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For a system of N fermions with Hamiltonian P me evaluate matrix elements of the T matrix be-
tween arbitrary Sister determinants ~X), ~X ). The resulting variational equations are driven
H@rtree-Pock-like equations, with source terms as right-hand sides, due to the "channeh"

~
X),

~

X'). The validity of this mean-field approximation is illustrated by a numerical example.

I. INTRODUCTION

The time-independent mean-field description of col-
lisions which was introduced in an earlier paper' suffers
from a defect common to many theories of collisions,
namely a non-natural description of identical particles.
This is of course due to the physical reason that, contrary
to the Hartree-Fock description of bound states where all
degrees of freedom play an identical role, in the case of
scattering states the relative-motion degrees of freedom in
the initial and final channels determine the available ener-

gy and play a role a priori different from the other de-
grees of freedom. Hence the T matrix is more often de-
fined in terms of prior and post potential operators V and
V', respectively,

Tp„,„——V+ V'GV, (1.1a)

(1.2)

where the arrows specify that (A E) and (4 E')— —

T~, ——V'+ V'GV, {1.1b)

while the Green's function G = ( W —P ) ', where W is a
complex energy which is eventually allowed to become the
on-shell energy, does retain the full symmetry of the
Hamiltonian.

The restoration of the Pauli principle a posteriori is a
straightforward although slightly tedious problem. Many
solutions of this problem are known. 2 All told, the recon-
struction of a symmetric collision amplitude as a weighted
sum of exchange amplitudes is an interesting description
of the reaction mechanism in terms of a hierarchy of ex-
changes in an increasing order. For practical purposes,
however, an a priori symmetrized theory, which immedi-
ately provides the symmetrized amplitude, is preferable.
The present paper proposes a mean-field approximation
for a variational estimate of this symmetrized amphtude.

For this purpose we redefine the T matrix, or rather the
T operator, in a manner similar to that considered in an
earlier version of our theory; namely, we set

T(E', WE)=(A E)+{A E')(W——A ) (5— E), —

should act on the ket and bra, respectively, before any ac-
tion of the Green's function G. Although E', W, and E
could be considered as independent energies it is sufficient
for practical purposes in the following to set
E'=E =ReW, and keep ImW as finite before becoming
infinitesimal at the end. The first term in the right-hand
side of Eq. (1.2) being obviously related to the first Born
amplitude, we concentrate in the following on the calcula-
tion of

where
~
X) and

~

X') are any square-integrable Slater
determinants for N fermions.

The reasons why we set X,X' to be any square-integrable
Slater determinants are obvious. On the one hand, only
antisymmetric operators and wave functions appear in Eq.
(1.3). On the other hand, any antisymmetrized wave func-
tion, such as the channel wave functions f,f' which are
familiar in the generator coordinate theory of collisions, ~

can be expanded in Slater determinants X,X'. For the sake
of clarity we recall that the generator coordinate theory of
collisions first considers the antisymmetrized product Xc
of projectile and target static wave functions, X' and X",
respectively, which are Slater determinants or simple mix-
tures of such,

aXc——WX (qi, , q, )X (q, +i, ~q, +g»
where W is the antisymmetrizer and qi, . . . , q, and

q, +„.. . , q, +„are the single-particle momenta of the
projectile and target constitoents, respectively. Opposite
boosts are then applied to the projectile and target, gen-
erating the wave function

T

Xq ——MX' q&
——k, . . . , q„——kQ 1 1

1
XX qg+)+ ~~ ~ ~ s qg+g +

~here it should be stressed that the shell-model and
configuration-mixing structures of X',X" are not per-
turbed by the boosts, while only the relative motion of the
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(y'((IV —~) ((() &

(1.4)

centers of mass of a, A has acquired an auerage momen-
tum k (the "generator coordinate" ). This average
momentum can be converted into a strict momentum K
via an integral

0=I dkfK«)xi

a suitable integration weight fK(k) removing the fluctua-
tions of the relative momentum about its average value k,
thus converting the wave packet Xi, into a plane wave P
with pure momentum K. Each partition considered in-
side antisymmetric g, g' defines the corresponding prior
or post potential V or V', respectively, hence (P —E)
and (A E') —reduce to V and V' accordingly. The com-
plete amplitude obtained by collecting all terms is the
symmetrized, physical amplitude. As P and 1(' are ex-
panded in integrals or sums of X and X', respectively, the
generic calculation of &, Eq. (1.3), is indeed the central
problem of the theory.

There is more to &, Eq. (1.3), than just one contribu-
tion to a generator coordinate expansion of
(P'~(A E)G(A—E) ~f).—As a matter of fact these
boosted wave packets, Slater determinants used as initial
and final conditions to the time-dependent Hartree-Fock
description of collisions, are excellent approximations to
channel wave functions f,g'. Indeed, as can be seen from
the definitions of Xo and Xq in the preceding paragraph,
the centers of mass of a and A show only zero-point fluc-
tuations about their shell-model centers; hence the integra-
tion with weight fK(k), which is used to remove these
fluctuations, can be omitted in those eases where the scale
of these fluctuations is small compared to the mean value
k and expected pure value K. Hence S' alone already
gives an estimate of a physical collision amplitude.

As discussed earlier a variational functional which
provides & is

(2.1c)

We will also need the inverse matrices

A =a ', A'=a' ', B=P (2.2)

which are essential for the calculation of the cofactors of
the determinants of a,a', P. For instance, the cofactor
M&& which corresponds to the removal of row i and
column j from a is

(2.3a)

The double cofactor M,'Jik which corresponds first to the
removal from a' of row t and column k then row j and
column 1 in that order is

= (X'
l 0) '(M'I, MJ'-i Mi'iMJ'I )—. (2.3b)

The triple cofactor N,~k„ i is defined, in obvious notation,
as

N~jk„ i
——(p'

~
p) [¹g(N~ Nk„NJ„Nk —)

N; (NJ/Nk—„NJ„N/, I )—
iN;„(N)iNk N) Nki)j .— (2.3c)

It is clear that these cofactors could be defined as one,
two, or three-particle-hole matrix elements, at the cost of
four different sets of creation and annihilation operators
for the four different sets of orbitals. It is also clear that
the expansion of any cofactor, including those of order
zero, into any of its row or column cofactors of the next
order provides the derivatives

normality we will need the overlap matrices a,a', P de-
fined by

(2.1a)

(2.1b)

where P,P' are square-integrable, (anti)symmetrized trial
functions. The trial functions P, P' should a pnori be
varied throughout the whole Hilbert space in order to gen-
erate the stationarity of F, but in practice they will be spe-
cialized to a restricted class of variational parameters
only. The present paper sets P„P' to be Slater deter-
minants, like X,X . Variation of single-particle orbitals is
thus the flexibility to which 4,$' are restricted. The re-
sulting variational equations are the subject of Sec. II. In
Sec. III these equations are solved, and their estimate V
of an exact amplitude & is tested in the case of an ele-
mentary two-fermion problem with a separable force. We
include a discussion and conclusion in Sec. IV.

H. VARIATIONAI. EQUATIONS

%e denote by 7;,g,', and q;,y,' the single-particle orbits
which constitute X,X' and P,P', respectively. These orbits
need not a priori be orthonormal in any way, nor could
they be in general, for these determinants are four in-
dependent determinants. Because of this lack of ortho-

(2.4a)

(2.4b)

B&g,' [X;&
klnm ™klijnm ~ (2.4c)

and all the other, analogous derivatives.
It must now be stressed that inspection of F, Eq. (1.4)

shows that F does not depend on the norms and phases of
Since furthermore P is a Slater determinant, any

linear rearrangement of the orbitals y; among themselves
leaves F invariant. The same holds for linear rearrange-
ments of orbitals pI among themselves. This gauge in-
variance of F allows an arbitrary choice of two among the
three matrices of scalar products a,a',P defined by Eq.
(2.1). Actually any matrix y of a nondegenerate one-body
operator X between qr,' and yJ. could play the role of
a,a,P.

Hence in the following we could consider among others
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G =F X—~, & ~'
I ~, & X—j;,& ip,' I

&
I 'pj &

E,J l,J

CC' —Trk,P —Try y,D
(2.5)

where in obvious notation C = (P'
~

(A E)
~

X—& and so
on for C' and D. But it is as simple to just consider F
and make it stationary, keeping in mind the fact that
many equivalent sets of orbitals Iq&';, yj I give the same re-
sult.

The values of C, C', and D are easy to obtain when 4
is, as usual, the sum of a one-body and a two-body opera-
tor:

an auxiliary functional, made out of F, and an auxiliary

operator 4' to be defined later:
The variational equations which describe the stationari-

ty of Fare now obtained as

5D D 5C
C 5

(2.9a)

5D D 5C'

Spj C' 5' (2.9b)

=+X~ ~Xj&+pi ~xj&Mij
592i j j

+ 2 g & ei I
U

I XjX m&Mii ,m,
j,l, m

(2.10a)

The explicit calculation of the derivatives takes advan-
tage of Eqs. (2.7}and (2.4}:

N

m=gr;+ g u'j, (2.6) =g(x,'
~
x,,'. +g M,'j (x,'

~

i

where t and v can accommodate center-of-mass correc-
tions if necessary. One finds

+ T g &XiXi I
U

I tm &Miimj,
i, l, m

(2.10b)

C = Edeta+ —g(pk ~

r [ Xi &Mki
k, l

+ 4 g &tkf'i I
U

I XmXn &Mkinm
k, l, n, m

C'= Ede«'+—2&Xi I
r

I V i &Mki
k, l

+ 4 2 &XkXI I
U

I tmf' &Mki m
k, l, n, m

(2.7a)

(2.7b)

D =X v i9j&-Xr l~j»v
5qj

—
2 X & Vi I

U
I XjX &&am, ,

j, l, m

=g&q,'
~
r„—gx,j&q,

'
~i

2 X (V~iVi IU I 9m &&iimj
i, l, m

(2.10c)

(2.10d)

D = W detp —g (gk ~
r

~ qadi &ski
k, l

&ekmi I 1
X X.»ki.

k, l, n, m

(2.7c)

The dot in the two-body matrix elements indicates that a
functional derivative has been taken and stands for a free
coordinate„ for example, x in coordinate representation.
The matrices X, X', and I' are defined by their matrix ele-
ments

where all the matrix elements of U are antisymmetrized as
ilsual.

One expects the derivatives of C, C', and D to intro-
duce the mean-field potentials S,S', U, defined as follows
by their action upon Xj, Xj, grj, and yj in coordinate rep-
resentation; for example,

& x
I
S

I X, &
= &(t''

I
X &

' g&&ti I
ii

I XjXi &Mki
k, l

&xj I

S'
I
x &

= &x'I 0'& g&xjxk I
U

I xmi &M/ i
k, l

k, l

& mj I
U

I
& & = & O'

I 0' &
' g & e'j V'k I

U
I ~ei &&ki-

k, l

(2.8a)

(2.8b)

(2.8c)

The antisymmetrization of the matrix elements of U

makes these potentials strict analogs of Hartree-Fock po-
tentials, with mixed density matrices of course. It must
be noticed here that S, S', and U are obviously insensitive
to linear rearrangement inside the orbitals g; or inside the
orbitals qj. These potentials are just properties of the
Slater determinants P, P', X, and X'.

X; = EM;j+ g(ij—k ~

t
~
Xi &Mk;ji

k, l

+ 4 g &0'@Pi I
U IXmXn &Mkiijnm

k, l, m, n

X,', = EM,', +—g (Xk
~

t
~ q, &Mk j,

k, l

+ — g &XkXi I
U

I V e &Mkkj
k, l, m, n

Y~j = WN~j g( q)k I
r

I q&i & X—k,ji
k, l

—
4 g &m'kq'i

I
U

I emmn &+klijnm .
k, l, m, n

(2.1 la)

(2. 1 lb)

(2.1 1c)

g(pk i
(r +S}I% &MiMk &0'

I
X& '

These equations, (2.11) and (2.10), can be further sim-
plified upon taking advantage of Eqs. (2.3) and (2.8) and
the symmetry properties of the cofaetors and matrix ele-
ments of U. One finds first

X;,=M;, —E+g&g' ~
(r+ , »

I&i�&Mki&0'-I»
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x,,'=m, ,' —E+g&x; I
(t+-,'s')

I q, )jtf„&x'I y&-' C
(rj; t——U}

I
q&;)= (2.17a)

—g&&« I
(t+~')

I qi &jtf'P6'~ & jt.
"

I
0'& (2.121) 5C'

&q»'
I (rj; —t —U)= (2.17b)

r„=N,j w —g&q; l(t+-,'U) Iq»&N»&4'IP&

+g&q« I(t+U) I q»&NaN«&0'l 0&
'

where one recognizes that

& 4'
I ~14 & & q" I

"+ U}
I
q' &

&q,' q;)
(2.18)

k, l

where one recognizes the following Hartree-Fock ma-
trices:

h»= &q« I(t+~}Ii &,

h«i = &&« I
(t+S"}

I qi &

H«i = &q « I
(t+ U}

I q i &

(2.13a)

(2.13b)

(2.13c)

13ij =&ii5ij (2.14a)

Assume then that Eqs. (2.9) have been solved, namely,
that {tp,',yjj are self-consistent orbitals. Because of the
freedom of rearrangement available for these orbitals,
nothing prevents the choice of a representation in which
the following tue conditions are simultaneously satisfied:

This choice of norms and phases corresponds to the con-
ditions

&~ I O&&O I(~ E}I»-
&(()'l(w —~) Iy)

& P I P ) &
x'

I
(P. E) I

—4 )
& tI)

I
( w P.—)

I $ )

hence at the stationary point C =C' and also P;; is in-
dependent of i

The special solutions {q&;,y,' j described by Eqs. (2.17)
will be retained as reference solutions in the following.
Their compatibility with Eqs. (2.14) derives from the fol-
lowing lemma and theorem.

Lemma. The orbitals which are solutions of Eqs. (2.17)
satisfy the relations

H~J
——e;jP;;5;j . (2.14b) (2.20a)

An immediate consequence of Eq. (2.14a) is that the ma-
trix N also becomes diagonal, and, for i~j,

(2.15)
(2.20b)

D 5C+e; t —U Iy )=——
C 5q»'.

(2.16a)

T

& &'
I & &&Ji

'& q'i I
~ X&q'« I «+—i U}

I q «&&««'

D 5C'
+e —t —UJ C' 5@~

(2.161)

A further simplification occurs if one notices that the
norms of q&;, q» are arbitrary. As a matter of fact, the
"off-diagonal" freedom of orbital rearrangement has al-
ready been taken into account by the representation which
diagonalizes the matrices P and H, see Eqs. (2.1c), (2.13c)
and (2.14), and it is now possible to use the norm and
phase freedom of these orbitals ("diagonal" freedom) to
reduce Eqs. (2.16) into

In this representation the variational equations (2.9) be-
coGle simply

g&q« I(t+-,'-U}
I
q«&e««'

k

n &q j I q &
—&q,' I

(t + U}
I q & =o .

From Eqs. (2.20b) and (2.17b) one finds, for i &j,

~ &qj I q &
—&q'

I
(t+ U)

I q & =o .

(2.21a)

(2.21b)

Proof. Since C and C' are strictly linear with respect to
each of the orbitals y,' and p;, respectively, the validity of
Eq. (2.20a) is trivial. Besides, one finds that C=C' by
left multiplying Eq. (2.17a) by &y,' I

and right multiplying
Eq. (2.171) by I p; ), then equating the results. As regards
Eqs. (2.201), it suffices to remember that C is a strictly bi-
linear and antisymmetric functional of any pair of its orbi-
tals y,',yj, i+j Hence th. e saturation of 5C/5&q, '

I by yj
corresponds to the expansion of P' with respect to row i,
for instance, by means of (wrong} cofactots corresponding
to row j. The same obvious cancellation occurs for the sa-
turation of 5C'/5

I q&; ) by yj.
Theorem The orbitals .which are solutions of Eq. (2.17)

form a biorthogonal set of left and right eigenstates of the
matrix H.

Proof. From Eqs. (2.201) and (2.17a) one finds, for
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In general r); &rI&, hence both & yj ~ y; ) and

(qj.
~
(t + U)

~ y; ) vanish. If r); =r), one can also calcu-
late (yI ~yj ) and (yI ~

(r+U)
~ yj, mix y; with p~ to

cancel the new overlap (y,' ~ yj ), then use Eq. (2.21a) to
find that the new matrix element (qj ~

(r+U)
~

qr ) van-
ishes. The details are left as an exercise for the interested
reader.

As a final result of this section we notice that the prop-
agation self-energy rl; defined by Eq. (2.18) differs from
the traditional Hartree-Fock energy e; defined by Eqs.
(2.14b) and (2.13c). This is because in general in the
present case

()$V — (, )
0,

contrary to the traditional Hartree-Fock case, where P
and P' are the same and W is the physical, real energy.

III. AN ILLUSTRATIVE EXAMPLE

For the sake of simplicity we consider a two-body one-
dimensional, elastic collision. The channel wave packet
reads, in momentum representation,

X(q& q2 k)= ir '"b(exp[ —
2 b'[(qi —k)'+(q2+k)']) —expI ——'b'[(qi+k)'+(qz —k)']I »

2
(3 1)

where one recognizes that particles 1 and 2 have been prepared in normalized Gaussian wave packets Xi and X2, boosted
by k, respectively, and antisymmetrized. An alternate representation of X is as a product of X, X„ofcenter-of-mass
and relative wave packets, respectively,

1/2

X(q,Q;k)=ir '~ exp( ,'b2—Q—i) n '~ (b~2)'~2Iexp[ b2(q —k)—']—exp[ bi(q+—k) ]I, (3 2)

with obvious notations for the center-of-mass and relative momenta Q =q i +q2 and q = —,
'

(q i
—qz), respectively.

The Hamiltonian for the model is defined by its matrix elements

(qi+q»'
(q&q2 l~lq', q2) = + — @qi —qi+(qz —qi) —V'Aev (qi qi)exp—[——,'v'(q, —qz)']

«qi —q'2)exp[ —
~ ~(qi —qz)']@ql+q2 ql q2» (3.3)

or

( qQ ~
~

~

q'Q') =5(Q —Q')[q 5(q —q') —Qv qq'

X exp( —v qi)exp( —v q'~)] .
(3.4)

cial case of two particles, the permutation symmetry of
v ~2X is the same as that of X, hence the Pauli principle is
correctly taken into account.

As seen from Eq. (3.2), X factorizes as a product
X,X, of relative and center-of-mass wave packets, the
former being normalized to unity in 1.2 norm. The exact
amplitude being obviously

It is seen that we have chosen fi /m =1, that the center-
of-mass motion has been factored out in Eq. (3.4), and
that the potential ui2 is separable with a form factor la-
beled by

~
v).

%'e now calculate the multistep amplitude
with f defined by

(3.6)

M~=(X
~
Uiq(II —4 ) 'Ui2 ~X) (3.5) (W —A )Q=U&zX, (3.7)

in two ways, namely (i) exactly and (ii) in the mean-field
approximation. The reason why we use simp1y u&2 in-
stead of (E —A ) in Eq. (3.5) is obviously that, in the spe-

it is clear from Eq. (3.4) that A leaves the center-of-mass
invariant, hence g also factorizes into a product P„X,~ .

A reduction of Eq. (3.7) is thus
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(8' —q )g„(q)

= —A,ovq exp( —v q )

X f dq'vq'exp( —v q'2)[g„(q')+g„(q')), (3.8)

where one identifies, in the integral on the right-hand side,
the scalar products (vlf, ) and &vlX„) of Iit, ) and

I X„&, respectively, with the form factor
I

v& of the non-
local potential, Eq. (3.4). Because of the separability of
the potential, the integral in the right-hand side of Eq.
(3.8) is just a sum of two numbers (v I p„) and ( v

I I, ), and the number

q exp( —2v'q )

8' —q
(3.9a)

hence g„ is found as

y„(q)=-~.((vip„&+&vIX, &)
""

8' —q

We just have to integrate again g„with the form factor v
to obtain an equation for (v

I g, ), see Eq. (3.11) below.
Defining the function

(vlX„)= f dqqexp( —v q )m' '~ (b~2)'~ [exp[ b(q——k) ]—exp[ —b (q+k) ]l
2

23/4 ] /4 vb
v+b

beak b2v2ki

v +b2 v +b2
(3.9b)

one finds easily

2

tp, (q)= —g q'"p q (( IX, &+& I1(,&),8' —q

(3.10)

Wa ———g(v
I
y„)',

hence the exact T-matrix amplitude is

&X, IU IX, )
1+kgb, ( W)

hence

and finally

—g(viz, )x(W)
I+A,~(~} (3.1 1)

We now turn to the mean-field approximation. The
one-body part of 4 is, see Eq. (3.3),

'= 4' (3.13a)

1+Rob, W

Incidentally the Born term is

(3.12)
while the two-body part is

lV = —
& ~ie2+U» .

Hence

(3.13b)

D =&0''I(~ —~)
I
0'&=~(&ei

I pi&&q'&I''2& (q''i lq'2&&tz I
q'i&)

——.
'

( &(pl I q i I q i & &q ~ I q z &+ &(p2 I q z I q z & & q i I q i &

—&6 Iqf Iqz&&qzlqi& —&qzlq2 lqi&&ql lqz&)

+ 2(&q) lqi lq'i&&q2lq2 lq2& —&q i lqi lq2&&q2lqz lqi&) —&qw21 0 lqiqz& . (3.14)

whHe

(3.15)

In Eqs. (3.14} and (3.15) and the following, the notation
U» is shortened to u.

The functional derivatives are obtained readily as

5D, 1, 1 &q2lqz lqz&(,
I )

(3.17)

In Eq. (3.16) we have already taken advantage of the can-
cellation of (pzlq, ) and in both equations the dot
expresses the free coordinate coming from the functional
derivation. It will be noticed, for instance, that

+-' lq2&&qzlqzlqi&

+&.q214qiq2-U) Iqiq~& (3.16)

&.q 2 I
U

I &i&2& ~1& &.
I
~

I &i &+~i2& I
~

I &z&

(3.18)
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see Eq. (2.8a). It will also be noticed that, in the special
case of two particles, mean-field matrix elements such as

&q2IUIqi& and &qzIS IXi& vailish identically because
the two-body matrix elements entering the definitions of
U and S, Eqs. (2.8), are antisymmetrized a priori. Hence
the only nontrivial exchange coupling between y1 and y2
in Eq. (3.16) comes from & qz I q 2 I q i &. The special repre-
sentation discussed at the end of Sec. II must therefore

cancel that matrix element. Finally, we take advantage of
two symmetries of the problem, namely, (i) parity since Xi
and +2 are deduced from each other by opposite boosts k
and —k, respectively, hence q1 and y2 may be taken as
strictly even and odd, respectively, and (ii) Euclidean sym-
metry since & is a diagonal matrix element, hence

I
P'&

is just the complex conjugate of
I P&. The "reference"

mean-field equation for q i is thus

4 'q i 4 e2)q'i('qi ) 2+2qiq'2(ql ) f dq iiri2(qiq i )q'i(q i )

=——,
' 4v' f dq2dq Idqi&(qi+q2 q'i —q2)ex—p[ ,' ~(—q i—q2)'l—(q i

—q»exp[ ——,
' ~(q i

—q2)'l(q'i —q2)

Xq2(q2)[Xi(q i )X2(q2) —X2(q'i )Xi(q2)l, (3.19)

e2=n2 ' f dq2q2[q2(q2)l',

+2 ~2 02@'2 92 92@'1 iIIt2

(3.20a)

(3.20b)

u 2(qlq i ) Y~
2 4~ f dq2dq2@ql +q2 q1 'q2)(qi q2)(qi q2)q'2(q2)

X exp[ ——,
' v'(qi —q2)'lexp[ ——,

' v'(q i
—q2)']q2(q2), (3.20c)

a2= f dq2[q»(q2)l'. (3.20d)

(3.21)

Because of the p-wave interaction which has been chosen the direct and exchange contributions to w, Eq. (3.20c), are
equal. The same holds also for the right-hand side of Eq. (3.19). The term qi I

q&i & which should be present with

a2qi I
q&2& and w on the left-hand side of Eq. (3.19), because of the qiq2 term in Eq. (3.13b), actually vanishes. This is

because it is weighted by the Euclidean matrix element (q2 I q2 I yi ) which obviously vanishes when q i and g2 have oppo-
site parities.

The right-hand side of Eq. (3.19) slightly simplifies, because of the factorization of I into a product X„X,m,
' 1/2

5C 1
4v&vl &.& f dq2q2(q2)(qi —q2)exp[ —4v (qi —q2) lrr exp[ —4b (qi+q2) l

2 —1/4 1 2

v2 v2

In the same way the reference mean-field equation for q 2 is

( w ,' q,
' ,' e, )q,—(q—,)—,' —~,q, q, (q, ) f dq,'~, (q,q—,')q, (q', )

' 1/2
'

Wv&v
I
&, & f dqiq i(qi)(qi q2)exp—[ 4~(q—i q2)'l~—'" ~ exp[ —4b'(qi+q2)'l, (3.22)

where ei, a.i, and w, are obtained from the substitution of
q&i for y2 in Eqs. (3.20a), (3.20b), and (3.20d).

Equations (3.21) and (3.22) have been numerically
solved on the CISI Cray computer by a brute-force itera-
tive algorithm, where an initial guess for tp, and q2 gen-
erates mean-field kernels iei, ui2 and kinetic parameters
81,x1,82,~2, and hence new orbitals q1,qv2 after inversion
of the left-hand sides of Eqs. (3.21) and (3.22). Typical in-
tegration meshes correspond to 35 points ranging from
—7b ' to 7b ' in momentum space and a boost momen-
tum k of order 2 or 3 times b '. Both parameters b and
v are taken of order 1fm. With A irn as a unit, a typical
value of the energy is taken as 6, with an imaginary part
ranging from 1, which is truly off shell, down to 0.1,
which is practically on shell. The strength constant A,o is
also taken of order 1. Depending on the parameters, con-

vergence towards self-consistency may or may not need
relaxation in the iterative algorithm. Convergence is
sometimes reached in 10 steps and sometimes demands
400 steps.

We have not made a systematic investigation of all pos-
sible solutions, as in Ref. 7. The comparison shown in
Table I, between mean-field amplitudes and those exact
amphtudes obtained from Eq. (3.12), is just meant as an
illustration of the method. For a more systematic numeri-
cal analysis in two simpler eases (not antisymmetrized) we
refer to earlier works. ' The agreement shown by Table I
is good enough to definitely justify the use of the mean-
field approximation in its present antisymrnetrized formu-
lation.

Besides numerical agreement between the exact & and
the mean field V a main result of the numerical appliea-
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TABLE I. Comparison of the exact (N) and mean-field amplitudes (P ) for various values of ReE
and a fixed value of IIE=0.1. The system of units and the values of the other parameters are defined

in Sec. III.

6.25
6.00
5.76
5.72
5.29
5.06
4 84
4.62
4.41
4.20
4.00
3.80
3.61
3.42

4.1x 10
5.3 x10-'
6.8 x10-'
8.7x10-'
1.1 x 10
1.4x 10-'
1.8x10-'
2.2x 10-'
2.8x10-'
3.5x 10-'
4.4x 10
4.8x10-'
6.1x10-'
7.6x 10

4.0x10-4
5.2x10-4
6.6x10-'

1.1x10-'
1.3x10-'
1.7 x10-'
2.1x10-'
2.6x10-'
3.2x10-'
4.0x 10-'
4.8x10 '
5.9x10-'
7.3 x10-'

-7.5 x
—1.1 x
-1.8x
-1.9x
-2.5x
—3.3 x
-4.5x
-6.1x
-8.7x
-1.4x
-3.4x
-5.9x
—3.2 x

. -3.5x

1O-'
10
10
10
10
1O-'
10
1O-'
10
10-4
10-4
10-4
10
1O-4

—6.2x10-'
—7.3 x10
—8.7X 10
—1.0x10-'
—2.7x10-'
—2.4x10-'
—2.7x10-'
—2.9x10-'
—8.7 x10-'
—1.0x10-'
—7.1x10-'
—7.0x10-'
—2.7X 10
—3.0x 10-'

tion is the check of the theorem proven in Sec. II. Test
cases were run where the initial guesses for q&, p2 were not
orthogonal. The self-consistent orbitals turned out to re-

store orthogonality.
The code MIRCAR is available on request to any in-

terested reader. We intend in the future to map out the
variational space in order to identify the likely multiplici-

ty of solutions and the corresponding bifurcation points.
The numerical agreement found in Table I is strikingly

systematic, despite slight inconsistencies in the imaginary
amplitudes. (These inconsistencies are clearly due to the
fact that Im& is at least one order of magnitude smaller
than Re& in the present case, hence a 3% inaccuracy in
Re& is compatible with a 30% inaccuracy for Im&.
They disappeared in another case where Im& and Re&
are of the same order. ) We find this good behavior of the
mean-field method very encouraging for many-body prob-
lems, where the mean field is expected to be even better
justified than it is in a two-body problem. A systematic
search for the solutions and bifurcations of the mean-field
equations is in order. This should shed light on the shell
models provided by the present theory, these shell models
having obviously a dynamical interpretation in terms of
reaction mechanisms. Preliminary results on this problem
of bifurcations setm to show that there is one well-defined
physical branch, which is obtained as the most stable solu-
tion when Im$V/Re% is large. When one lets Im W tend
towards zero, and one follows this solution by continuity,
no bifurcation has yet been observed numerically.

technically very easy. (The case of bosons would be as
easy. ) A subsidiary result of some importance is the ex-
istence of a canonical representation of the mean-field or-
bitals, in which these orbitals make a dynamically
biorthogonal set. Furthermore, these generalized
Hartree-Fock equations turn out to provide an excellent
approximation to exact results in a solvable model. The
on shell limi-t of the calculated amplitude is smooth This.
opens the way towards realistic calculations for systems
with many fermions.

In any attempt towards realistic calculations a great
deal of attention should be paid to the possibility of
several, competing solutions of the system of nonlinear
equations proposed in this paper. Their discovery and in-
terpretation may be the most stimulating aspect of the
theory. This demands, of course, the optimization of the
numerical algorithms which will be in this numerical
solution.

A last remark is in order. %hile we have used the
gauge (rearrangement) freedom of Slater determinants
P', P to define a canonical representation of qj, q;, we still
have some freedom for an additional canonical representa-
tion of X,',X;. If such an additional representation can be
found, it will provide shell models not just for the trial
functions, but also for the channel wave packets. This in-

triguing conjecture may deserve some attention.
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