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Evaluations of parity-violating and charge-parity —violating effects in heavy one-valence-electron

atoms, employing the Hartree-Fock potential and several model potentials, are extended to include

first-order electron-electron Coulomb corrections using many-body perturbation theory. Parity-

conserving quantities, including valence energies, hyperfine splittings, and oscillator strengths, are
also calculated and compared with experiment to determine the reliability of the weak-interaction

calculations. It is found that the spread between calculations carried out in first-order perturbation

theory starting from different potentials is of the same order of magnitude as the spread between the

corresponding lowest-order evaluations. It is concluded that second-order many-body perturbation

theory must give significant contributions. Some technical problems associated with going to second

order are discussed.

I. INTRODUCTION

In a previous paper, ' referred to in the following as I,
we evaluated weak-interaction effects along with various
standard atomic properties in the heavy one-valence-
electron atoms Rb, Cs, Au, and Tl. The weak-interaction
effects were, first, the induction of a nonvanishing electric
dipole matrix element between states of the same nominal
parity due to exchange of a Zo boson and, second, the in-
duction of an enhanced atomic electric dipole moment
(EDM) by a charge-parity (CP)—violating electron EDM.
We employed several different potentials in I to estimate
the reliability of the calculations. Our principal result
was that different potentials gave predictions for parity-
violating and CP-violating dipole matrix elements having
a spread of up to 20%, which we used as a measure of the
accuracy of our predictions. While this accuracy is suffi-
cient to establish qualitatively the existence of neutral
weak-current effects, greater accuracy is clearly desirable.
In particular, recent measurements of parity violation in
Cs have reached the 8% level, and if atomic theory can
achieve the same accuracy, information about the Wein-
berg angle and one-loop radiative corrections to weak in-
teractions in a low-energy regime, complementary to
high-energy probes of the weak interactions can be ob-
tained. Furthermore, if an atomic EDM were to be
discovereda20, % theoretical calculation of the enhance-
ment factor would permit a determination of the electron
EDM only at the 20% level, so improvements in theoreti-
cal EDM predictions are also desirable. While our pro-
gram is directed at weak-interaction effects, we note that
any techniques developed to predict these effects to within
a few percent should also be applicable to accurate studies
of other atomic properties such as hyperfine splittings,
valence energies, and oscillator strengths, which are of
considerable interest in their own right.

%'hile other approaches could be applied to study heavy
atomic systems, for example, multiconfiguration Hartree-
Fock methods, we have chosen to employ many-body
perturbation theory. Our hope is that, if we make a

physically sensible lowest-order approximation, two or
three orders of perturbation theory will suffice to achieve
a few percent accuracy. In this paper we present the re-
sults of calculations carried out to first order in the
e)ectron-electron interaction. As described in I, our plan
is to carry out calculations starting from several different
potentials and to use the spread in values between the cal-
culations in a given order of perturbation theory to mea-
sure the reliability of the corresponding calculations.
Presumably, this spread will vanish as higher-and-higher-
order perturbations are included. For this purpose we em-

ploy three model potentials (described in the Appendix)
together with the Hartree-Fock potential. The principal
result of our first-order calculations is that there is a great
deal of sensitivity to core polarization, so that the spread
in values between quantities calculated in first order start-
ing from different potentials ranges up to 20%, compar-
able to the spread found in lowest order. While somewhat
better results were obtained for excited-state properties,
due to the diminished effect of core polarization, it is
clear that predictions of ground-state atomic properties at
a level well under 10% will require the use of second-
order perturbation theory and perhaps some form of in-
finite summation.

During the past decade, various many-body calculations
of parity violation in heavy atoms have appeared, several
of which go beyond the present calculations and include
second-order correlation corrections. Closest to the
present approach is the calculation of Martensson-
Pendrill, which is a complete first-order calculation of
the parity violation in Cs starting from a Hartree-Fock
potential. The first-order parity-violating matrix element
in Cs based on the Hartree-Pock potential in the present
paper agrees very well with the result of Ref. 7. Indeed,
such agreement is expected since the principal difference
between the present calculation and that of Martensson-
Pendrill concerns the way in which perturbation theory is
implemented. %e also mention the elegant work of Dzu-
ba et aI. on Cs which also starts with a Hartree-Fock po-
tential and includes both first- and second-order correla-
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tion corrections. In first order, our calculations for Cs, as
well as those of Martensson-pendrill, agree with those of
Dzuba et al. The calculations of Ref. 8 indicate that the
second-order corrections in the Hartree-Pock case are sub-
stantially smaller than the 20% mentioned above. It
should therefore be very interesting to do second-order
calculations starting from other potentials to determine
whether or not the results cluster around the Hartree-
Fock values. Last, we mention the second-order calcula-
tions of Das et a1. and of Das' on Tl and Cs, respective-
ly. While these calculations also start from a Hartree-
Fock potential, we have discrepancies (of unknown origin)
with the corresponding matrix elements even in lowest or-
der.

The paper is organized as follows. In Sec. II various re-
sults from many-body perturbation theory are derived and
a discussion of the corresponding angular-momentum fac-
tors is presented. In Sec. III the use of one-particle radial
Green's functions to evaluate the formulas developed in
Sec. II is described, and formulas for excitation energies,
oscillator strengths, hyperfine splittings, parity-violating
matrix elements, and EDM enhancement factors are
presented. In Sec. IV we give the results of the numerical
evaluation of these quantities. In Sec. V we summarize
our results and describe several technical points that must
be addressed before extending our calculations to second
order.

II. RESULTS FROM MANY-BODY
PERTURBATION THEORY

In second quantization these terms have the form

Ho = g EjQj Qj

1

Vc 2 ~ glJlk+l j~k~1 ~ +ij ~i +j
i,j,k, l l,j

gijlk = didr
i'(r')Ol(r'O'J(r)ek(r)

f
r —r'

f

(2.3)

Here gati(r), which satisfies (a p+mp+ V)jt(=eg, has the
explicit form

g(r )X"„(r)

if(r)X" „(i )

The model potential V(r ) is chosen to give a reasonable
overall description of the atom: An important special
case is when V is the HF potential V ", defined by

HF
Vij = g (gijjjjj gijjjjj ) .

As in I, we consider three potentials in addition to V
the Tietz potential, " the Norcross potential, ' and the
Green potential. ' We have changed some of the parame-
ters used in I to define these potentials, in order to model
the core states of the atoms more accurately: The param-
eters used in the present work are given in the Appendix.

We are interested in the effect of a single action of the
perturbation V, . This can be accounted for by forming
the first-order correction to the wave function

~
5u),

A. Basic formulas

In this section we employ first-order perturbation
theory to determine the corrections to energies and matrix
elements arising from the difference between the
electron-electron Coulomb interaction and the model po-
tential. While there is a well-known graphical representa-
tion for many-body perturbation theory, it has usually
been applied to cases where the model potential is a
Hartree-Fock (HF) potential, leading to canceiiations of
many graphs. We present our results for the model poten-
tial case first and then describe the modifications required
to treat the HF potential.

For atoms with a single valence electron, the ground
state can be represented as

iu)=a, io, ), (2.1)

where
~
0, ) represents the filled Fermi sea of the atomic

core. Using the labels a, b,c, . . . for core states, and
n m, . . . for all other states, we see that a„~ 0, ) =0 and
a,

~
0, ) =0. We also use the labels ij, . . to represent ei-

ther core or excited states. Now, in I we decomposed the
full Hamiltonian H into Ho and V„where

~5u)= g "
ataxia, ~0, )

a, n, m &u+F-a —&n —m

a, b, n, m a +Eb ~n &m

U yHF
jjjj jjjj

jj (+jj) jj v

U yHF

an &a n
(2.4)

B. First-order energies and one-body matrix elements

All calculations presented here are based on either the
first-order energy (u

~
V,

~
u) or corrections to the matrix

element of a one-body operator t, (5u
~

t
~

u ) + (u
~

t
(

5u ).
The operator t, defined by t = g, j2; aj t;j, where

tjj ——(i
~

t
~ j), and where

~

i ) refers to a single-Particle
wave function, is in our applications proportional to either
the hyperfine operator ea A, A=y, )& rlr, or to the elec-
tric dipole operator ez. Using Eq. (2.3) we find that the
first-order correction to the energy is

Ho ——g fa; p;+mP;+ V(r;)j,

V, = —,ag
tr; —r, J

&i =&i+ +&i
a

EjI ( VHF U) (2.5)

U(&) = V(r)+ Zcx

—Q U(r;), (2.2) (' VHF U)

and that the first-order correction D~ to the matrix ele-
ment of t is given by
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FIG. 2. Graphical representation of the RPA modifications

of a one-body vertex.
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Sec. IIIB. The modified matrix element t satisfies the
equations

Jl Vt V

FIG. 1. Brueckner-Goldstone graphs for the first-order
Coulomb corrections to the matrix element of a one-body opera-
tor t.
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RPA
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b, m &m eh+& ,
—uev,

Di Di+ QD——i,
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i(+u ) i(+V2)

(yHF U)

E —E.
ll2

RPA
RpA tmb (gnbma gnbam}=t"+

b, m em &b+&u) 'u2

RPA
tbm (g„mba gmnba }—

+
b, m &m —eh+su, —Su,

(2.7)

tan(gv2nu&a gv&nau&} (g.,-,.—g.,-., }t

n ~+~„, n &2 n c+ u, n u,

(2.6) which are illustrated graphically in Fig. 2. It should be
noted that the results in Eqs. (2.6) and (2.7) still remain
valid for vz ——vi.

Note that the sum over n in the expression for Di can be
extended to a complete sum over i. The corrections given
in Eq. (2.6} are illustrated in Fig. l. In the HF case Di
vanishes. Furthermore, it is necessary to modify the
lowest-order HF matrix element by including core
random-phase-approximation (RPA) contributions from
second- and higher-order perturbation theory in order to
ensure gauge independence, as we discuss in more detail in

C. Angular-momentum factors

The next step in evaluating Eqs. (2.5}—(2.7) is to per-
form the sums over all magnetic quantum numbers. Here
the simplicity of dealing with one-valence-electron atoms
comes into play, since the summations in Eqs. (2.5}—(2.7)
over these quantum numbers are complete, allowing for a
full use of the following basic relations involving 3j sym-
bols:

ml, m2

Jl J2 J3 Jl J2 J3

ml m2 ~3 ml m2 m3
5,5

2j + j J3J3 m3m3

(2.8)

Ml, M2, M3

T T

J +J +J +M +M +M J2
( l) 1+ 2+ 3+ 1+ 2+ 3

Ml M2 7fl 3 M2 M3 Hl l M3 —Ml m2

Jl J2 J3 Jl J2 J3

mi m2 n3 Jl J2 J3
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%e use standard graphical techniques' to implement
these relations. The 3j symbols arise from performing the
angular integrations in g,s,~ after making a partial wave
expansion of 1/

~
r —r' ~,

g.s,~= X(—1)'&a
I
Ci'I c&&b

I Cl 'I d&Rl(ab cd) (29)

In Eq. (2.9),
l

Rl(ab, cd)= f dr f dr'

X [g,(r )g, (r ) +f, (r )f,(r )]

X [gs(r')gq(r')+ f&(r')f&(r')],
(2.10)

where r &
——min(r, r'), r &

——max(r, r'}, and Cf(r )
= [4n l(21+ 1)]'~ Yf(r ) is a conveniently normalized
spherical harmonic. We may write

r

tive to the direct approach of saturating the sum with
bound and continuum states is use of the Green's-function
method, in which a differential operator is applied to the
sum in order to eliminate the denominator, allowing the
use of completeness relations to perform the sum. The re-

sulting differential equation can be solved numerically in
a time on the order of 1 sec. Using this technique we are
able to evaluate the sums in Eqs. (2.5)—(2.7) even when
many shells are present with only modest computer
resources. ' Explicit forms of the resulting differential
equations will be developed as we discuss the evaluation
of oscillator strengths, hyperfine integrals, parity-violating
matrix elements, and EDM enhancement factors. In the
remainder of this section we present those formulas which
we use to compute the atomic properties of interest. The
results of numerical evaluation of these formulas will be
given in Sec. IV. The equations appropriate for model po-
tentials are presented first, followed by the somewhat dif-
ferent equations used in the HF case.

&a i' i
b)=( —1)' Ja I Jb

Cl(ab ), (2.11)—Plg g Nlb

A. Corrections to valence energies

where the reduced matrix element Cl(ab) is

1 if 1, +lb+1 even
m(l„lb, l ) =

0 if I +lb+1 odd

(2.12)

j +1/2 Jo Jb I
Cl(ab ) =(—1) ' v'[a ][b], , n(l„ls, l),-2 20

The simplest expression to consider is the first-order
correction to the valence energy, which in fact does not
require the use of Green's-function techniques, since the
sums encountered range only over the finite core. This
term vanishes in the case of the Hartree-Fock potential.
The angular-momentum reduction is straightforward and
leads to

E& ——g [a] Ru(ua, ua) —QA„i,Rl(ua, au) —U„„,
with [a]=2j,+1. For later reference it is also useful to
define

a I

(3.1)

1+J-)b —J'c Ju Jb 1

A(ab cd /J)=( 1) ' 'C—l(ab)CI(cd) JJd Jc

(2.13)

where the summation index a =(n„a, ) runs over all oc-
cupied core states. The allowed values of !are determined
by the triangle relations

~
j„—j, ~

&1&j„+j„with the re-
striction that 1+1„+1,be even: For valence s states, for
example, only one 1 value, 1=1„is allowed.

Ja Js
n(l„ls, l) .

2 2

(2.14)

In general, once the magnetic-quantum-number sum
has been performed, the remaining angular-momentum
quantum numbers are restricted by triangle conditions
and by parity selection rules: We refer to the values of the
allowed intermediate-state angular-momentum quantum
numbers as channels. Each atomic property considered in
the following will be characterized by a certain set of
channels to be discussed in turn.

B. Corrections to transition matrix elements

D ( 1 )
2 2 —P7l2 0 P?l )

D„+gD, (3.2a)

We next consider the matrix element of ez between
states of different parity, u2 and ui. Performing the
angular-momentum reduction in Eq. (2.6) with
t =z = rC i (r ) and defining ru =e„,—s„, leads to

III. EVALUATION OF ENERGIES
AND MATRIX ELEMENTS

USING RADIAL GREEN'S FUNCTIONS

D, =C, ( u)i(ur„„+r, „),

D, = g C, (aq)(r + +r, ),

(3.2b)

(3.2c)

After performing the angle integrations and summing
over magnetic quantum numbers, we are left with a sum
over the orbital quantum numbers for the aHowed chan-
nels of products of radial integrals. A powerful alterna-

where the perturbed orbitals
~
u) and ~a&-) associated

with the excitation channels allo~ed by electric dipole
selection rules obey the radial equations
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(H. —s. ) I
u &

= U
I

u &
—g [a] vo(aa «)

I
u ) —g A.u vi(va «)

I
a & +}I.

I
v & (3.3a)

f H —(e.+~)]
I

a+
&
= —

3 Ci(aq)Ci(vi»)vi(viv»«)
I
a &+ g A(«i qv2»)»(via «}

I u2) (3.3b)

[He —(&a —~)]
I ae & = —

3 Ci«q)ci(vive}ui(uzui r)
I
a &+ g( 1) ' 'A(au2, qu„/1)ut(uza r)

I
ui & ~

l
(3.3c)

The Lagrange multiplier A,„ in Eq. (3.3a) is introduced to account for the restriction i &u in Eq. (2.6). The Coulomb in-

teraction potentials ut(ab, r ) in Eqs. (3.3a)—(3.3c}are given by

I
r&

ut(ab, r )= dr', , (g,gb+ f,fb )' .

Our procedure in this and subsequent calculations is to determine first the channels q allowed by the angular momentum
and parity selection rules. The differential equations in Eq. (3.3) are then solved numerically for each channel and the
matrix elements in Eqs. (3.2) are evaluated. Because of the complexity of the calculations, all results presented were
evaluated by at least two of us, using independently written computer codes. In evaluating matrix elements we extend
the summation over excited states n in Eq. (2.6) to a complete sum, which as mentioned above is permitted because of
cancellation of core contributions. This extension simplifies the right-hand side of the resulting differential equation to
the form given in Eqs. (3.3b) and (3.3c).

When the HF potential is used, D„vanishes. While D, is still given by Eq. (3.2c), the perturbed orbitals
I ae )assoc-i-

ated with the excitation channels now satisfy the coupled equations

[He —(s, +to}] I as+)

C i( aq) Ci( viv2)v i( uiu2, «)
I
a )

+ g A(aultqv2 /1)vt(via r )
I

v2 ) y 3 Cl(aq }Ci(bp )[ui(bbp r)+ui(bp b r)]
I
a )

I b,p

+ g [A(ab, qp, /1}ut(ba, r)
I
bz+)+( —1) «A(ap, qb, /1)ut(b«a, r)

I b)],
b,p, l

[He —(s, —tv)] Iaq )

= ——,
' Ci(aq)Ci(u, u2)ui(v2ui, r )

I
a )

+ g ( —1) ' 'A(auz, qui, /1)ui(u2a, r)
I ui ) —g —,

'
Ci(aq)C~(bp)[ui(bz+b, r)+vi(bb~, r)]

I
a )

b,p

+ g [A(ab, qp, /1)ut(ba, r)
I
b )+(—1) ' «A(ap, qb, /1)ut(b+a, r)

I b)] .
b,p, l

(3.4a)

(3.4b)

The summations over b and p in Eqs. (3.4) extend over all
channels p associated with excitation of each core orbital
b.

In the studies of transition matrix elements we find it
useful to compare calculations made using the "length"
form, ez, of the dipole matrix element with corresponding
calculations using the "velocity" form, eu, /tv, where
u, =ia3 It is easi.ly established that these two forms lead
to identical results in lowest order for the model potential
cases, but not for the Hartree-Fock case. In first order
one can prove from Eqs. (3.2) and (3.3) that

I

include those terms from second and higher order which
are obtained by simply iterating the first-order terms, then
we can reestablish agreement between length and velocity
forms of the dipole operator. The result of the iteration
procedure is to replace the first-order core-excitation am-
plitudes t,„ in Eq. (2.6} by the corresponding RPA ampli-
tudes given in Eq. (2.7), which include some but not all of
the terms from second- and higher-order perturbation
theory. Using RPA core-excitation amplitudes in the
evaluation of the first-order dipole matrix element D, in
Eq. (2.6), one finds

D, (z }=D, (u, /eau) co, /tvoDu(u, /coo),— (3.5) D (z)+Di(z) =Do(v /cop)+Di(u /tuo)

where t0, is the first-order correction to the transition en-
ergy. This relation is the obvious extension of the lowest-
order length-velocity matrix element identity, with proper
account being taken of the first-order shift coi in transi-
tion energy. In the Hartree-Fock case, where ~~ ——0, the
length and velocity forms of the dipole matrix elements
differ in zeroth order and in first order. If we are willing
to go beyond first-order perturbation theory, however, and

so that the length-velocity agreement is restored. It
should be mentioned that the parity-violation calculations
of Ml1rtensson-Pendrill7 carried out in the Hartree-Fock
approximation also employ the RPA amplitudes to
describe core excitations. The use of RPA amplitudes has
also been advocated by Feldman and Fulton'6 who derive
equations equivalent to Eqs. (2.6) and (2.7} in their field-
theoretic studies of gauge independence.



W. R. JOHNSON, D. S. GUO, M. IDREES, AND J. SAPIRSTEIN 34

C. Hyperfine-sphtting corrections R„=2f,"[g„(r)f,(r )+f„(r)g, (r )] (3.7a)
Hyperfine splitting (hfs) is a particularly important as-

pect of atomic structure for us to understand, since the ef-
fect of parity violation is very similar in character to hfs:
Both effects arise from an interaction localized at the nu-

cleus, and both affect the valence electron. The very ac-
curate experimental measurements of hyperfine intervals
for one-valence-electron atoms provide a stringent test of
atomic calculation methods. For hfs calculations the
operator t = —ea A is conveniently described using vec-
tor spherical harmonics,

2
( pg„~ +1 Jv

2KV

Jv

Jv 0 Jv

X g Ci( —aq)(a;+a )

X2 f z [g,(r)f, (r)+f, (r)g, (r)] . (3.7b)

Here C'ip' is defined following the convention of Akhiezer
and Berestetskii. ' Since we deal with atomic states with
angular momentum J=—,', there are only two hyperfine
levels, described by F=I+ ,', whi—ch are split by
b, vi,f,=(I+—, )A, where

Here ( u & satisfies Eq. {3.3a) and the core-excitation chan-
nel orbitals

~ a~ & satisfy

(Hq —e, )
~ aq &

= +A{au,qu, ll)ui(ua, r)
(
u&+A,, )

o &5« . (3.8)

The corrected hyperfine constant becomes

4x'v
& =13074 7gr 2 Rp MHz

4I(;„—1
(3.6a) 4]CV

A =13074 70gr
4v„—j.

Rp+R, + gR, MHz. (3.9)

Ra=2 r rg r r~. (3.6b)

First-order perturbation theory leads to a shift in Rp
which can be written as Rp~Rp+R„+ g, R„where

When the potential is a HF potential, R„vanishes; the
correction R, is still given by Eq. (3.7b), but the perturbed
orbitals

~ a~ & now satisfy the coupled equations

[H& —e,,] ( az & = Q A(au„qv, l l)ui(ua, r)
(

u &+ g [A(ab, qp, /1)vi(ba, r)
( bz &+(—1) rA(ap, qb, l 1 }ul(bza, r)

~

b &]
l b,p, l

(3.10)

where the Lagrange multipliers A,«are introduced to en-
sure orthogonality of the perturbed orbitals with occupied
orbitals having the same angular symmetry.

The term Dp is the lowest order con-tribution evaluated in
I

D. Parity-violating electric dipole matrix elements

Jv l Jv
Ci( —uu)(r~ „+r„„-), (3.12)

GF 0 p(r)
H„=—~g~ ( )

(3.11}

Therefore, all states involved have a small admixture of
the opposite parity, which aI1ows the dipole matrix ele-
ment to be nonvanishing. This admixture can enter in ei-
ther one of the valence states, in the core states, or in the
intermediate states. For model potentials the result can be
expressed as

D =Dp+D„+D„'+g (D, +D; )

The treatment of parity-violating electric dipole matrix
elements parallels the treatment in Sec. III B of transition
matrix elements. In this case, however, the transition is
between states of the same nominal parity. As explained
in I, however, we include in our lowest-order Hamiltonian
the weak Hamiltonian

where
~
i & is the weakly perturbed part of the wave func-

tion ~i &. D„, D„', D„and D,' are the first-order correc-
tions. Here

Jv l Jv
C, ( —uu)(rv „+r„„), (3.13)

Jv I Jv
C, ( —uv)(r - +r- ),—Jv O Jv v29 ) Vgvl

(3.14)

where
I

u & is the weakly perturbed part of
I

u & and satis-
1CS

where the radial functions
~

u i& and
~

uq& satisfy Eq.
(3.3a). The term D„' is given by
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(H „—s„)lv)
H—lV)+(U —VHF) l u)

+ g(2J's+1)[A„@u~(bu, r)
l
b)

+Apl pug(burr) l
b )]+A, l

u ) .
(3.15)

[Hq (—e, +co)]
l aq ) = Q A (au, qu, l 1 ) ui( u& a, r ) l u2 ),

1

(3.17a)

[Hq —(s, —~)] l aq )= g A(au, qu, l1)u~(vza, r)
l u, ),

(3.171)

The core contributions are

Jv & A
gc&( —aq)(r, +z+rs, ),

where the
l
aq~) satisfy

(3.16)

P

g Ct( —aq)(r~+ +r ),

where the
l
a q~ ) satisfy

(3.18)

[H-q —(e.+~)l I
a —,& = —H~ I a, &

—
3 Ci(a —q)ci(u —u)[ui(v iu»r)+ 1'i(ui» r)l

I
a &

+ g A( au, —qv&/—1)[u«u&a, r }+uI(u &a,r)] I
v2&+ g A(au, qu, /1)ul(u&a, r)

I
v z&,

I E

[H-q —(e.—ro)] la -q&= —H laq ) —3Ci(a —q)ci(u —u)[ui(u2ul r)+ui{uzu i r}]la&

+ g A( —au, —qv, ll)[ qu( ua2, r)+uI(u 2a, r)] l v~ )+ g A(av, qu, l1)uI(u2a, r)
l

u 1) .
l

(3.19a)

(3.191)

When the potential used is a Hartree-Pock potential, the first-order valence correction vanishes as in the previous prob-
lems, and the equations for the core terms are unchanged, except that

l aq+) and
l
a-q ) now satisfy

[Hq —(e, +a)}]
l
aq+)

= QA(au, qu, /1)u~(u, a, r)
l
uz)+ g [A(ab, qP, /1)vI(ba, r)

l
bz+)+( —1)" rA(aP, qb, /1)ul(br a, r)

l b)], (3.20a)
1 b,p, l

[Hq —(e, —a))] laq )

= PA(au qv /1)vI(u2a r) lui)+P [A(ab qp /1)ui(ba r) lb' &+( —1) ~ 'A(ap qb /1)ul(bp+a r) lb&] (320h)
b,p, I

[H q (e, +co)] l—a+q)
= —H~ l

aq+) —VHF l aq+) ——,
' C](a —q)C](u —u)[u$(u [v2, r)+ut(u/v 2,r)] l

a )

+ yA( av, qv—,ll)[u—/(u)a, r)+v/(0 )a,r)] l u2)+ y A(au, qv, /1)ul(u/a, r)
l

v g)
I I

—g —,
' Ct(a —q)C&( —bp)[u&(bbz+, r)+u, (bz b, r)+u~(bb +z, r)+u&(b zb, r)] l

a )
b,p

+ g I A( —ab, —qp, l 1 )[u~(ba, r }+u~(ba, r )] l
b~+ ) +A (ab, qp, l 1 }uI(ba, r )

l
b +~ )

b,p, /

+( 1)" "A( —ap,—qp, /1)[u, (b:za—,r)+u&(bz a,r)] l
b &

+(—1) rA(ap, qb, /1)u~(bz a, r) l
b ) j,

[H-q —(&a —~)] I
a

=—H~ laq &
—VHF laq &

—
3 C&(a —q)ci(u —u)[ui(v2u&, r)+u, (v2u»r)] la)

+ g A( —au, —qu /1)[uI(u2a, r)+u~(u 2a, r)] l u, ) + g A (au qu, l 1 )u~(v2a, r)
l

u
& )

—g 3 C&(a —q}C&(—bp)[u&(b+zb, r)+u&(bb z, r)+v&(bz+b, r)+u&(bbz, r)] l a)
b,p

+ g IA( ab, —qp, /l)[u~(—5a, r)+uI(ba, r)] l b~ )+A(ab, qp, /1)u~(ba, r)
l
b z)

b,p, /
I'

+ ( —1) ~ ~A( —ap, qb, /1)[uI(b +&a,r)+—u~(bed+a, r)] l b)

+(—1) ~A(ap, qb, /1)u~(b~+a, r)
l b) j,

(3.20c)

(3.20d)
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TABLE I. Valence energies (in a.u. ) for the potentials employed in this work with and without first-order correlation corrections
compared with experiment. First-order corrections vanish in the HF case. 5p =5@tq2, 5p =@3/2 etc.

6s

8s

0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum

0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum

Tietz

—0.154 14
—0.008 85
—0.16299
—0.095 57
—0.00644
—0.10200
—O.Q93 98
—0.007 12
—0.101 11
—0.06140
—0.002 29
—0.063 70
—0.04505
—0.002 12
—0.047 16
—0.044 56
—0.002 30
—0.046 86
—0.03345
—0.00092
—0.034 37

—0.143 43
0.003 16

—0.14027
—0.09247

0.001 71
—0.09077
—0.088 92
—0.000 13
—0.08905
—0.058 27

O.OQ046
—0.057 81
—0.043 79

0.00026
—0.043 53
—0.042 70
—0.000 19
—0.042 89
—0.032 13

0.000 16
—0.031 97

—0.15348
0.022 58

—0.13090
—0.096 15

0.009 70
—0.08645
—0.094 80

0.008 98
—0.085 82
—0.062 15

0.005 31
—0.056 84
—0,045 70

0.003 20
—0.042 51
—0.045 26

0.003 00
—0.042 26
—0.033 82

0.002 11
—0.031 72

—0.14309
0.02608

—0.11701
—0.092 23

0.012 14
—0.08009
—0.089 15

0.01025
—0.07890
—0.05901

0.00607
—0.052 95
—0.04424

0,003 91
—0.040 33
—0.043 23

0,003 43
—0.039 80
—0.032 51

0.00243
—0.03007

Norcross

—0.15345
0.01196

—0.141 49
—0.096 31

0.005 27
—0.091 04
—0.09494

0.004 64
—0.090 31
—0.061 97

0.002 79
—0.059 18
—0.045 56

0.001 58
—0.043 98
—0.045 12

0.001 42
—0.043 70
—0.033 72

0.001 09
—0.032 63

—0.14301
0.01763

—0.125 38
—0.092 50

0.00924
—0.083 26
—0.089 28

0.007 42
—0.081 86
—0.058 83

0.004 19
—0.054 63
—0.044 10

0.002 78
—0.041 32
—0.043 07

0.002 33
—0.040 74
—0.032 40

0.001 67
—0.030 73

HF

—0.13929

—0.090 82

—0.089 99

—0.58 70

—0.043 89

—0.043 60

—0.03244

—0.127 37

—0.085 62

—0.083 79

—0.055 19

—0.04202

—0.041 37

—0.03095

Expt. '

—0.153 51

—0.096 19

—0.095 11

—0.061 77

—0.045 45

—0.045 10

—O.Q33 62

—0.143 10

—0.092 17

—0.089 64

—0.058 65

—0.043 93

—0.043 10

—0.032 30

0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum

—0.370 79
—0.01442
—0.385 20
—0.18707

0.001 22
—0.185 86
—0.15907

0.00024
—0.158 83
—0.093 83

0.001 98
—0.091 85
—0.06441

0.000 67
—0.063 74

—0.369 75
0.088 79

—0.28096
—0.171 33

0.040 32
—0.13100
—0.144 23

0.023 20
—0.12103
—0.092 67

0.007 54
—0.085 13
—0.063 13

0.005 76
—0.057 37

—0.377 98
0.10506

—0.272 92
—0.17626

0.049 22
—0.12704
—0.148 52

0.030 32
—0.11820
—0.095 24

0.01122
—0.08402
—0.06426

0.007 77
—0.05649

—0.274 61

—0.13379

—0.121 62

—0.083 22

—0.05644

—0.33904

—0.16882

—0.15143

—0.09079

—0.065 51
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TABLE I. ( Continued).

0th
1st
Sum
0th
1st
Sum

—0.059 90
0.000 19

—O.OS9 71
—0.~98

0.000 56
—0.04442

—0.058 34
0.00442

—0.053 92
—0.044 75

0.002 47
—0.042 28

Norcross

—0.059 20
0.00S 97

—0.053 23
—0.045 42

0.003 38
—0.042 04

—0.053 35

—0.041 58

Expt. '

—0.062 34

—0.04405

0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st
Sum
0th
1st

Sum
0th
1st
Sum

—0.224 54
0.03447

—0.19007
—0.183 20

0.022 08
—0.161 12
—0.101 91

0.009 54
—0.092 37
—0.069 32

0.006 51
—0.062 82
—0.063 91

0.004 71
—0,059 20
—0.047 55

0.002 98
—0.044 57
—0.03626

0.00246
—0.033 SO

—0.22446
0.068 27

—0.15620
—0.17641

0,036 14
—0.14027
—0.101 79

0,009 82
—0.091 96
—0.069 57

0.008 33
—0.061 24
—0.063 73

0.00641
—0.057 32
—0.047 69

0.003 25
—0.04444
—0,036 39

0.003 10
—0.033 29

—0.22446
0.035 91

—0.188 56
—0.18003

0.01975
—0.16028
—0.105 78

0.011 16
—0.094 61
—0.071 11

0.007 93
—0.063 18
—0.064 81

0.005 37
—0.05944
—0.048 51

0.003 10
—0.04541
—0.036 84

0.00278
—0.03407

—0.19968

—0.16693

—0.096 18

—0,065 05

—0.060 86

—0.045 75

—0.034 62

—0.22446

—0.188 96

—0.103 S2

—0.068 82

—0.06426

—0.047 92

—0.035 98

'C. E. Moore„Atomic Energy Levels, Natl. Bur. Stand. Ref. Data Ser., Natl, Bur. Stand. (U.S.) Circ. No. 35 (U.S. GPO, W'ashington,

D. C., 1971),Vol. III.

E. EDM enhancement factors

In the presence of an external ele:tric field E,„=E,„z
and a nonvanishing electron EDM d„ the Dirac-Coulomb
Hamiltonian becomes

HEDM ——H+0 ),
H= g(a; p;+mP;)+V, (3.22)

HI ——g ( eE,„z;—d, yoX;.E—'T),

where

VHF I
&q'& = —X(»a+1)l A blqUi(b—uq r }

I
b &

b, l

+W„qu, (baq', r)
)
b &] . -

(3.21)

yoX VV=i yoX p,.H —$(a; p;+mP;) (3.25}

In the following we suppress the summation over i in Hi
for notational simplicity. The change in energy arising
from Hi that is linear in E,„arises from both first and
second orders of perturbation theory:

aE= —d, (O [ y,X, [ O&E,„
1

((O~z~n &&n [y,X VV~O&
0 e

+ (0
~
yoX VV

~

n &(n ~z
~
O&)E,„.

(3.24}

In order to make the calculation parallel the parity-
violating one, we use Eq. (3.22} to write

V= —,'a g
,.J (r; —r;(,. r;

(3.23}

The part of the commutator involving H cancels the ener-

gy denominator, allowing the sum over n to be completed
(the excluded term

~

n & =
~
0& gives a vanishing contribu-

tion). The resulting commutator precisely cancels the
first term in Eq. (3.24). The presence of yo in yoX p is all
that keeps the remaining part of the commutator from
vanishing. Therefore, in the nonrelativistic limit the ef-



%. R. JOHNSON, D. S. GUO, M. IDREES, AND J. SAPIRSTEIN 34

TABLE II. Reduced matrix elements {in a.u.} for allowed transitions with and without first-order correlation corrections for the
different potential models employed here compared with experiment. Experimental values are obtained from measured oscillator
strengths.

Transition

5$ ~5p

5s ~5p

0th
1st
Sum
0th
1st
Sum

Tietz

4.47
—0.79

3.68
—6.28

1.05
—5.23

4.39
0.21
4.60

—6.19
—0.31
—6.50

Norcross

4.44
—0.15

4.29
—6.25

0.19
—6.07

4.82
—0.21

4.61
—6.80

0.30
—6.51

Expt.

4.11(0.06)'

—5.90(0.07)'

6s ~6p 0th
1st
Sum
0th
1st
Sum

4.85
—0.82

4.04
—6.77

1.00
—5.77

4.74
0.16
4.90

—6.64
—0.30
—6.94

4.81
—0.22

4.58
—6.72

0.23
—6.50

5.28
—0.30

4.97
—7.43

0.41
—7.01

4.52(0.01 }

—6.36(0.01)b

0th
1st
Sum
0th
1st
Sum

2.41
11.60
14.01

—3.29
—0.67
—3.96

2.31
—1.02

1.29
—3.11

1.32
—1.79

2.30
—1.04

1.26
—3.10

1.35
—1.75

2.71
—0.49

2.22
—3.70

0.63
—3.07

1.83(0.09)'

—2.56(0.09)'

6p ~7s

6p —+7s

0th
1st
Sum
0th
1st
Sum

—1.70
—0.25
—1.94
—3.52

0.06
—3.46

—1.64
—0.63
—2.28
—3.61
—0.53
—4.14

—1.75
—0.24
—1.99
—3.72

0.11
—3.61

—2.05
0.14

—1.91
—3.97

0.35
—3.61

—1.84(0.06)d

—3.29(0.09)

'A. Gallagher and E. Lewis, Phys. Rev. A 10, 231 (1974).
bL. Shabanova, Yu. Monakov, and A. Khlyustalov, Opt. Spectrosc. (USSR) 47, 1 (1979}.
'N. Penkin and I. Slavenas, Opt. Spectrosc. (USSR) 15, 3 (1963).
dObtained from N. P. Penkin and I. N. Shabanova, Opt. Spectrosc. (USSR) 14, 87 (1963), and M. Norton and A. Gallagher, Phys.
Rev. A 3, 915 (1971). See J. Migdalek and %.E. Baylis, J. Phys. B 12, 2595 (1979).

fo:t vanishes, in accordance with Schiff's theorem. 's We
now have

hE= —2id, E,„Q (&0
~

z
~

)&n~ynoysp
~
0)1

"w =» 3'O'V5P
e

(3.27)

Once this equivalent one-body form is adopted, the calcu-
lation parallels the previous parity-violation one entirely,
so the equations of Sec. III D apply also to this case, with
the slight modification that u2 ——u& and co =0. The reduc-
tion of the EDM interaction Hamiltonian to one-body
form carried out above follows the procedure outhned by
Sandars in his seminal work on atomic electric dipole mo-
ments. '9

+ &0
I Fo)'sp I

n &&n
I
z

I
0&)

(3.26)

which is the change of energy associated with the one-
body Hamiltonian

IV. TABULATION OF RESULTS

In the paragraphs below we give the results of numeri-
cal evaluation of the various atomic properties discussed
in Sec. III. The lowest-order values in the present tables
are in some cases different from the corresponding values
given in I, since changes have been made both in the treat-
ment of nuclear finite size and in the model potential pa-
rameters. The new parameters and nuclear charge distri-
butions are presented in the Appendix along with a dis-
cussion of the importance of modeling core states when
constructing model potentials.

In Table I we give the low-lying spectra of the four ele-
ments studied as calculated in each of the four potentials
considered. The rather good agreement between the
lowest-order model potential results and the experimental
values is not surprising since these low-lying energies were
used to determine the parameters for the potentials. By
comparing with the corresponding HF results and with
the first-order corrections it becomes evident that the rela-
tively precise agreement between the zeroth-order spec-
trum and experiment achieved by fitting the experimental
spectra is illusory. First-order perturbation theory intro-
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TABLE III. Magnetic dipole hyperfine constants (A ) in MHz calculated using various potentials. In the HF case, the first-order
term includes core polarization corrections to all orders. The nuclear g factors used are the following: Rb, 0.541208 (Ref. a); Cs,
0.737 7208 (Ref. a); Au, 0.098 772 (Ref. b); and Tl, 3.2764268 {Ref.c).

Isotope

'4Rb

Term

0th
1st
Sum
0th
1st
Sum

Tietz

1098.0
111.2

1209.2
252.8

6.8
259.6

1067.0
—386.4

680.6
255.0

—55.1

199.9

Norcross

1051.0
—175.4

875.6
253.2

—29.6
223.4

HF

643.9
135.8
779.7
172.0
35.9

207.9

1011.9108

239.3(12)'

133Cs 6s 0th
1st
Sum
0th
1st
Sum

2405.0
9.6

2414.6
565.1

—11.3
553.8

2408.0
—978.0
1430.0
576.0

—123.9
452. 1

2346.0
—469.9
1876.1

569.1

—69.0
500.1

1435.0
289.2

1724.2
393.9

80.1

474.0

2298.1579

546.3(30)'

'"Au 0th
1st
Sum
0th
1st
Sum

3036.0
663.3

3699.3
333.0

—20.8
312.3

3504.0
—805.7
2698.3

320.6
—15.3
305.3

3550.0
—912.7
2637.3
335.1

—27.6
307.5

2175.0
251.2

2426.2
266. 1

29.1

295.2

3049.6601g

2osTl 0th
1st
Sum
0th
1st
Sum

—23 488.0
4616.3

—18 871.7
—2729.0

1093.0
—1636.0

—28 238.7
16413.3

—11 825.4
—2875.0

924.5
—1950.5

—25 931.0
7166.6

—18 764.4
—3153.0

1370.0
—1783.0

—17 656.0
—4315.2

—21 971.2
—1968.0

—61.4
—2029.4

—21310.835"

—2131(60)'

'C. W. White„%. M. Hughes, G. S. Hayne, and H. G. Robinson, Phys. Rev. 174, 23 (1968);Phys. Rev. A 7, 1178 (1973).
A. Narath, Phys, Rev. 163, 232 {1967);175, 696 (1968).
'%. G. Proctor, Phys. Rev. 79, 35 (1950).
dS. Penselin, T. Moran, V. %. Cohen, and G. %'inkier, Phys. Rev. 127, 524 (1962).
'R. Gupta, S. Chang, and W. Happer, Phys. Rev. A 6, 529 (1972).
~%. Markowitz, R. Glenn Hall, L. Essen, and J. V. L. Parry, Phys. Rev. Lett. 1, 105 (1958).
~G. Liljergren, I. Lindgren, L. Sanner, and K. E. Adelroth, Ark. Fys. 25, 107 (1963).
"A. Lurio and A. G. Prodell, Phys. Rev. 101, 79 (1956).
'A. Flusberg, T. Mossberg, and S. R. Hartmann, Phys. Lett. 55A, 403 (1976).

duces corrections which modify the empirically deter-
mined unperturbed spectra, away from experiment and
typically closer to the HF spectra. There are, of course,
no first-order corrections in the HF case.

Our results for parity-conserving transition matrix ele-
ments are presented in Table II. Note that the experimen-
tal values given in the table, which are inferred from mea-
sured oscillator strengths and the experimentally deter-
mined transition frequencies, are relatively poorly known
except for the case of Cs. This is then one case where a
theoretical program capable of predictions of a few per-
cent accuracy could provide guidance to experiments. At
the present level, however, our theoretical predictions are
accurate only at about the 20% level. The most success-
ful model is the Norcross potential, in which the first-
order corrections always take the lowest-order value in the
direction of experiment: This feature is also present in the
HF case, which in the Au and Tl cases is actually superior
to the Norcross potential. The Tietz and Green potentials

have more erratic behavior, but are fairly successful ex-

cept for the 6s~6p, /2 transition in Au for the Tietz po-
tential. The large first-order correction there arises from
the 5d3/2 +p]/2 excitation channel. Slight changes in the
Tietz parameters lead to large changes in this correction.
Particular attention will be paid to this transition in the
ensuing second-order calculation to see if the cause of this
unstable behavior is neglect of some important second-
order effect.

Table III contains our hyperfine-splitting results. A
notable feature is that the excited-state hyperfine con-
stants are in general under better control than those of the
ground state, with roughly 20% spreads reduced to 10%.
A similar effect was noted for transition matrix elements.
We attribute this effect to a decreased sensitivity to the
structure of the core of the atom in excited states. This
suggests that it may be of value, if experimentally feasible,
to study weak-interaction effects in excited states rather
than the ground state. Comparing the potentials, we see
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TABLE IV. Parity-violating dipole matrix elements in units of ieao(Q /X)10 "calculated in various models.

0th
1st
Sum

Tietz

0.168
—0.056

0.112

Green

0.164
—0.030

0.134

Norcross

Rubidium 5$ ~6$, A =85
0.160 0.139

—0.029 —0.004
0.131 0.135

Expt. Others

0th
1st
Sum

1.079
—0.325

0.754

1.073
—0.197

0.876

Cesium 6s~7s, A =133
1.056 0.927

—0.200 —0.037
0.856 0.890

0.93(12)'
1.00{8)

0.880'
0.996
0.972'
1.06K

0.89~

0th
1st
Sum

5.18
—1.21

3.97

5.69
—2.79

2.90

Gold 6s~7s, A =197
5.59 6.85

—2.60 —1.13
2.99 5.72

—9.64
0.86

—8.78

—10.19
—0.57

—10.76

Thallium 6p*~7p, A =205
—10.07 —10.01

0.66 0.30
—9.41 —9.71

—7.8(1.4)" —8.73'
—6.83'

'M. A. Bouchiat et al., Phys. Lett. 134B, 463 (1984); 117B,358 (1982). Q =—68.6, P=26.8.
bReference 2. Q = —68.6, P=27. 3.
'Reference 8.
D. V. Neuffer and E. D. Commins, Phys. Rev. A 16, 1760 (1977).

'C. Bouchiat, C. A. Piketty, and D. Pignon, Nucl. Phys. 8221, 68 (1983).
~Reference 10.
gReference 7.
"P. Drell and E. D. Commins, Phys. Rev. A 32, 2196 {1985);C. E. Tanner and E. D. Commins, Phys. Rev. Lett. 56, 332 (1986).
Q =110,P=205.
'D. V. Neuffer and E. D. Commins, Phys, Rev. A 16, 844 (1977).
'Reference 9.

again that HF always tends toward the experimental re-
sult, but because the lowest-order HF results are quite far
off, the final agreement is only moderately good. In this
case the Norcross potential tends to again have correc-
tions of the correct sign, but of large magnitude, so that
the final result "overshoots" the experimental value. The
Tietz and Green potentials are again somewhat erratic,
with the Green potential overshooting the experimental
values significantly.

Parity-violating transition matrix elements are present-
ed in Table IV. A striking feature of the predictions is
that, if the Tietz potential is left out, the remaining three
potentials agree within 10%%uo. However, given the
behavior in the preceding three tables, we do not wish to
claim this as our level of accuracy and in particular would
not want to infer a Weinberg angle from experiment with
accuracy of under 20%. If, however, a second-order cal-
culation were to give results for the first three tables con-
sistent with experiment and one another at, say, the 5%
level, and the results of this table were consistent with one
another at this same level, we would then feel in a position
to make statements about the agreement or disagreement
with the Weinberg-Salam model at this level of accuracy.

As mentioned in the Introduction, there have been
several calculations done on Cs and Tl using the HF po-

tential. In the case of Cs, we have found excellent agree-
ment with the first-order results of Dzuba et al. and with
the results of Mkrtensson-Pendrill when we use the nu-
clear distributions of these authors. However, we have
serious discrepancies with the calculation of Das'o already
in the lowest-order calculation. The source of this
discrepancy is not understood at this time. Similar re-
marks apply to Tl, where we have good agreement with a
calculation of Martensson-Pendrill and discrepancies al-
ready in lowest order with Das.

Finally, in Table V we present our EDM enhancement
factor calculations. The same general pattern of spreads
of values is present here as in the previous cases. Here,
however, because one is looking for a nonzero electron
EDM rat'her than attempting a precision evaluation, our
results can be interpreted in a more positive fashion, that
is, that the atomic-physics uncertainties are certainly
under 50%. In I, a very large correction to the EDM
enhancement factor of Tl was noted in the HF case that
made it seem possible that even such a relatively large un-
certainty might not be attainable. However, it is seen that
once first-order corrections are added in, a large cancella-
tion takes place, and the HF result is consistent with the
other potential results. A similar effect takes place in the
parity calculation, but there the cancellation takes place
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TABLE V. Electric dipole moment enhancement factors 8 =D,«mid, with and without first-order correlation corrections for the
various potential models employed here.

State

0th
1st
Sum

Tietz

34.0
—17.0

16.1

Green

29.7
—5.9
23.7

Norcross

30.0
—8.0
22.0

26.6
—2.0
24.6

Other'
(Unshielded) (Shielded)

27.5

158.2
—77.9

80.3

139.4
—33.5
106.0

144.1

—43.7
100.4

126.6
—11.7
114.9 133 119

6s 0th
1st
Sum

379.7
—437.2
—57.4

371.7
—240.9

130.8

368.4
—234.2

134.2

340.2
—90.3
249.9

0th
1st
Sum

—679.0
177.0

—502.0

—689.0
83.0

—607.0

—687.0
125.0

—562.0

—1906.0
865.0

—1041.0 —700

'P. G. H. Sandars, Phys. Lett. 22, 290 (1966) (with and without shielding).
P. G. H. Sandars and R. M. Sternheimer, Phys. Rev. A 11,473 (1975).

between different parts of the first-order calculation: This
phenomenon was first observed by Mkrtensson-Pendrill. '

V. SUMMARY

The most obvious conclusion from examination of our
results is that many-body perturbation theory is quite sen-
sitive and can produce 20%%uo corrections. The problem is
that the core is now being allowed to interact with the
valence electron, and a poor description of a core state can
result in large corrections, as perturbation theory is in
some sense trying to adjust the core into its actual form.
It is extremely difficult to simultaneously model all core
states with a single potential: It is typical in adjusting pa-

rameters to see one set of core energies improve, while
another set deteriorates. Table VI shows the core energies
of Cs and how well different models do. Note that the
unusually good description of the deep core states in the
Hartree-Pock model is accompanied by very bad results
for the outer core, which is related to the unusually poor
lowest-order HF predictions. It can also be seen that the
Norcross potential is unusually good, except that the very
outer core is relatively poorly described. However, all of
the models considered, after adjusting parameters as
described in the Appendix, give qualitatively a correct pic-
ture of the core, so we expect that higher orders of pertur-
bation theory will give progressively better results. %e
are particularly encouraged by the fact that the treatment

TABLE VI. Core energies for Cs in various potentials employed in this work {in a.u.).

State

1s
2$

2p
2p
3$
3p
3p
3d
3d
4s

4p

4d
5s

5p

Tietz

1962
223
214
200
45.4
41.0
38.1

29.5
28.8
7.68
5.94
5.41
2.37
2.28
0.876
0.487
0.438

1336
213
202
189
44.3
39.5
36.9
27.8
27.3
8.44
6.65
6.12
3.07
2.98
1.09
0.624
0.555

Norcross

1316
210
199
186
44.4
39.6
37.0
28.4
27.8

8.27
6.47
5.94
2.96
2.87
0.994
0.553
0.493

HF

1330
213
199
186
46.4
40 4
37.9
28.3
27.8
9.51
7.45
6.92
3.49
3.40
1.49
0.908
0.840

Expt. '

1322
210
196
184
44.7
39.1

36.6
27.1

26.6
8.48
6.33
5.93
2.90
2.81
0.83
0.48
0.42

'J. A. Bearden and A. F. Burr, Rev. Mod. Phys. 39, 125 (1967).
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of excited-state hyperfine sphtting gives a set of results
that are within 10% of each other and experiment: As
discussed above, we attribute this situation to a lessened
dependence on the core.

It is clearly necessary to go to second order to make
predictions of atomic properties that are better than 10%.
In some respects, while considerably more complicated,
the calculations involved are similar to those described
above. However, a novel feature of second-order calcula-
tions is the presence of double excitations, which can
arise, for example, from the second term in Eq. (2.4). The
sums over single excitations encountered in the present
work were handled with Green's-function techniques that
are well understood. Less is known of Green's-function
techniques for application to these double excitations:
While the nonrelativistic problem has been understood for
some time, there has been little work on the relativistic
problem. i Sucher has pointed out that straightforward
extension of many-body perturbation theory to second or-
der leads to terms that are not well defined which involve
simultantxius excitation of positive and negative energy
states; such terms must be explicitly removed. One ap-
proach that avoids this problem is direct saturation of the
double sum with positive energy discrete and continuum
states: This approach is used by Dzuba et al. ' and
Das. ' We are exploring this approach, the two-particle
Green's-function approach, and also a method proposed
by Mohr involving a contour integration over a product
of one-particle Green's functions of complex energy.
Whatever technique we employ, we expect that at the level
of second-order perturbation theory, accuracies of a few
percent should result. This expectation is based on the ex-
perience of Dzuba et al., who achieve this level of agree-
ment with hyperfine constants, oscillator strengths, and
valence energies in the Hartree-Fock treatment of Cs.
What is not known is how the model potentials will
behave. It is possible that at this level they will be far
more accurate than Hartree-Fock; the general question of
what potential leads to the most rapid convergence of
many-body perturbation theory has never been addressed
for heavy atoms.

Any complete second-order calculation is likely to in-
volve extremely massive computation, due both to the
large numbers of graphs to be evaluated and the difficulty
of evaluating double-excitation sums. Nevertheless, we
consider the problems addressed here of sufficient interest
to justify the work: The atomic systems dealt with here
are, even though the fundamental interaction is well
known, nonperturbative systems that have not been dealt
with in the systematic fashion that one- and two-electron
atoms have. In addition, a test of the Weinberg-Salam
theory at low energies in conjunction with the high-energy
tests implicit in the accurate measurements of the 8'and
Zo mass at European Organization for Nuclear Research
(CERN) (Geneva, Switzerland) would provide a stringent
test of unified theories of weak and electromagnetic in-
teractions. The discovery alone of a nonvanishing atomic
electric dipole moment would be of extreme importance to
various exotic theoretical models of unification: However,
given that discovery, an accurate calculation of the
enhancement factor will be the only way of accurately

determining the magnitude of d„which would be one of
the fundamental properties of the electron, such as its
magnetic anomaly, and which would certainly play as im-
portant a role in elementary particle physics.
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APPENDIX

The lowest-order values in the tables in Sec. IV are in
some cases different from the corresponding values given
in I, since changes have been made both in the treatment
of nuclear finite size and in the model potential parame-
ters.

In the case of parity-violating matrix elements for
heavy elements we found a sensitivity at the several per-
cent level to the shape of the nuclear charge distribution.
Since much of the accurate data on nuclear charge distri-
butions are parametrized in terms of a Fermi distribution,

po
Pnuc + 41n3(r —c)/t(r)=

+e

we adopt such a form in the present work instead of the
uniform distribution used in I. We choose the parameters

4.S71 fm,

5.674 fm,C= '

6.555 fm,

6.617 fm,

t=2.3 fm for "Rb
t=2.3 fm for ' 'Cs

t=2.3 fm for ' 'Au

t=2. 3 fm for"'Tl.

This change causes virtually no differences with any of
the lowest-order results given in I except the parity-
violating matrix elements.

A second change, which leads to more significant
differences with I, is that we choose the model potential
parameters differently; the new parameters are listed in
Table VII. In I we adjusted the model potential parame-
ters to fit the ground state and the low-lying excitation
spectra without regard to the core orbitals. The hypertine
constants determined from the resulting valence wave
functions were generally in good agreement with experi-
ment. The first-order perturbations considered here in-
volve excitations of these core orbitals, and we find that a
poor description of the more weakly bound core orbitals
can lead to (often disasterously) large first-order corree-
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TABLE VII. Model potential parameters.

LX Z —1
Tietz potential: V(r )= ——1+ 2

e
(1+tr)

1.9530
2.0453
2.4310
2.3537

0.2700
0.2445
0.3500
0.3895

A Z —1
Green potential: V(r )= ——1+

r H(e' "—1}+1
8

Rb
Cs
Au
Tl

3.481 14
4.469 10
4.45600
4.453 00

0.785 51
0.89665
0.71600
0.723 38

a (a —6Pao)( I —e2r'
lc

Norcross potential: V{r)= VTF(k, ,r )— ~ o.q(1 —ea
2f

—(,r/I' )
)

-(re )
6

C
)

Rb
Cs
Au
Tl

0.993 21
1.062 52
0.95427
0.963 82

3.2318
3.5461
4.S439
4.553 43

9.076
15.81
12.4
24.00

35.41
86.40

103.00
108.00

4.41
7.91
4.13
8.69

tions which make it doubtful that the corresponding per-
turbation series converges. To remedy this situation we
included the outer 4f and 5d energies in Tl and Au along
with the valence energies in determining the model poten-

tial parameters. One consequence of this change is that
the hyperfine constants in lowest order are not in as good
agreement with experiment as in I. Nevertheless, the
first-order perturbations are under better control.
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