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%e formulate a model describing migration of population from low-l to higher-l states of the

same principal quantum number in the highly excited state of the atom. The physical mechanism is

the degenerate, nearly resonant Raman coupling. Specific calculations are performed for the hydro-

gen atom. The laser light is modeled as a monochromatic coherent or chaotic colored noise.

I. INTRODUCTION

A variety of nonlinear effects have been found in pho-
toionization of atoms with high-intensity laser radiation.
If two or more photons are required to reach the continu-
um one inevitably deals with a multiphoton process. But
even when the continuum can be reached by absorption of
one photon only, additional photons may be absorbed in
continuum-continuum transitions. Recent experimental
results in this field have prompted interesting theoretical
model studies. If, on the other hand, the laser intensity is
low enough so that no continuum-continuum transitions
occur, the only intensity dependence left is depletion of
the bound state.

It has been found, i however, that yet another nonlinear
process can be important in ihe regime where only de-
pletion is expected. In these experiments, ' the angular
distribution of the photoelectrons was measured for vari
ous laser intensities. Drastic changes of the distribution
were found in cases when the initially populated bound
state was nearly degenerate with one or more neighboring
bound states. These results are explained by a Raman-
type coupling which mixes the irutially populated state
with the nearby states. When the laser intensity increases,
the third-order process (two-photon Raman coupling and
subsequent photoionization) competes more and more ef-
fectively with the direct first-order process. In the experi-
ment, such an intensity dependence was found, for exam-
ple, in photionization from a selectively populated Ryd-
berg nd state of sodium which is nearly degenerate with a
whole manifold of states with different angular-
momentum quantum numbers I.

In the following sections a model calculation is
developed to obtain a qualitative picture of the dynamical
behavior of the system. It is found that under favorable
conditions the population migrates periodically from low-
to high-angular-momentum states and back. One remark-
able result is that in the case of a monochromatic laser,
the laser intensity changes only the time scale and does
not affect the characteristic of the temporal evolution.

Experimentally the predictions of this model calcula-
tion can be tested by measuring the angular distribution of
photoelectrons. However, the photoionization cross sec-
tion decreases strongly with increasing orbital angular-

momentum quantum number l. Therefore, it may be ad-
vantageous to use field ionization —separated from the
laser interaction in time or space—as a probe for the pop-
ulation of different l states. This can be achieved unambi-
guously, if the l states are not degenerate. The l degenera-
cy is lifted by the relativistic interactions and by the po-
larizability of the ionic core~ for hydrogen and alkali-
metal atoms respectively. If the electric field is then
switched on slowly enough the I states will evolve adiabat-
ically into different parabolic quantum number states
which in turn have their own characteristic thresholds for
field ionization. As long as the interaction time between
the laser pulse and the atoms is short enough, the l-state
splitting can be neglected in the calculation.

Our paper is organized as follows. Basic dynamical
equations of the model are derived in Sec. II. Section III
is devoted to an analytically soluble example of the
dynamics. In Sec. IV the actual values of ac Stark shifts,
Raman couplings, and ionization rates are discussed for
the highly excited state of the hydrogen atom. It is shown
there that only nearly resonant Raman coupling can be
strong enough to produce an effective migration of the
population. Some constraints on the laser intensity, in-
teraction time, and the detuning, required by the con-
sistency of our model, are also discussed in Sec. IV. The
averaging over chaotic, colored stochastic processes
representing the multimode laser is explained in Sec. V.

Section VI contains our main numerical results. They
are obtained for the Rydberg state of hydrogen atoms
with principal quantum number %=28, irradiated by a
COi laser operating with an intensity of only 25 W/cm .
The results for a monochromatic coherent field are com-
pared with those of a chaotic colored light. A quasi-
steady-state distribution of population is found if the
chaotic light has a very narrow bandwidth.

II. THE MODEL

In this section we present a brief derivation of the
dynamical model proposed in this paper. We have in
mind highly excited states. For all the atoms they tend to
have properties similar to those of the hydrogen atom.
The specific calculations of our paper are done for the hy-
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drogen atom, hence, we assume from the outset an exact
degeneracy ~ith regard to the angular-momentum quan-
tum number!. The assumption is good for heavier atoms
if the laser-induced level shifts (ac Stark shifts) are larger
than the splitting of different I states.

Due to the electric dipole selection rules, the two-
photon Raman coupling will link states with Ah=2.
Hence, if the initial excitation process would produce
pure, say /=1 state, the evolution will be confined to the
manifold of odd-I states. With the assumption of linear
polarization, the magnetic quantum number m will not be
changed and will be suppressed in our notation. The
specific calculations are done for m =0 hydrogenic states.

The level structure of our model atom is depicted in
Fig. 1. The population is initially in the state denoted by

~

1). A general form of the state vector is
r

y(t)=e ' " yaJ(t)~J}+8 ' y(J(t)~J)
j~] j=O

~ j) states virtual. The population
~ gJ ~

' of these states
should be negligible and we can drop a time derivative in
Eq. (2.2b) eliminating gJ adiabatically:

XJ a—J g J (2.3)
Pj+ I

Aj+ I

lQj =AjQj+BJQJ I+8j+IQj+i,
where coupling constants AJ and BJ are given by

(2.4)

I ~J I
'+

I vJ I

'

As the next step, we assume that the absorption of a
single photon from the states

~ j) leads to a continuum
well above the threshold. The continuum there can be re-
garded as nearly flat. Therefore, the continua pJ(e, t) can
be eliminated with the help of the so-called single-pole ap-
proximation. The resulting set of equations takes the
form

+ e g fp~(e, t)
~
e,j)de (2.1)

i
Q. i(e)

i + i
A (e)

i
'de

+
E—E~ —NL

i~[~ Q—, ,(E„+~,)~ '+~ AJ(E„+u, ) ('], (2.5a)

in AJ(E—~+coL, )QJ (E~+coL ) . (2.5b)

It is clear that all of the couplings AJ and BJ are propor-
tional to the intensity of the electric field

~

E(t)
~

. Of
course, the real part of AJ is a light-induced shift of the
level

~ j). Its imaginary part is one-half the Fermi golden
rule ionization rate of that level. Parameters BJ deter-
mine the strength of the Raman coupling.

Of course, our model atom with only one set of the
nearly resonant

~ j) states is an oversimplification. In-

(2.2b)

i pJ ( e', t ) = (e E„—col )—pz ( e, t ) +QJ (e )aJ + i +AJ aJ

(2.2c)

As is customary in the discussion of Raman coupling,
we assume that the detuning b is large enough to make

Taking into account the dipole coupling constants as
marked in Fig. 1, the time-dependent Schrodinger equa-
tion breaks into the following set of first-order integro-
differential equations for the amplitudes aJ,gJ,pJ(e):

ia = fQJ, (e)pJ, (e, t)de

+ AJ E j F, t 6+ j j+pJ j ) q 2.2a

i gJ =A JQJ +PJ ~ itxJ + i+ kgJ, 6 coL —(EN —Ez ), —

jI=0

/e, 0& [e, 2& [e, 5&

o(e )

Jl. ~(~
((e)

Az(~
&(e)

Ap(&

FIG. 1. Level scheme of our model atom.
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elusion of other states results with sums replacing the sin-

gle terms for the real parts of AJ and 8J. Once we in-
clude, however, the contributions of far-off-resonant
states, the rotating-wave approximation used so far is no
longer justified and the contribution of the counter-
rotating terms must be included. Of course, these contri-
butions are obtained by a simple substitution, ~L ~—~L.

'aJ ——
~

E( )
~

(Aiaj+8J iaj 1+Bqaj+1), (2.6)

where the constants AJ. and 8J are given by the following
atomic matrix elements:

This leads to the set of dynamical equations in its final
follI1,

/
&N, 2j —1(z [n'I')

(E~ —E„+a)I

im( —
[ &N, 2j —1 [z I

E~+cot, 2J' —2) ('+ [ &N, 2j —1 ~z [E~+cot, ,2J')
( ), (2.7a)

8i=X +
EN En' L Ex En'+ I.

&N 2j —1 ~z [
n'1')&n', i' ~z ~N 2j +1)

t~&»2—J 1 lz IE—tv+~L, &j)&E~+~t. 2j lz l»2j+1) . (2.7b)

The sums g„.&, are extended over both the discrete and

continuous spectrum of the atom.
Note that, due to a sixnple linear dependence On the

laser intensity
~

E(t)
~

of our dynamical equation (2.6),
the solutions depend only on f '

~

E(7.}
~

2dr or the
total energy of the laser pulse. There are no coherent
pulse-shape effects in the model.

III. THE ANALYTICALLY SOLUBLE EXAMPLE

a(0)= 0

0

The solution of this set is

. 1 sin[(M —j+1)p)
8 sin[(M +1)$)

(3.4)

(3.5)

Dynamical equations, like our Eq. (2.6), linking the
nearest neighbors appear very often in physics. A well-
know'n example in optics is that of the nearly resonant
multiphoton excitation of multilevel atoms. For a num-
ber of specific sets of constants entering the equations, the
solution can be written in a closed form.

As an illustration, we present here the simplest exam-
ple. Let all the diagonal elements of the tridiagonal ma-
trix be equal: A, =A for all j, and aB the off-diagonal ele-
ments are equal and real, 81=—8.

The natural variable replacing time is

E r (3.1)

Taking the Laplace transform of (2.5) with respect to I),
we see that our equations take a matrix form:

iz —A =2 ~8
~

cosP (3.6)

(3.7)

Going back to the I)=
~
E

~

d~ domain, we see that

daJ (z)
aj(I))= g dz

s(p„)t
e

z =s(4„)
(3.8)

and M is a number of levels (dimensionality of our set).
Of course, the zeros of the denominator determine the

eigenvalues of our problem or the poles contributing to
the inverse Laplace transform. They are given by

(izI A)a(z) =ia(0), —

where matrix A is given as

(3.2) or

2e
—i Aq(t)

aj(t) =
8 0 0

8 A 8 0
0 8 A 8
0 0 8 A

0
0
0
0
8

0 0 0 0 8
and the initial condition

(3.3)
X g ( —1)"sin nn sin

e=l M+1

Pl&
gexp 2i ~8

~

co—s M+1

(3.9)
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Of course, one easily gets I'J (t) =
~ aj ~, the probabihty of

being in the jth state, out of this expression. The evolu-
tion describes an oscillatory behavior of the system.

%e use this solution to illustrate a simple, although not
always rex:ognized, fact. It is clear that in spite of describ-

ing only near-neighbor interaction, matrix A in {3.3} has
completely delocalized eigenvectors. All of the eigen-
values contribute to (3.9). Nevertheless, short-time
behavior will be restricted to the first several levels and
will not depend on the total number of levels M. This
point is illustrated in Fig. 2. The population in levels 1—6
is plotted for total number of levels M=8 and 10.

IV. DISCUSSION OF ATOMIC PARAMETERS

In Sec. III we discussed an analytically soluble model
with equal coupling constants. We devote this section to
the determination of more realistic atomic parameters, us-
ing we11-known hydrogenic dipole matrix elements. The
complex Stark shift constants A& and Raman coupling
constants BJ are given by an infinite summation over
weighted dipole matrix elements from the Rydberg state
with the principal number N to all possible discrete and
continuum states (2.6):

ReAJ = g W{n')
[ (N, 2J' —1

~

z
~

n'I')
(

(4.1a)

ReBJ ——y W(n ') (N 2j —1
~

z
~

n'I' }( n 'I'
~

z
~

N 2j + 1 },

~Nn'
W(n')=, co~„E~——E„—.

N~& —COL

(4.2)

The imaginary parts of the constants AJ and B~ in (2.6)
can be computed directly. There are no sums over inter-
mediate states there. In the following we have to distin-
guish between off-resonant (a) and near-resonant (b) cases.

(a) We consider a high-intensity Nd: YAG laser (where
YAG denotes yttrium aluminum garnet), which would
take the N=30 level of the hydrogen atom midway be-
tween the levels n'=3 and 4. Even though the weight
function W(n') has a zero for n'=N, major contributions
to the sum come from the near vicinity of n'=N because
matrix elements between high-n states are orders of mag-
nitude bigger than those between high- and low nstat-es.
But the sign change of 8'(n') at n'=N leads to cancella-
tions of large terms. The lowest term in a Taylor series
around n'=N

(4.1b)

whele the weightlilg fuilctloil lllcllldillg collilter-1'otatlilg
terms is given by the expression

1.0 2NPfn 2M Nn' 2Nn'
3 5

2 4 6
"+

NL NL 6)L
(4.3)

shows already important features. An analytical summa-
tion over the first-order weight function gives

2' (a ~z ~n'I')(n'I'~z ~b)= z (a ~b) . (4.4}
n'I I. COL

'0 0.2 0.6 0.8 I, O

(b)

TATES

0.5

0 0.4 0.6 0.8 l.0

FIG. 2. Time evolution of Rydberg-state populations Pj
(j =1—6) for the analytically soluble model with I-independent
couplings. A half of the ionization rate —ImA =

2 and the Ra-
man coupling 8=20. (a) 8 levels, (b) 10 levels. Note that the
initial phase of the evolution is the same. The solution does not
depend on the ac Stark shift Red.

This relation can be easily derived by evaluating the ma-
trix element of the unit operator [z, [H,z]] between the
states a and b. Orthonormality of the states a and b
leads to a vanishing first-order term for the Raman con-
stants, whereas the first-order term for the Stark shift
(here

~

a ) =
j
b ) ) is 1/col ( =545 a.u. in our case) and in-

dependent of N, as discussed by Avan et al. ' Higher-
order terms, for which sum rules are also derivable, have
to be handled with care because of the asymptotic charac-
ter of the expansion. These analytical results are in very
good agreement with our numerical results, which show
that the Stark shift differs from 1/coL by only a few per-
cent, whereas the Raman couplings are very small [10
(10 ) a.u. for low (high) I]." Note, however, that the
time evolution of our populations depends only on the
differences between ac Stark shifts of various levels. Note
that in the equal-coupling case discussed in Sec. III, the ac
Stark shift enters via the overall phase factor in formula
(3.9) and hence does not affect the probabilities. A con-
siderable numerical effort is needed to determine ac Stark
shifts with sufficient accuracy. The smallness of Raman
couplings, however, leads us to the conclusion that even
for high-power lasers such as Nd:YAG, a nonresonant
electron migration to higher-/ states is not feasible.

(b) For our example of near-resonant behavior we chose
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transitions between %=28 and n'=10 corresponding to
the wavelength of a CO2 laser. A detuning of
6=10 —10 a.u. between these states makes this transi-
tion very dominant and so Stark shift and Raman cou-
pling becoine comparable. For a detuning of 5=5X 10
(=1.2 nm) the contributions of all remaining states but
n = 10 are given by only a few percent. Surprisingly, one-
fifth of the remaining contributions comes from coupling
to the continuum states. The cw CO& laser with its high
intensity and tunability corresponding to transitions be-
tween n=10 and N =26—29 is a very suitable tool to
make the migration efficient.

The laser intensity, interaction time, and laser width
have to obey the following constraints to make our model
valid.

(a) Intensity restriction. The mathematical step of adia-
batic elimination of all non- and near-resonant states is
only reasonable as long as the population of these states is
negligible. This leads to the detuning-dependent upper
limit for the possible laser intensity, which is -50 W/cm
for our chosen parameters. The ac Stark shift would re-
quire an intensity of —10 W/cm to shift the Rydberg
state into its neighbor state and thus does not restrict the
laser intensity.

(b) Time restriction The. natural lifetime of the Ryd-
berg state and the effective traveling time of the atomic
beam across the laser beam both lead to an upper limit of
—1 ps for the reasonable time. Fortunately, this restrict-
ing time is 10 times larger than the dynamically necessary
evolution time.

(c) Loser lineioidth restriction. For colored chaotic light
the linewidth must be smaller than the detuning in order
to leave the state nonresonant and thus not violating the
condition of adiabatic elimination. The usual available

laser linewidths of 10 MHz to 100 GHz (10 a.u. ) are all
smaller than our detuning 5=5)& 10 a.u.

V. COLORED CHAOTIC LIGHT

The experimental verification of our theory would be
performed with a multimode rather than a single-mode
laser. Such a laser' should be described by a chaotic
colored noise rather than deterministic amplitude E(t).
Assuming the simplest case of the Lorentzian spectrum,
the second-order correlation function is

Hence, the probabilities PJ(t) =
~
aj(t)

~

PJ(T)= g C„'JC~ exp i(k„—I,„') J ~

E(r)
~

d~
n, n

(5.3)

This last expression can be easily averaged over the chaot-
ic colored noise using the formula first derived by Slepi-

n, n'
(5.4)

(5.1)

where I denotes the average laser intensity and I L is the
laser bandwidth. Of course, all the higher-order correla-
tion functions obey the Gaussian decorrelation formula.

Our dynamical equations (2.5) in their general form al-
low us to write a solution in the form of a sum over eigen-
values A.„ for the tridiagonal matrix:

aj(t) = g CJe (5.2)

(exp & J ~E(v)
~

dv =f(y, I L, t)=0 ' '
(1 +r q/)ex [pI' tL(q —1)]+(1—r/q)exp[ I L t(q+1)]— (5.5)

and

r =1—y/I t, q =(1—2y/I L
)'~ (5.6)

p

while for I L ~ oo

(5.7)

The expression (5.5) simplifies for both very small and
very large I L. For I L 0 (5.&)

TABLE I. Atomic parameters.

1

3
5
7
9

11

ReAJ

6.53@10'
7.01~10'
7.76' 10'
5.68 x10'
1.45 &( 10
5.22 &( 10

—1.29@10'
—1.17~ 10
—9.39~10'
—5.23 @10'
—1.87 X 10'
—4 g10'

ReBJ.

2 64~ 10s

1.56@10'
5.93@10'
8.55 ~ 10'

—3.3 ~10'

—333
—200
—89
—28
—6
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FIG 3 The evolution of Rydb rg states with PAncipal quantum numb r %=28 and 1=135 7 ofhYdrogen atom Assumed laser
freQuencY is that of COz laser, intensitY is 25 W/cm, time is in nanoseconds. The figures correspond to (a) coherent, monochromatic
hght, (b) chaotic colored light with I L ——10 ' a.u. (413 MHz), (c) the same with I L

—5y]0 ' a.u. {20.6 MHz), and (d) chaotic,
monochromatic light.

This leads to a somewhat paradoxical result: A broad-
band chaotic laser acts on our atom in the same way as a
monochromatic coherent laser, while a narrow-bandwidth
chaotic laser produces strong effective suppression of the
oscillations. This last point will be illustrated in Sec. VI.
Of course, the average (PJ(t) ) carries merely a small frac-
tion of information about PJ(t) as a stochastic variable.
To shed some more light on this distribution we can easily
compute its variance:

SP, =((P,') —(P, )')'" . (5.9)

The second moment, by the application of the same for-
mula (5.5), is

(P,') = ggg+C„*JCJ C„'~CJ-

Xf(i(A,„—A,„'+A,„-—A.„'- )I, I L,r)

and can be easily evaluated numerically.
Again, the broadband chaotic light produces the results

that are the closest to a monochromatic coherent case. In
fact

(5.11)

VI. NUMERICAL RESULTS

In this section we present our main numerical results
for the population migration in highly excited states of
the hydrogen atom. Our procedure is very simple. First
we compute all the couplings AJ and B~ for %=28 and
the laser wavelength A,L

——10445.5 nm corresponding to a
CO& laser. The results are summarized in Table I. The
fast decrease of the Raman coupling with I is caused by
the fact that the nearly resonant tenth level has 1,„=9
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