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The presence of a chaotic laser field with a bandwidth is shown to lead to new resonancelike
structures in the double-differential cross sections for electron scattering from a real atomic system,
in contrast to potential scattering. On the basis of the exact results, a simpler procedure is suggested
to estimate the magnitude of this effect, which explicitly invokes the laser line-shape function and
demonstrates how the field correlations affect the projectile and the bound system in markedly dif-
ferent ways. Finally, the feasibility of experimentally detecting these new features is discussed.

Charged-particle scattering in the presence of intense,
chaotic radiation fields has been receiving attention late-
ly,!~* since high-power multimode lasers are expected to
produce nearly chaotic fields. Explicit calculations so far
have been confined to potential scattering,”>* while the
general formalism of Becker et al.,® which is fully relativ-
istic, assumes asymptotically free particles. The results of
Refs. 2 and 4 show that the only effect of a nonzero band-
width is to give a spread to the peaks in the double-
differential cross sections (dc/dQ2dE) at final energies
corresponding to the exchange of an integral number of
photons, which are 8§ functions in the case of a coherent
field. Here we report the results for electron scattering by
a real atomic system, taken to be hydrogenic, which ex-
hibit some novel features because of the existence of
atomic energy levels. Apart from the expected peaks
around the incident electron energy, these calculations in-
dicate the existence of another series involving energy
changes corresponding to the atomic transition energies,
but with sidebands corresponding to multiphoton ex-
changes at the mean frequency of the laser. These
features can be explained by recognizing that the projec-
tile electron and the target atom respond differently to the
field correlations. This is confirmed by a heuristic deriva-
tion of the contribution of these new peaks to the differen-
tial cross section do/d(}, which also stresses the role of
the laser line shape in this context.

Consider the scattering of electrons by hydrogen atoms
in a plane-polarized electromagnetic field, whose ampli-
tude and phase undergo Gaussian fluctuations. In the
Coulomb gauge and dipole approximation, the incident
electron of average momentum Kk, is represented by
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where A is the vector potential (we use atomic units with

| e| =1). For the ground state of the hydrogen atom,
first-order perturbation theory gives
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where E is the field strength, ¢; is an unperturbed atomic
state of energy wy, yi the level width for the transition
I k )-—-P l 0), Qpp =W — Wy, and
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with f’.o denoting the direction of polarization of the field.
The first Born transition probability per unit of time for
direct elastic scattering in which the initial and final mo-
menta of the electron are, respectively, k; and kg, is then
given by
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where the interaction potential is given by
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r; and r, being the coordinates of the incident and atomic
electrons, respectively. [The outer angular brackets in Eq.
(4) denote ensemble averaging.] To proceed further, the
field correlation function has to be specified, which we
take to be?
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where &3 is the variance of the field strength, » the mean
frequency (assumed to be <<wyg for all k), and Aw the
bandwidth. The final result of performing the ensemble
averaging indicated in Eq. (4) using Eq. (6), which is too
lengthy to be outlined here,’ can be written as
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where
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a(x)=(v+2k)Aw+(A3/2)(Aw cosd +wsing) +x, v=|n |,

Bly)=nw-—y, Ao=(q-ﬁo)$o/w2, tang =2 Aw/w, q=k; —kg,

and Eif=E,»—Ef=(ki2—k2)/2. The expressions for Q
and T are not given here’ since they are of no conse-
quence in the following discussion. In Eq. (7) the first
term on the right-hand side represents scattering by the
static potential ¥y and the other terms are due to the
dressing of the atom by the field. As Aw—0, the term
R —0, while all the others reduce to what one would ob-
tain by averaging the corresponding result® for a coherent
field of amplitude E,, over a Gaussian probability distri-
bution
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which confirms a result already shown to hold in the
cases considered in Refs. 2 and 3. In contrast, the term R
is purely a product of the bandwidth, and contributes an
extra term to the double-differential cross section:
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where we have used the fact that VM, is pure imagi-
nary. Equation (10) constitutes the central result of this
communication. This can be further simplified on identi-
fying 2y; with the spontaneous transition probability per
unit time from | k) to |0),” which gives
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Now, it can be verified from the definition of H (x,y)
that this function consists of peaks around y =nw, so that
(d%0,/dQdE;), has two central peaks at E;=E;*wyo,
with sidebands at intervals of w. For hydrogen, the dom-
inant peaks are evidently around an energy difference cor-
responding to the 2p level, viz., + a.u. Figure 1 illustrates

r

the situation at a scattering angle of 10° for E;=100 eV
and a field of strength 10® V/cm, E||q, fiwo=1.17 eV and
Aw=10"%0. The peaks at E;=E++ and
Ef=E,~+%——m are representative of the new genre and
are seen to be of the same strength as the ones at E;=E;
and Ef=E; +o.

To estimate the contribution (do,/dQ), of Eq. (11) to
the differential cross section do /d (), we note that
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where I, is a Bessel function of imaginary argument.
Therefore, assuming Aw and ¥, to be quite small, we have
from Eqgs. (10) and (12),
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FIG. 1. Double-differential cross section for the scattering of
electrons from hydrogen at an angle of 10° in a laser field polar-
ized parallel to the change in momentum. Ej is the energy
gained by the projectile. The other parameters are fiw=1.17 eV,
Aw=10"*%w, &,=10% V/cm, and E;=100eV.
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where k}=2(E,~iwk0-—nw).

We may now proceed to relate these resonancelike
structures to the laser line shape, which, in the present
case, is Lorentzian [cf. Eq. (6)]. (The implications of a
steeper wing are discussed later.) The important point to
note in this context is that, if the whole system were in-
teracting with the photons from the wings, one should ex-
pect multiphoton exchanges at these frequencies, which
are absent in Eq. (13), where the sidebands always occur
with a spacing of . The obvious conclusion is that only
the atom is affected by the presence of these photons, be-
cause of the strong resonances. Let us therefore consider
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where Ay is defined similarly to A, Clearly, the reso-
nances of interest here occur for o'~wio. For
k}:Z(E,--{—wko—-nw), the scattering amplitude is ob-

tained from Eq. (17) as
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The corresponding cross section averaged over a normal-
ized Lorentzian with a bandwidth Aw is®
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On taking the ensemble average over E, by means of Eq.
(8), we finally recover Eq. (13) (to order &3).
The above derivation shows that the magnitude of the
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a single-mode laser field E=Esin(wt), which has a dis-
tribution of frequencies only in the interaction with the
target atom. The appropriate wave functions in this case
are
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The prime over w in Eq. (16) is to distinguish it from o,
when the average over the spectrum is taken later on. The
terms of order E (2) in the scattering cross section evidently
arise from the matrix elements (@q| ¥ | o) +c.c., whose
contribution to the S matrix is readily calculated to be
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resonance effect has a strong dependence on the laser line
shape. Now, it is well known that in practice, the
Lorentzian approximation is reasonable near the center,
where it has observable effects,® but not farther off, where
the spectrum falls off much faster. It is therefore very
unlikely that in the case of electron-hydrogen collisions in
a laser with #fiw~1 eV any such structure would be ob-
served. In the experiments of Weingartshofer et al.!® also
these peaks would have been absent, as they used argon as
the target. However, these structures may be expected to
show up if the laser is detuned several natural linewidths
away from the dominant dipole-favored transition fre-
quency of the target atom, but within a few bandwidths of
the laser. Such an experiment would seem feasible at
present with suitable alkali atoms.
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