponds to I; =0.035 6196. . . with an am-
plitude at the origin

~
f(O, t)

~

=5.38X10 .
The above observations indicate that L (t) scales like a

power law with an exponent —,. Furthermore, the ~
dependence of u (g, 1.) is reduced to a phase factor e' '.
%e thus write

-2.0— 2,0r

-30— 0 Qi-

- 0.0 -20

-6.0--

I -70--

~ -e,o--

-90—

-6,0$
i
l

-a Oi--

I

- rQ, OI-

1Z.OI-
I

-10.0—

-11 0 -160L-

I000 0.7 1 4 2.f 2.S 9.5 +2
i

49 56 63 70
-1e QL—---- — - —'- ---

00 06 12 1e 2+ a0 ~ 6 +2 + g S4 60

00)-
1

-2,0~
!
I-
t

-40)-
L

-60 I-

g Q

p -sGO i-

- 12.0!--

-10 q

-2,0 i-

-30—

-+,0

- 9'0 i-

-70—

—1$.0— -sQ(-

-160& -sQ)-

-16.0— -10.0,—

I

-2QQ —~——
00 0.7 1+ 2 1 2d D.5 +.2 +9 0'6 6.9 70

qi pa
O.O 0.8 c, 6 z 4

L~
3.2 4 Q +.8 $'.6 6.4 7 R 8.0

FIG. 3. P(g, z) —Cr vs ( in three dimensions. (a) G3 initial

conditions for ~=3 to 6 in steps of 0.6 and C = 1.81. (b) L3 ini-

tial conditions for ~=4 to 8 in steps of 0.5 and C = 1.14.
FIG. 4. Scaling factor I. vs ~ in three dimensions. (a) G3 ini-

tial conditions. (b) L3 initial conditions.
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hP —CS +iA (gS)+
~

S
~

S =0 . (5.2)
e"v C ~Cr

[p(f —f)]1/2 [p(f —f)]1/2

After the rescaling ~ C
/exp i—In (5.5)

(5.3)

Eq. (5.1) takes the form

Q —Q+i& (re)+ I Q I'Q
Bf)

(5.4)

with & =A/C. Figure 7 clearly shows that functions Q
constructed from the two different initial conditions are
identical. The ratio E has also the same value K=0.917.
We thus conclude that in the primitive variables, the solu-
tion has the asymptotic representation

The coefficients are a = 1.66, p =3.3, g —2.69,
C= 1.81 for the G3 initial condition, a = 1.04, p=2. 1,
8=2.95, and C=1.140 for the L3 initial condition.

Note that the —,
'

power law for the scaling factor L (1)
begins to be visible when the amplitude has been ampli-
fied by a factor of 10 or even less. It was thus seen in
direct numerical integration of Eq. (1.1). "' Neverthe-
less, a correct determination of the asymptotic profile of
the solution also requires observation of the logarithmic
behavior of the phase at the origin. The present numeri-
cal technique permits us to determine accurately this loga-
rithmic behavior anticipated by Zakharov.

0.'05«1Q 2

0.$0&10 "a

Q35«1Q a—

1.0—

owI-

I

I

0,0—

030«10 2— -05—

025«10 2 -1 0—

~ 0.20» 10 2—

O, ff«fp a

0.10« fp"2—

0.50«10 s—

-0.31 «10

I . I i I i I i I i I I I i I

0,33%1 0.3aao9 a3338b 0.33soa assof'f 083131 ff.$%f& 635959 o,hfoff+ 0.341M 0.3430a

10- 1 t.

0.0 0.6
~L ~~~ ~ . 1 ~ .J ~. l J1

1.2 f.8 24 3.0 36 +2 4,8 5.W 60

(a)

0.80«10 2 1.0—

P 'fpx 10 2 0.$—

060x fp a

0, 50 « 10 *I- -0,5—

0+Q«10 - 1.0

03px fP 2-

0,20» 10 2 -2.0

Q. fp» fp +

- 0.6Z. 10-16-

—Q, fp«10 2—

0 ss016 o,ssaM 0 ssf 37 0,33'19f' 0$0pf 7 0.M3fa p.fof70 030438 0.sf099 0, 39399 0, /$62. Q

I

-3.5 I—

L

-+0
0.0

I i I i ! i ! i I

0.8 f .6 2.+ 3.2 0.0 4.8 5.6 6.4 7. 2 8.0

FIG. 5. Scaling factor L vs t in three dimensions. (a) G3 ini-
tial conditions. (b) L3 initial conditions.

FIG. 6. a(v)=(d/d~)lnL vs ~ in three dimensions. {a) G3
initial conditions. (b) L3 initial conditions.
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O.+

03'

FIG. 7. (a) Asymptotic profiles and (b) phases obtained with initial conditions Q3 (solid line) and L3 (dashed line) in three dimen-

sions.

VI. RESULTS IN T%'6 DIMENSIONS

The main observation concerning the two-dimensional
problem is a drastic slowing down of the dynamics, in the
rescaled variables, typical of a critical situation. Compu-
tations were performed both with Gaussian and Lorentzi-
an initial conditions: $0(r) =4e referred to as G2 and
go(r) =4I(1+r ) referred to as L2. We also used two dif-
ferent nonlinear scalings which preserve either

~

Vu ~, or

~

Vu
~

4. The results in both cases were similar, so we re-

port here only on the L" scaling. Figure 8 shows a plot of
a (r). After a short transient, a (r) seems to converge to
zero but so slowly that we are unable to determine its de-
cay rate. On the other hand, the phase has a relatively
fast evolution. Figure 9 shows that the phase at the origin
becomes almost linear in v.. However, even at the end of
the runs, a slow variation of the slope estimated by a local
mean-square fit is still visible. Figure 10 shows that the
amplitude at the origin reaches a limiting value rapidly.

I.et us rewrite the solution in terms of amplitude and
phase

Equation (3.5) becomes

—gg +a (r)Sggg+ AS PP +S =0, —

—'BP +V VQ —a(r)+ S =0.
2 2

When the amplitude saturates, Eq. (6.2b) reduces to

V. Vg —a (r)
2

Because of axial symmetry,

kg
——a(r) ~

2

p(g„r) =p(0, r)+

(6.1)

(6.2a)

(6.2b)

(6.4)

(6.5)
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- 7.0

-7 +

2QL I

Q,O
I 1

7.0

FIG. 7. (Continued}

((}(g,~)=C(r)r+ (6.6)

Since the phase at the origin evolves almost linearly, we
rewrite (6.5) in the form

TABLE III. Amplitude at the origin in two dimensions for
Lorentzian initial conditions as obtained from t((0, t)
=L {0)u{O,r). At longer times, errors in L {v) become signifi-
cant.

bS —C(~)S+S = — (ti —a ) Cr S . —
4

(6.7)

If, as is consistent with our computations, a, ci, and C
vanish and C(r) reaches a constant value C when r~ ao,
a simple rescaling

(6.8)

indicates that the profile should be asymptotically given
by the positive solution (referred to as the ground state) of

where C(r) has a slow rate of variation. Substituting this
in Eq. (6.2a), we obtain 0

5

10
15
20
25
30
35
40
45
50
55
55.96

0
0.152 059 02
0.159652 34
0.160751 87
0.160974 39
0.16102833
0.161042 99
0.161047 30
0.161048 63
0.161049 05
0.161049 18
0.161049 21
0.161049 22

f
a/i(0, t}

f

4
1.806 &&

10-'
5.145 ~ 10-'
1.194X 10'
2.493~ 10'
4.872 X 10'
9.104~ 10'
1.650' 10'
2.935x 10'
5.229 ~ 10'
9.867 x 10'
2.79)& 10
4.961 & 10
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hA —R+R =0, (6.9)

as conjectured by Zakharov and Synakh. ' Note that be-
cause of the g term in Eq. (6.7), this convergence is
nonuniform in g.

The value of R at /=0 is R (0)-2.205. In Fig. 11 the
profile obtained with the Gaussian initial conditions is
rescaled to fit the value of R at the origin. The dashed
line there represents the ground state. A good fit is ob-
tained for rj & 1.5 corresponding to g'~3. This is also the
range where we observe that Eq. (6.5) gives a good repre-
sentation of the phase. Nevertheless, the scaling factor
which we used to fit the values at the origin is 0.2517,
while C(r)=0.2654 for ~=120. Hawever, C(~) is still
decreasing slowly with w and it may possibly converge to a
value close to 0.2517 as ~~+ 00. Although the ampli-
tude at the origin has been amplified by a huge factor
(Table III), the asymptotic regime has not yet been

reached. Extrapolation of the observed behavior suggests
that r should be increased by several orders of magnitude.

This slowing down in the approach of the asymptotic
regime makes the precise nature of the focusing singulari-
ty difficult to catch numerically and only partial con-
clusions can be drawn at present. The scaling factor I.(t)
appears to differ only slightly fram a —,

'
power law. The

deviation is not a modification of the exponent since this
would lead to a(r)-r ', which is not supported by the
numerical calculations. It is rather a more slowly varying
factor. This weak factor has, however, a significant infiu-
ence on the profile: it makes a(r) vanish asymptotically
and identifies the limiting profile with the ground state of
Eq. (6.9). Note that the simulations done in the primitive
variables' ' ' ended while the solution was still in an
early transient regime. Far example, the computations
carried out in Ref. 17 with the same Gaussian initial con-

2
ditions 1(0(r) =4e " ended at t =0.14 corresponding to
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FKJ. 8. a(~) vs ~ in two dimensions. {a) G2 initial condi-
tions. (b) L2 initial conditions.

FIG. 9. Phase at the origin vs v. in two dimensions. (a) G2
initial conditions. (b) L2 initial conditions.
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FIG. 11. Comparison of the rescaled profile corresponding to
L2 initial condition for ~=56—120 in steps of 4 (solid line) with
the ground state of (6.9) (dashed line): the solid lines corre-
sponding to increasing times slowly approach the ground state.

1.30—

1.20--

Ref. 28.
Another computation performed with an adaptive grid

by Vlasov, Piskunova and Talanov'" enables the authors
to reach amplifications up to 10 . They obtain a scaling
factor of the form

1.15

1 05—

I I

0.0 12,0 24 0 86.0
I I i I r I & I

480 600 72,0 840 960 &08g &2GO

FIG. 10. Amplitude at the origin vs ~ in two dimensions. (a)
62 initial conditions. (b) L2 initial conditions.

This factor was also proposed by Wood on the basis of a
systematic but formal analysis. This result seems also un-

supported by our computations since it would correspond
to an algebraic decay of a (r). However, extrapolation of
the behavior of a(~) from values not large enough might
lead to such a conclusion. More detailed numerical re-
sults in the critical case are given by Le Mesurier and in
Ref. 27.

r=4 only. Extrapolation of this time behavior appeared
consistent with the —, scaling law predicted by Zakharov
and Synakh. ' This law was criticized by Newell. ' Oth-
er computations over comparable time intervals'3's'
gave an exponent —', or at least observably larger than —,

' . '

Note that singular solutions with —', exponent can be con-
structed analytically. In the analogous critical one-
dimensional problem, such singular solutions are given in
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