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Calculation of molecular mean excitation energies
via the polarization propagator formalism: H2 and H20
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%'e present ab initio calculations of oscillator-strength sum rules S(p) and mean exciton energies

I„ for —1 &p & I. %e use the polarization propagator formalism at the random-phase approxima-
tion level. Calculations are performed for Hq and HqO using large basis sets: 90 uncontracted

Gaussian-type orbitals (CGTO's) for Hq and 101 CGTO's for water. %e find that Io ——19.12 eV

for Hz (including thermal averaging) and 72.46 eV for HqO. They agree very well with previous

semiempirical estimates. The same holds for the other I„moments. The fulfillment of the
Thomas-Reiche-Kuhn sum rule in both the dipole length and velocity formulations sho~s that the
basis sets employed are satisfactory. Vfe have also investigated the "shell-wise" contributions to
S(0) and Io for H20.

I. INTRODUCTION

The characteristic quantities which describe the interac-
tion of radiation with matter are the moments of the tar-
get oscillator strength distribution

S(p)=~,E" " dE,df

L(p)=~fE"lnE " dE,d.~ (2)

and the associated mean excitation energies

I& ——2R exp[L(p)/S(p)],

where R is the Rydberg energy and the summation is over
all transitions, including the entire continuum. Of partic
ular interest to us has been the study of energy deposition

by swift, massive particles impinging on material foils.
The stopping and straggling are related to the p =0, 1 mo-

ments mentioned above' through a logarithm' of the ap-
propriate mean excitation energy. Other properties are
also related to oscillator strength distribution moments
such as the Lamb shift (p, =2), electronic excitation
(p, = —1},and the static polarizability ()u = —2).

Determination of Io has traditionally been experimen-
tal, as a theoretical determination is difficult, requiring a
knowledge of the complete oscillator strength distribution
for the target, including the continuum. Bethe' calculated
Io for the hydrogen atom from the exact wave function,
and Inokuti and co-workers have calculated orbital and
whole-atom values of oscillator strength moments directly
from Hartree-Pock-Slater atomic wave functions.

Another approach, based on ideas from the uniform
ele:tron gas, was taken by Lindhard and Scharff. As the
plasma frequency of a uniform electron gas depends only
on the electron density, they suggested that an atom be
treated as a free, inhomogeneous electron gas, with a local
plasma frequency co~(r) which depends on the local elec-
tron density p(r) as

co&(r) =[4ne p(r}/m, ]'~

This model, called the local plasma approximation
(LPA), then derives an expression for Io using dielectric
response theory

ZlnIO —— p r ln y ~& r r. (&)

The (empirical) parameter y was originally introduced by
Lindard and Scharff in order to help to account for
single-particle excitations in atoms. They used y= v 2, as
did Chu and Powers later when calculating atomic Io's.
More recently it has been suggested that other values of
y might be used.

Other methods for obtaining Io such as that of moment
theory or the method of Chan and Dalgarno have also
been utilized.

Several semiempirical methods' for calculating atomic
mean excitation energies have also been employed, such as
that of Dalgarno" or the dipole oscillator strength distri-
bution (DOSD) scheme of Zeiss and Meath. '2' Both of
these methods use experimental information to construct
an oscillator strength distribution from which moments
can be extracted.

When one moves to molecular targets, things become
more difficult, as the information required for any of the
methods mentioned above becomes more complicated and
difficult to obtain. Until recently, ' the only theoretical
molecular results were those obtained for H2 from very
accurate ab initio molecular wave functions, ' from mo-
ment theory, or from the semiempirical DOSD results of
Meath et al. on a variety of molecules. ' ' ~ In the past
year or so, however, several papers have appeared which
report calculations of mole:ular mean excitation energies
based on the LPA (Refs. 7 and 24—32) [Eq. (4)], and there
has be one paper where the oscillator strength moments,
$(p) and L(p) ( —6&@&2), of N, have been evaluated
directly from a local-density-functional wave function.

Although determination of molecular mean excitation
energies via the semiempirical DOSD scheme produces
excellent results, it relies on extensive experimental input,
and thus is not useful for an arbitrary molecule if the ex-
perimental measurements have not been made. The LPA
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method does not suffer from this drawback, but has

several other problems. The biggest problem seems to be

that the I-PA formula for I, [Eq. (5)] caI1Ilot be obtained
from the definition of Io in terms of oscillator strength
moments. In addition, the usual implementation of
LPA utilizes the Gordon-Kim density rather than more
realistic densities for the mole:ules. There should be no
problem, however, in using the same formalism in con-
junction with more accurate molecular densities. More
serious problems stem from the lack of an unambiguous
choice of y [Eq. (5)] and the lack of an obvious way to ob-
tain I& for p&0.

Kosman and Wallace's explicit calculation of the oscil-
lator strength distribution of NI (Ref. 33) is based on the
multiple-scattering formalism in conjunction with the
local exchange (Xa) approximation. This scheme gen-
erates a complete oscillator strength distribution and does
the explicit integrals of Eqs. (1) and (2) to obtain oscillator
strength moments. There is a problem, however, in that
the method is grounded in density-functional theory,
which is developed for the ground-state density. The pro-
cedure forms approximations to excited states as antisym-
metrized products of the problem's eigenvectors, i al-
though it is not clear that the identification of these eigen-
vectors with one-electron spin orbitals is justified. An
additional ambiguity is encountered in the choice of the
Slater exchange parameter a.

It seems clear, then, that it would be useful to have a
series of molecular calculations of oscillator strength mo-
ments and related properties which can be used for com-
parison, and which are obtained from a well-defined ab
initio theory which is based on first principles and which
has been tested in calculations of similar properties. The
random-phase approximation (RPA) was chosen to serve
that purpose since it is well established that singlet excita-
tion spectra come out well in that method. We thus
present below several properties of the oscillator strength
distributions of HI a11d HIO calclllated wltll the first-
order polarization propagator formalism (which is identi-

cal to the random-phase approximation). This is the first
such ab initio calculation of the oscillator strength distri-

bution of water.

II. METHOD

The calculations reported below were carried out using
the 1VIUNICH program system. Using a variety of basis
sets (Uide infra), the excitation energies and oscillator
strengths were calculated using the polarization propaga-
tor formalism. As the method is well documented in both
its formal and computational ' aspects, it will not be
described in detail here. Suffice it to say that this is a
method for direct calculation of excitation energies and
oscillator strengths. We compute the differences directly
from the propagator without knowing the wave functions
and energies of the individual states.

The initial step in a propagator calculation generally
consists of performing a self-consistent-field (SCF) calcu-
lation on the reference state, which in the present applica-
tions is the ground state. The SCF orbitals and orbital en-

ergies are then used to compute the polarization propaga-
tor, the poles and residues of which are the excitation en-

ergies and transition moments, respectively. The polariza-
tion propagator is evaluated in a perturbative way using
the fluctuation potential (electron-electron interaction
minus the Fock potential) as the perturbation. Through
first order in the fluctuation potential we arrive at a well-

known approximation, the RPA, which may also be de-
rived in many other ways. Using configuration-
interaction (CI) language, the RPA excitation energies
roughly correspond to those obtained for singles and dou-
bles CI.

Moments of the oscillator strength distribution are ob-
tained by direct evaluation of Eqs. (1)—(3). Since we are
using a finite Gaussian basis set, the continuum is
reptesented by a set of discrete states above the ionization
limit so the sums in Eqs. (1) and (2) may be done explicit-
ly. As the Thomas-Reiche-Kuhn (TRK) sum rule is not

TABLE I, Basis sets and SCF energies for H2 calculations {R= 1.4011 a.u.).

Basis
number

48

12'
24'

78e
90'

Primitive
basis

(2s)
(6s, 1p)
(10s,2p)
(10s,5p, 2d)
(13s,7p, 2d)
(13s,7p, 3d)

Contrasted
basis

[2s]
[3s, lp]
[6s,2p]
[6s,4p, 2d]
[9s,6p, 2d]
[9s,6p, 3d]

Number of
CGTO's

12
24
60
78
90

EqcF (a.u. )

—1.093 426
—1.131643
—1.133497
—1.133604
—1.133606
—1.133608

'From Huzinaga {Ref.45), (2s) basis.
Huzinaga (Ref. 45) (6s) basis augmented with one p function (g~ =0.75).

'van Duijueveldt (Ref. 46) (10s) basis augmented with Iwo p functions (g~ = 1.5,0.3).
van Duijneveldt (Ref. 46) (10s) basis augmented with p and d functions from Schulman and Kaufman

(Ref. 47) and an additional d function (gq
——5.00).

'Basis 60 augmented with three diffuse s ((,=0.024863, 0.009945,0.003978) aud two diffuse p
(g~ =0.08,0.032) functions.
Basis 78 augmented with one d function (gd =0.8).
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TABLE II. Hi oscillator sum rules calculated in the random-phase approximation [S(1)in a.u. , I„
in eV], in dipole length (L) and dipole velocity ( V) formulations.

Basis sets
90

Accepted
value

S'(0)
5 (0)
IL
IOV

S'(1)
S (1)
Ic
IV

0.714
0.593

16.180
16.050
0.435
0.356

17.171
16.777

2.382
1.321

32.109
26.351
3.054
1.441

37.365
32.938

2.086
1.886

20.274
20.995

1.645
1.634

23.213
27.626

2.027
1.973

19.724
19.815

1.712
1.660

2.000
1.997

19.463
19.439

1.671
1.662

28.185
27.898

2.000
1.998

19.445
19.443
1.664
1.663

27.865
27.917

2.000'

1.701'

-29d

'Exact result.
Adopted value, Table 4.4, Ref. 48.

'Calculated from the wave function of Kolos and %'olniewicz (Ref. 49) by Zeiss et al. (Ref. 12).
From a DOSD calculation by Zeiss et al. (Ref. 12).

imposed as a constraint, the mutual agreement of S(0)
calculated in the dipole length and velocity forms and the
number of electrons in the system, N, can be used to
gauge the goodness of the basis (in RPA, using a com-
plete basis S (0)=S (0)=N [Ref. 43(a)]) and thus the ef-
ficiency of the basis set in representing the continuum. It
should also be noted that it is not necessary to calculate
the individual excitatian energies and oscillator strengths
when computing the S()M, ) (n even) sum rules by RPA as
well as in higher-order improvements of RPA,4s'b' since
there are closed-form expressions for them obtainable
directly from the propagator matrices.

TABLE III. Hq oscillator sum rules [S(1) in a.u. , I„ in eV]
calculated with basis sets which are designed (Ref. 50) to give
optimal results in the dipole velocity formulation.

Basis size 16
(CGTO s)

Size of 4
primitive
basis (CGTO's)

Contracted
basis

SCF energy —1

(a.u.}

[2s,2p] [4s,4p, ld]

—1.133212 Accepted
values'

S'(0)
S (0)
yL

IV
gL(1 )

5 (1)
IL
IV

2.393
1.803

28.224
19.336
3.505
1.609

56.303
32.282

2.020
1.990

20.102
19.435
2.079
1.679

50.350
29.657

'See footnotes of Table II.

III. Hg

Calculations were carried out initially on H2 at the
equilibrium internuclear distance of 1.4011 a.u. (Ref. 44)
and with various standard and expanded basis sets, as

given in Table I. In Table II, the values for the @=1 and
2 oscillator strength sum rules [Eqs. (1) and (2)] and mean
excitation energy [Eq. (3)] are presented, calculated in
both the dipole length and dipole velocity formulatians.
It is clear that the reported quantities have converged
with respect to basis-set size, and that the results are con-
sistent with accepted values. It is thus not necessary to go
beyond RPA to obtain good sum rules. In addition, it ap-
pears that the degree of fulfillment of the TRK sum rule
is, in addition to a basis-set gauge, also a measure of the
goodness of the calculation of Ip.

If one wishes to calculate mean excitation energies of
larger systems on a routine basis, it is clear that basis sets
af the size equivalent to the 78 or 90 contracted
Gaussian-type orbitals (CGTO's) for Hi are too large, and
that useful, smaller bases must be found which will pro-
duce results af acceptable quality. One such choice has
recently been proposed by Roos and Sadlej. sP They sug-
gested that basis sets should be extended with functions
with the proper functional dependence to describe the
property of the one-electron perturbation under considera-
tion. As we consider electric dipole transition matrix ele-
ments, this implies that a basis set should contain polari-
zation functions which are derivatives of the primitive set
if we compute them in the dipole velocity approximation.
In order to test the efficiency of this formulation, we aug-
mented the basis sets 4 and 12 (Table I) with polarization
functions produced by taking the derivatives of each con-
tracted function, keeping the contraction coefficients the
same. Each s function in the original set thus produces a

p polarization function, and each p function produces an
s and a d polarization function. Such a procedure pro-
duces bases of 16 and 44 CGTO's, respectively, which
contain polarization functions with much larger ex-
ponents than are normally used. The results of these cal-
culations are presented in Table III.

As these basis sets are not designed for energy optimi-
zation, it is not surprising that the total energies are not
competitive with a more conventional basis expansion. It
is also clear that the velocity formulation gives much
better results than does the length formulation. The re-
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TABLE IV. Mean excitation energies (in eV) I„(—2 &p & 2) at 8 = 1.4011 a.u.

This work: 90-L basis'
44- V basisb

Zeiss et al.
Ford and Brown'

65.48
129.86
129.71'
282.5
44.66'

26.57
29.66
29.31'
29.13
25.39'

31.828

19.44
19.43
19.12'
19.26
19.52
19.21'

19 2"'
19'
18.72'
18.6"
18.2'

16.63
16.62
16.35'
16.31
16.43'

16.31"
16.281

15.30
15.28
15.03'
14.93

'Basis 90, length formulation.
Basis 44, velority formulation.

'Vibrationally average, see text.
dZeiss et al„Ref. 12.
'Ford and Browne, Ref. 51 ~

Garcia, Ref. 52.

~Langhoff and Yates, Ref. 8.
"Gerhart, Ref. 53.
'Ziegler„Ref. 54.
'Burger and Seltzer, Ref. 48.
"Victor and Dalgarno, Ref. 55.
'Kamikawai et al, , Ref. 56.

TABLE V. Moments S(p) [see Eq. (1); in a.u.] (—6 &p & 2) for H2 at R = 1.4011 a.u.

This work: 90-L basisb
44- V basis'

From accurate 4'0

Zeiss et al. '
Victor and Dalgarnol'
Gerhart"
Dalgarno and %'illiams'

2.510
3.449
3.692
3.771
1.56
3.948

1.664
1.679
1,704
1.676
1.520
1.670

2.000
1.990

2.000'
2.000
2.ooo'
2.

3.054
3.040
3.097
3.100
3.135
3.201'

5.228
5.211
5.429
5.478
5.450
5.428'

9.551
9.532

10.18
10.12

18.174
18.129

19.96
19.63
20.112
19.6

35.529
35.309

S(2) S(1) S(0)' S(—1) S(—2) S(—3) S(—4) S(—5) S(—6)

70,774
69.773

82.94

78.59
74.2

'Should be 2.000 by TRK sum rule.
bBasis 90, length formulation.
'Basis 44, velocity formulation.
Calculated from the wave function of Kolos and %'olniewicz (Ref. 49}in Zeiss et al. (Ref. 12}and Victor and Dalgarno (Ref. 55).

'Zeiss et al. , Ref. 12.
Constraint on calculation.

I'Victor and Dalgarno, Ref. 55.
"Gerhart, Ref. 53.
'Dalgarno and %il1iams, Ref. 57.

TABLE VI. Internuclear dependence of Io and I~ for H2 calculated with basis 44. Calculated in the
velocity formulation.

R (a.u. )

1.2011
1.3011
1.3511
1.4011'
1.4511
1.5011
1.6011
1.8011

1.9888
1.9893
1.9895
1.9897
1.9899
1.9901
1.9903
1.9905

21.4706
20.4034
19.9074
19.4346
18.9836
18.5534
17.7507
16.3486

S(1) (a.u.)

1.8529
1.7612
1.7191
1.6794
1.6418
1.6062
1.5406
1.4284

Ig (eV)

32.5447
30.9992
30.3047
29.6568
29.0519
28.4866
27.4633
25.7761
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TABLE VII. Rovibrational averages of IQ and Il for H2 (cal-
culated with basis 44 in the velocity formulation) in the vibra-
tional ground state. 70—

I I I l l l l I I I I
5N (0)

Thermal
Average'

Static (8 =8,)

19.1226
19.1129
19.0839

19.1162

19.4346

Il (eV)

29.3067
29.2806
29.2289

29.2947

29.6568

60—
A

50—

40—

30

20

~ 1Q

9

8

7

—6

5

4

3

2

1

T=300 K.; ~0(J)=a,J(v+1)——,'a,~(J+1)—a,~'(~+1)';
molecular constants from Ref. 44; J =0,2.

I I II
20 40 60 80100 200 400 6QQ 1000 2000 4QQP 60PP 1PPPP

ENIeV)

suits, especially of the 44-CGTO basis set, seem quite
good, and the set is small enough to be useful.

In Tables IV and V we report I„and S(p, ) for various
values of p, and compare them to several literature
values. ' Both of the bases utilized in the present calcula-
tion are seen to give results consistent with other calcula-
tions for p &1, but rather poor results for @=2. This is
not unexpected, as the S and I. moments and consequent-
ly the mean excitation energies weight the high-energy ex-
citations, that is those in the continuum, more heavily as
p increases, and the high-lying excitations are just those
that are most poorly represented in this scheme.

The work of Ford and Browne' has shown that thermal
averaging can lead to changes in calculated mean excita-
tion energies of the order of several tenths of an eV (see
Table IV). The internuclear dependence of the mean exci-
tation energies Io and I, were determined and are
presented in Table VI. The vibrational problem was
solved using the basis set consisting of 44 CGTO's by the
numerical method of Cooley, s using experimental molec-
ular potential energy constants. Averages over different
rotational states in the ground vibrational state were com-
puted and the results are given in Table VII. As can be

FIG. 1. Accumulation of the Thomas-Reiche-Kuhn sum

rule, S(0) () and the mean excitation energy Ip (0) as a func-
tion of excitation energy for basis 101 in the length formulation.
Dashed line indicates no excitations in this region. A; first ioni-

zation potential of H20; 8; beginning of excitations out of 0:2s;
C; beginning of excitations out of 0:1s;D; beginning of excita-
tions out of 0:1sand into Rydberg levels.

seen, vibrational averaging lowers both Io and I~ by -0.3
eV. Thermal averaging over the J=0,2 rotational levels
gives very little change from the J=0 result. Change of
this magnitude is consistent with results previously ob-
tained by Ford and Browne. ' We also predict a very
small difference in the mean ionization energy of ortho
and para hydrogen; on the order of 0.01 eV.

These results suggest, then, that reliable mean ioniza-
tion energies I„for H2 in the range —2 &p ( 1 can be ob-
tained by first-order (RPA) polarization propagator calcu-
lations using Roos-Sadlej-type basis sets, and that Io and
I& should be lowered by -0.3 eV to account for vibra-
tional averaging.

TABLE VIII. Basis sets and SCF energies for H20 calculations.

Basis
number

14'

101'
32'

56
52'

Primitive basis
0

(9s,5p}
(11s,7p, 2d)
(15s,8p, 4d)
(11s,7p, 4d )

( 11s,7p, 4d)
(11s,7p, 4d)
(14s, 14p, 5d)

(4s)
(Ss, 1p)

(10s,3p)
(6s,6p)
(6s,6p)
(6s, 6p)
(4s,4p)

(2s)
(3s, 1p)

(4s, 2p)
(6s, 5p, 1d)

uncontracted
(5s, 3p, ld}
(Ss,3p, 2d)
(5s, 3p, 31)
(6s, 6p, 2d)

(3s, lp)
(3s,2p}
(3s,3p)
(2s, 2p)

Contracted basis
0 H

Number of
CGTO's

14
39

101
32
44
56
52

E,c„(a.u. )

—76.009 838
—76.060 784
—76.065 283
—76.047 278
—76.054 304
—76.060 842
—76.040 542

'The Dunning (Ref. 60) contraction of the Huzinaga (Ref. 45) basis set.
"Basis of Lazzeretti and Zanasi (Ref. 61).
'Basis of Lazzeretti and Zanasi (Ref. 62).
Bases from Sadlej (Ref. 63), obtained from van Duijneveldt (Ref. 46) primitive basis augmented by polarization functions formed ac-

cording to Ref. 50. (Orbital exponents and contraction coefficients available from authors on request. }
'Basis from Lazzeretti and Zanasi (Ref. 64}.
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TABLE IX. H20 oscillator sum rules calculated in the random-phase approximation [S(0) in a.u. , I„ in eV], in both dipole length

(1.) and dipole velocity ( V} formulations.

S'(0)
S'(0)
IL
Iv
IL
lv

3.609
2.443

39.119
36.996

238.625
267.488

39

10.384
9.228

69.572
73.161

536.419
531.603

10.089
9.866

72.463
74.156

923.459
898.976

Basis set
32

9.409
9.103

52.195
54.689

299.692
285.139

44

9,320
9.170

56.037
57.270

274.361
286.459

9.277
9.298

56.S08
S7.685

283.216
296.106

12.664
8.S98

111.341
76.275

2487.013
1184.509

Accepted
value

10.000b

71.6'; -60

931 4'

This basis set is optimized to give good results in the mixed dipole-length —dipole-acceleration formulation (Ref. 64).
~Exact result.
'Adopted value, Table 5.3, Ref. 48.
Fit to experimental vapor data, Ref. 65.

'From a DOSD calculation by Zeiss et al. , Ref. 12.

IV. 820

The calculations on water were all carried out at the
standard geometry of R oH

——1.811096 a.u. and
8=104.4489'. ' As in the case of H2, a variety of basis
sets was used, and their characteristics are summarized in
Table VIII. Of these bases, the first three are of standard
construction, while the last four have polarization func-
tions added that are constructed as in the Hq case as sug-
gested by Roos and Sadlej. 'o In Table IX some of the
characteristics of the oscillator strength distributions ob-
tained are given. Of the standard basis sets, basis 101
gives the best agreement between length and velocity re-
sults and good agreement with accepted values. We also
note that the results in basis 52 are quite poor, which is
not surprising since this basis was constructed to give op-
timal results in the mixed length-acceleration formulation.
It is perhaps more unexpected that the Roos-Sadlej
bases, 3~ 34'6'2 designed in the same way as we did for H2,
provide nowhere near the quality as was obtained in the
case of H2. In none of these cases is the TRK sum rule or
the mean excitation energy acceptable. This is probably

due to the fact that the number of basis functions per
electron is nearly a factor of 4 smaller for water than for
H2. This is evidently too serious a reduction for a basis
set prepared following the Roos-Sadlej recipe.

In Table X the mean excitation energies I„and mo-
ments S(p) for basis 101 in the length formulation are
compared to the semiempirical DOSD results of Ziess
et al. ' Agreement is quite good for —2(p, &1, but pro-
gressively deteriorates (when compared to Ziess et al. ) for
the higher moments. Again, this is not unexpected as er-
rors in the exciton energies enter as the power p, .

It is expected that thermal averaging would lower the
value of Io for H20 analogously to the case of H2. If we
allow a decrease of 0.3 eV, as found in H2, then our best
value (basis 101, dipole length formulation) of Io is
lowered to 72.4 eV, differing less than 1% from the gen-
erally accepted value of 71.6 eV and overlapping with it
if the +2% reported uncertainty is considered. It is dis-
turbing that the best available fit to experimental stopping
powers of water vapor yields a value some 20% lower
than this. It is evident, however, that this work supports
the higher value.

In Fig. 1 we present the accumulation of the TRK sum

TABLE X. Mean excitation energies (eV) and moments of the oscillator strength distribution for 820 calculated in the dipole

length formulation with basis 101.

This work'
Zeiss et al. '

2.13X 10
1.79x10"

923.46
931.4

72.46
71.62

26.77
25.00

19.91
17.65

This work'
Zeiss et al. b

56910
10610

96.10
9S.60

10.09'
10.00"

7.098
7.316

5( —2)

8.499
9.642

5( —3)

12.83
16.75

22.90
35.42

105.8
240. 1

'I„ in eV, S(p) in a.u.
bZeiss et a/. , Ref. 12.
'This number deviates in the second decimal place from the result of Lazzeretti and Zanasi using the same basis set (Ref. 62), prob-

ably due to different machine accuracy. Also, they use a two-electron integral threshold of 10 ' a.u. while we have used 10 ' a.u. as
the threshold in the present calculations.
Constraint on the calculation.
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SN(0) (6)

where Eo„and fo„are the excitation energies and oscilla-
tor strengths, respectively. Similarly, we define Io as

I =2R exp[L (0)IS (0)]

when L (0}bears the same relationship to I.(0) as S (0)
does to S(0).

From the figure it can be seen that both Io and S(0}
have large contributions beginning at each of three excita-
tion thresholds: for excitation out of the oxygen 2s orbi-
tal (8), for excitation out of the oxygen ls core orbital (C),
and, smaller, for excitations from the oxygen ls core to
high-lyin~ Rydberg states. This is consistent with the ob-

servation that Io [and S(0)] is primarily determined by
the excitation spectrum at interfnediate energies. It is also
clear from the figure that one must not truncate the exci-
tation spectrum j,n order to save on computational time.
For example, although truncation of the sums [Eqs. (6)

rule S(0) and the mean excitation energy Io as a function
of excitation energy. We define S (0) as the accumulated
value of the S(0) moment up to a inaximum excitation
energy Eg.

Eon +

and (7)] gives S (0)=9.98, only 0.2% error, one finds
Io ——69.3 eV, off by 4.5% from the value when the full
excitation space is utilized.

V. SUMMARY

The polarization propagator formalism at the RPA lev-
el of approximation has been used to calculate the mo-
ments of the oscillator strength distribution and the mean
excitation energies of H2 and H20. The results for S(p, )

and I& are estimated to be reliable to approximately 5%
for —1 &p & 1, but deteriorate for the higher moments. It
is possible to obtain values of Io, which is both the most
accurate and most useful of the mean excitation energies,
to approximately 1%, but it appears that rather extended
basis sets must be utilized.
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