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Phase-integral formulas obtained by Froman, Froman, and the present author for the limit of
u~(I, E,r)/r'+' as r ~0, where u~(I, E,r) is a normalized nonrelativistic wave function for bound or
unbound states, are compared with corresponding formulas obtained by Pratt and co-workers from

analytical perturbation theory. It is demonstrated that the phase-integral formulas are practically

always advantageous to the perturbation-theory formulas. If one substitutes the perturbation-theory

approximation for the energy into the respective phase-integral formula for the limit of uN/r'+' as
r ~0 and performs approximations according to a well-defined scheme, the approximate
perturbation-theory formulas for the limit of u~/r'+' as r ~0 are obtained. For bound s states the
phase-integral formula and the perturbation-theory formula coincide with the Fermi-Segre formula

in the nonrelativistic approximation.

I. INTRODUCTION

The nonrelativistic Fermi-Segre formula' gives a re-
markably simple expression for the value of a normalized
bound-state radial wave function of an atomic or ionic s
electron at the origin. This formula is of importance for
the interpretation of hyperfine-structure splittings, isotope
shifts of spectral lines, Knight-shift data, and chemical
shifts of Mossbauer lines. A generalization, which re-
moves the particularization to an s state but is restricted
to highly excited states with small values of the angular
momentum quantum number /, has been given by Bouchi-
at and Bouchiat [Eq. (AI.49) in Ref. 6]. Formulas related
to the Bouchiat-Bouchiat formula but valid for high abso-
lute values of the energy have been obtained by McEnnan,
Kissel, and Pratt [Eqs. (36), (94), and (101) in Ref. 7,
where the last-mentioned equation is to be corrected ac-
cording to Ref. S] and by Iwinksi, Kim, and Pratt [Eqs.
(AS), (A9), and (A10) in Ref. 9; Ref. 10]. McEnnan,
Kissel, and Pratt have also considered the normalization
of unbound states [Eq. (94) in Ref. 7]. Froman and
Froman" have derived a generalization of the Fermi-
Segre formula for which the above-mentioned restrictions
are largely removed. References 6—11 have in common
the use of certain special properties of the Coulomb wave
functions, and the methods presented in these references
are limited to cases where the deviation of the atomic po-
tential from a Coulomb potential is in some sense or some
region small. Thus, Frornan and Froman" introduced the
assumption that the physical potential is given by a
Coulomb term plus a constant term in the whole of the
classically forbidden region adjacent to the origin. The
accuracy of the formula derived in Ref. 11 was investi-
gated by application to a particular screened Coulomb po-
tentia1 for which the radia1 wave function can be ex-
pressed in terms of hypergeometric functions. 'i ' In-
stead of using this particular model as an illustrative ex-
ample, the author together with Froman and Froman'
exploited it in a more general way to obtain new formulas
in which the screening is accounted for more accurately
than in the results in Ref. 11.

In the present investigation we compare the pertur-
bation-theory formulas obtained by Pratt and co-
workers ' with the phase-integral formulas in Ref. 16
expressed in terms of the energy E, the quantum number
/, the charge number Z, and the coefficients in the
power-series expansion of the regular part of the potential
around r =0. For bound states it is demonstrated in Sec.
III that the perturbation-theory formula ' is obtained
from the phase-integral formula' if in the latter formula
the quantity ct equal to the residue of the inverse square
of the wave function at r =0 is approximated by its value
for the perturbed energy in a consistent way. Since this
quantity is energy independent for s states, the phase-
integral formula and the perturbation-theory formula
coincide with one another for /=0, and hence according
to Ref. 5 with the usual Fermi-Segre formula.

For unbound states the perturbation theory formula
(94) in Ref. 7 expresses the normalized wave function
close to r =0 as a function of an (artificial) unperturbed
Coulomb energy fi k, /2m, and the dependence on the ac-
tual energy i)t'k /2m is obtained by inverting a perturba-
tion expansion for the continuum energy. Substituting
this expansion into the phase-integral formula for un-
bound states and performing approximations according to
a well-defined scheme the perturbation-theory formula
given in Ref. 7 is obtained in Sec. IV.

In Sec. V, the particular model potential' ' men-
tioned above, which goes over into a Coulomb potential in
the limit when the screening vanishes, is used to illustrate
the accuracy of the perturbation-theory formulas.

Consider a nonrelativistic particle moving in a spheri-
cally symmetric potential, which behaves as —ZfP/ma pr
close to r =0, where ao is equal to the Bohr radius and
where the atomic number Z is assumed to be positive.
The state considered corresponds to the angular momen-
tum quantum number I and the energy E. The radial
Schrodinger equation is written

Q +R (r,E)u =0,
dT
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where, with obvious notations,

g()2rri A l(1+1)
2mr

l(l +1)2Z

the last expression representing R(r,E) close to r =0.
Particularly for unbound states the notation

b4
+225

Z6

3

16 Z3

225 bo bz 21
Z2 Z4 16 Z3
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1989 b1 bz
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3

+81 4 +180
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5

E =iri k /2m (3)

1
c) =Res

r=0 g
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where u is the particular solution of (1) with (2) for which
(in Ref. 16)

is convenient.
The results obtained at the end of Chap. 7 in Ref. 17 as

well as the final formulas in Ref. 16 contain the quantity
r '~

2
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RI ——45 6 +22 +13Z4 Z5 Z3

b4 bi bi b5
+675 4 + +6Z6 Z3 Z4 Z7

r '2'
bo+45, 14,+18,+27Z' Z4 Z' Z'

for /=3 . (7e)
lim(u/r'+') =1 .
r -+0

(5) It should be noted that all formulas above are exact.

(2Z/ o) '+'
CI = 1+

[(2~+1)l]' =o
or 1/2

bo I(I+1) bi
Z2 2 Z3

'

The index in the notation ci indicates explicitly that ci de-
pends on the angular momentum quantum number I,
where 21+ 1 is a non-negative integer.

For the details of the derivation of ci, we refer to Ap-
pendix A in Ref. 16. In short, we proceed as follows. As-
suming that the regular part of the potential [and hence of
R (r,E)] is developed in a known power series of r as in
(2), we derive the corresponding coefficients in the
power-series expansion of the solution of (1), which ful-
fills (5). We then obtain the quantity ci, pertaining to this
solution, as a function of the energy, the quantum number
l, the charge number Z, and the coefficients in the expan-
sion of the regular part of the potential:

II. THE PHASE-INTEGRAL APPROXIMATIONS

To obtain a useful approximate expression for the radi-
al wave function, we shall use the phase-integral method,
involving phase-integral approximations of arbitrary or-
der, devised by Froman and Froman (see Refs. 17—20 and
pp. 126—131 in Ref. 21). For the higher orders these
phase-integral approximations differ from the higher-
order Jeffreys-Wentzel-Kramers-Brillouin (JWKB) ap-
proximations in a way which has been explained in some
detail by Froman' and by Dammert and Froman. It is
also important to note that the above-mentioned approxi-
mations are more general than the JWKB approximations
since they contain an unspecified function Q (r,E), which
can be chosen in a way appropriate for the problem under
consideration. For the purpose of the present paper we
shall choose this function such that

3 b1
, S4 +RI2Z3

c imp= 1, (6)

limr [Q (r,E)—R (r,E)]=1(l+1),r-+0

a possible choice being

(8a)

RI ——0 forh=0, —,', 1, (7a)

where in the product s takes all non-negative integral or
half-integral values, respectively, up to I, and where

Q (r,E)=R (r,E}+
f 2 [E—V(r)] . (8b)

For the phase-integral approximations of the order
2%+1, we have

+4 Z4 16 Z3

bz b3 b1
RI ——18 +Z4 Zs

2

for 1=—, ,
3

for 1=2,

(7b)

(7c)

q(r, E)=Q(r,E) g I'2„,

the first few quantities I'2„being

Fo ——1,
1~2= 2&0

(10a}

(10b)



STEPAN YNGVE 33

1 p 1 1 d
8 8 Q(r, E) dr

'2

(10c)
- Q2(r, E)j E&0

with

R —Q 1 dQ
Q2 16Q6 dr

d2Q2

dr

(a)r

Explicit expressions for I'i„up to Y's are given in Refs.
23 and 24 and up to I'2p in Ref. 25.

According to the results obtained on pp. 74—79 in Ref.
17, the particular solution u of (1), which fulfills (5), is
given by the approximate formula (7.28) in Ref. 17, which
is valid for the first-order approximation. Generalized to
an arbitrary-order approximation (see for instance Sec. 10
in Ref. 26}, this formula states that when r Hes sufficient-
ly far to the right of the origin in the classically allowed
region containing r =0+ and Q(r, E) is chosen to be posi-
tive in the region under consideration, u is given by the
(approximate) phase-integral formula

u =(~c,)-'"q '"(r,E-)
r

Xcos —,
' f q(r, E)dr —(l+ —,

' )n, (12a)

where I (r) is a contour encircling the origin as shown in
Fig. 1, and where 21+1 is a non-negative but not too
large integer.

It is necessary for the validity of formula (12a) that
there be no zero of Q (r,E) in the immediate neighbor-
hood of r =0. For too high unbound-state energies, when
the zero t of Q~(r, E) on the negative real r axis indicated
in Fig. 1 comes too close to the pole at r =0, the accuracy

FIG. 1. (a) Qualitative behavior for real positive r of —Q (r)
for the case of unbound states. The position of the zero t of
Qi(r) on the negative real r axis is also indicated. (b) Contour
of integration for the integral appearing in the formulas (12a)
and (121)for phase-integral wave functions.

of formula (12a) is in general expected to be rather medio-
cre. The high-energy correction to formula (12a) is due to
the small-distance properties of the wave function. The
formula for the wave function in the classically allowed
region correct also for high energies reads's

I 1+(—1)"+'exp[ —2irZ/(kap)]I '/'(iree) '~'q ' '(r, E)

Xcos —,f q(r, E)dr —(l+ ,' )m+p—i, k real and positive (12b)

(irc&) q 2(r,E)cos —' q(r, E)dr —(l + 4 )ir k i not real and positive,
E (r}

where kap/Z satisfies the equation

&0

Z2

2

kap 1 bi kap
3

Z .
'2Z' Z

—2

+l (l +1}, (13}

and hence

k ao 1bo
Z2 2 Z2

l(l+1) bi

4 Z3

1 &o

2 Z2

'i2 ' 1/2
l(l+1) bi 3 bi

Z3 2 Z3

An explicit expression for Pi can be obtained using a simi-
lar method as in Ref. 27 but adapted to the present modi-
fication (Sa). For the purpose of the present paper, how-
ever, we do not need the high-energy correction to the
phase.

A detailed derivation of a formula, from which (12b) is

easily obtained, is presented elsewhere. ' We shall here
merely give a few strong arguments in support of the
correction to the amplitude for high energies in (12b) as
compared to (12a). Formula (12b) gives the correct ampli-
tude for the case of the Coulomb potential, which can be
easily shown, e.g., with the aid of Chap. 14 in Ref. 28.
Moreover, for a general potential, which behaves as
—Ziil /mapr close to r =0, we note that for k &0
and I =0 the multiplicative factor in front of
q

'r (r,E)cos( ) on the right-hand side of (12b) is
equal to the multiplicative factor in front of
q

' (r, 28 k /m)cos(. . . ) for the Coulomb wavefunc-
tion satisfying (5) of energy

flak

/2m. This is in com-
plete agreement (for low-order perturbation theory) with
the conjecture made by Pratt and Tseng based on empir-
ical observations and used in our Appendix. It should in
this context be noted that cp is independent of the energy
according to (6} with (7a) and that q(r, ,'A k /m)~k as—
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r~ao. The derivation of the formula in Ref. 16 corre-
sponding to (12b) does not involve perturbative arguments
such as the one above, but exploits the properties of the
exactly soluble model in Sec. V, in particular the small-
distance properties for high energies.

III. BOUND STATES

' 1/2
Zm 8 1

2 ct J q(r, E)dr

~ —1/2

(16)

In (16) I is the closed contour of integration (see Fig. 1 in
Ref. 5) encircling in the negative sense the pole at r =0

Let us now consider the case, illustrated in Fig. 1 of
Ref. 5, that there exists a turning point t on the positive
real r axis, which separates the classically allowed region
adjacent to the origin from the classically forbidden re-
gion extending to + 00 ~

The bound-state wave function with radial quantum
number n' is normalized according to

u~(/, E„,r)dr =1, n =n'+1+1, n'=0, 1,2, . . . ,0

(15)

where E„is an energy eigenvalue in general depending on
n and I. For s states formula (12a) together with the ap-
propriate quantization condition and normalization for-
rnula, ' ' was used by Froman and Froman to obtain the
bound-state wave function at the origin. Since the same
derivation holds for any non-negative integral value of
2!+ 1, we give here directly the final result

utv (I,E„,r)
.-o '+'lim

by dnldE„, i.e., by 1/(dE„/dn). In this way we obtain
from (16) the generalized Fermi-Segre formula'

u~(l, E„,r)
lim
r~o r +

' 1/2
2m

dn
(18)

The structure of formula (18) should be noted. The quan-
tity et is determined entirely from the local properties of
the potential close to r =0, whereas dE„/dn is a global
quantity which can be obtained, e.g., by means of spectro-
scopic data. For 1=0 formula (18) with (6) and (7) is
recognized as the usual Fermi-Segre formula.

Introducing the perturbation approximation (5) in Ref.
10 [(Al) in the Appendix] into the right-hand side of the
exact formula (6) with Eqs. (7) and bringing along contri-
butions up to order bz/Z [hence neglecting contributions
of the order b3/Z, (b&/Z ), b, b2/Z, etc.] we obtain
after some calculations

and the zero t of Q (r,E) and occurring in the quantiza-
tion condition

—,f q(r, E„)dr=nm, .n =n'+I+1, n'=0, 1,2, . . . .
(17)

Since the function Q (r,E), according to assumptions in-
troduced above, has a first-order pole at r =0 and a first-
order zero at r =t, the quantization condition (17}differs
from the generalized Bohr-Sommerfeld quantization con-
dition, which applies to the case of a smooth function
Q (r, E) with two zeros.

Following Froman and Froman, in accordance with
the quantization condition (17) we replace

1 I q(,E„)d

Introducing (19) into (18) we obtain

u~(/, E„,r) 2m dE„(2Z/ap)'+'"
rt+' g dn (21 +1)!

lim
r~o

(2Z/ap)2 + S2
c = 1 I(/+1)—(2/—+1) n'+ — n + g 1—

[(2/+1)!]' 4 z' 3 z' , o
or 1/2

(exact for / =0) . (19)

r

X 1 ——/(/+1)(2/+1) n +— n
1 S b2

4 z 3z4 s=0
or 1/2

2
1/2

1 —'
n

(20)

Formula (20} coincides exactly with the corresponding formula obtained from analytical perturbation theory by Iwinski,
Kim, and Pratt. ' Hence, the perturbation-theory formula is obtained from the phase-integral formula as a particular
ease, when the perturbation approximation for the energy eigenvalue is introduced, except for 1=0, when the phase-
integral and perturbation-theory formulas coincide exactly with one another and with the usual Fermi-Segre formula.

IV. UNBOUND STATES

According to (12b) with (5) and the fact that q(r, ,'fi k /m)~k as —r~ao the unbound-state (k &0) wave function,
uN(/, k, r), normalized to sin[kr —, /n +5i(k)] as r~ a—o, fulfills at the origin the approximate phase-integral formula

ups(/, k, r)
lim

r +

1/2
mkcI

1+(—1) '+'exp( —m.2/Zka)p

(irkei)'~, k not real and positive,

k real and positive

(21)
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where kao/Z is obtained from (14) or (13).
According to (13}and (A2) in the Appendix, for the or-

der of approximation, when contributions of order b2/Z
(and smaller) are neglected, k is equal to k„where
A k, /2m is the "unperturbed" unbound-state Coulomb
energy in analytical perturbation theory. The following
relation is therefore valid:

1+(—1) +'exp( —2mZ/kao)

=1+(—1) '+'exp( —2mZ/k, ao), (22)

exactly in the order of perturbation theory, when contri-

butions of order bz/Z and smaller are neglected and to a
high degree of accuracy for higher-order perturbation
theory. We emphasize that in unbound-state perturbation
theory the unperturbed energy fi k, /2m is calculated in
terms of the actual energy flak /2m from the perturbation
series (A2) in the Appendix.

Introducing the perturbation approximation (A2) in the
Appendix into the right-hand side of the exact formula (6)
with Eqs. (7), and including contributions up to order
bzjZ" [hence neglo:ting contributions of order b3/Z,
(b& /Z ), b&b2 /Z, etc ], w. e obtain after some calcula-
tions

(2Z/ao) '+' Z' 5 &2 Z'c(- 1+—l(1+1}(21+1) —— + g (1+s k, a /Zz)
[(21+ 1)!] 4

or 1/2

(exact for 1 =0) . (23)

It should be noted that (23) is formally obtained by replac-
ing —1/n2 by (k,ao/Z) in the right-hand side of (10).
In order to obtain an approximate value of ci expressed in
terms of k, one has to calculate k, as a function of k
from (A2} in the Appendix and introduce the resulting ex-
pression into (23).

Substituting (23) into the version of (12b) with (6) and
(7) valid for k &0, and introducing into the resulting for-
mula the approximation (22), we obtain the approximate
perturbation-theory formula (94) in Ref. 7 [(A5) in the
Appendix]. For the particular case 1=0, the phase-
integral formula and the perturbation-theory formula
agree within the accuracy of the relation (22) for k &0,
since (23) then involves no approximation. For integral
values of 21+1& 1 the perturbation-theory formula for
k &0 is obtained from the phase-integral formula as a
particular case, when the perturbation approximation [to-
gether with (22)] is introduced. For all non-negative in-
tegral values of 21+1, the perturbation-theory formulas
break down for sufficiently small values of k, for which
k becomes nonpositive (and possibly complex), as is
pointed out in footnote 21 of Ref. 7.

The formula for the normalized unbound-state wave
function close to r =0 obtained from perturbation theory
by McEnnan, Kissel, and Pratt is according to the above
analysis directly obtainable from the phase-integral for-
mula (21) with (6) and (7), if the perturbation-theory ap-
proximation for ci is carrimi through in a consistent way
and the approximation (22) is introduced. The phase-
integral formula (21) with (6) and (7) should be particular-
ly satisfactory for small values of k, for which the
perturbation-theory formula eventually breaks down.
Hence, also for unbound states the perturbation-theory
formula is obtained from the phase-integral formula as a
particular case, when the perturbation approximation [to-
gether with (22) for unbound states] is introduced.

U. APPLICATION TO AN EXACTLY SOLUBLE MODEL

R2Z v 1(l + 1)A"

mao e —1 2m

'2

1(1+1)fi' v)0
2P?2f

(24)

we obtain from (2) with (3)

R (r,E)=k + —1(1+1)e"'
ap e —1 e —1

2 2 2
bo k ao vao 1(1+1) vao

Z2 Z2 Z +
3 2Z

(26a)

b) 2 vap

Z' 3 . 2Z

'2

'2
b2 31(l + 1)
Z4 20 Z'

l
Z5 lO

3
b4 1(1+1)

28 Z3

(26d)

(26e)

v&0 . (25)

With this expression for R(r,E) the radial Schrodinger
equation (1) is exactly soluble. It has been treated by
Manning and Rosen, '

by Infeld and Hull, ' and more re-
cently by Myhrman. ' '

Expanding the right-hand side of (25) in powers of
r/ao and using (2) we obtain for the particular potential
(24)

Considering as an illustration the I-dependent physical
potential

'3
1 b

70 Z3 (26fl
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Introducing Eqs. (26) into Eqs. (7), we obtain for the po-
tential (24)

g, =0, 0&21+1&7

which strongly indicates that RI ——0 for all values of / for
the present potential. From (3), (6), (13), (26a), (26b), and
(27} we obtain for positive integral values of (2l+ 1) for
the regular solution of (1) with (25)

CI =
(2Z/ao)21+i I

z
kzao vao 4 vaoI+s z

— +s
[(21+1)!],o Z

or 1/2

(2Z/a )zl+1 I 3 b Zz 2 k za~2

[(2l+1)~] 2 Z k z z Z
or 1/2 '

2

(28)

where

Z/kao ——k/v —(k /v —2Z/aov)'

and hence

2k/v=k/v+(k /v —2Z/aov)'

(29a)

{29b)

where

2Z
' 1/2

aOV
(31)

k ao/Z = —1/n, Z ~0, for bound states, (30)

For bound-state energies E„=Pik /2m the following
relation is obtained from (10), (12) in Ref. 5, and (29a) if
Zp0:

For the particular potential (24) the phase-integral formu-
la (18) with (28) is exact according to Ref. 16 (cf. also Fig.
2).

For the comparison with perturbation-theory formulas
we rewrite the exact formula (28) as

(2Z«o)"+' 3 bi Z' ' 9 bi Z4

[(2i+I)!]' 2 Z' k'a' = 4 Z' k4a'
or 1/2 [s' gs)

(2Z/a )
+' z'

1+ 1(l + 1)(21+—1)
[(21+1)!] k zao

k 2a2
1+ s'

s=0
or 1/2

1 bzi Z4 ' k zaoz

+ (& —1)(2l —1)(5&+6), , + g 1+
k ao . . s=o

or 1/2

(32)

For l =0, —,', and 1 the accidentally exact phase-integral formula (18) with (28) for bound states and the perturbation-
theory formula (20} coincide exactly provided we truncate the perturbation series properly, i.e., we do not include the
term 5bzn4/3Z in (20}. Hence, for I = —,

' and 1 one deteriorates the accuracy of the perturbation formula by including
the last-mentioned term in (20), whereas for 2l+1~ 3 this term gives an insignificant contribution. This is due to the
fact that the terms omitted in (20) contain bzlz' and (bi /Z )z, which according to (26c) and (26d) are of the same or-
der of magnitude as bz/Z {if / is small). In other words, for the particular potential (24) one should either omit bz/Z
contributions to the perturbation formulas or calculate further terms in the perturbation expansion. The last-mentioned
alternative is, however, beyond the scope of the present investigation.

We shall now consider unbound states in the particular potential (24), i.e., states with 2mE/A =k & 0. The exact ex-
pression for the hmit of uz(l, k, r) when r ~0 is, according to Ref. 16,

u~(l, k, r)

0 1+lim

1/2

k v'+'" . k . k . Z . Zsinh(2n. k/v}I 1+1+2i I i +—1 2i I i + 1+—i — I i + 1 i—1(2l+2) v aok aok

mkc)

1+( —1)z'+ 'exP( —2m Z/kao )

' 1/2
1 —exp( 4nk/v)— .

1+( —1) '+ 'exp( —4n.k /v)
(33)
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As was pointed out in Sec. III the perturbation-theory formula (94) in Ref. 7 [(A5) in the Appendix] for unbound
states breaks down for sufficiently small values of the energy, for which k becomes nonpositive (possibly complex). Ac-
cording to (29) this breakdown occurs for k ~2Zv/ao. Outside the breakdown region for the unbound-state perturba-
tion theory, i.e., for k & 2Zv/ao, the ratio between the right-hand side of the exact formula (33) and the corresponding
member of the phase-integral formula (21) becomes

[1—exp( —4irk/v)]' /[1+( —1) '+'exp( 4n—k/v))'/

and inside the breakdown region for perturbation theory, i.e., for 0 ~ k g 2Zv/ao, the ratio between these members be-
comes

1 —exp( 4n—k/v')

[1+(—1) i+'exp( —4mk/v)][1+( —1) '+'exp( —2mZ/kao)]

'i 1/2

' 1/2

1+e 4mk/"—+( 1)2!+ie 2nk—/"2 cosh 217
/c

+2

2Z
aov

the last equality being obtained with the aid of (29a) and
(29b).

According to the analysis in connection with bound
states above, for the particular potential {24) we shall
henceforth omit b2/Z contributions to the perturbation
formulas, which for unbound states corresponds to put-
ting k, =k according to (13) and {A2) in the Appendix.
For l =0, —,', and 1, the right-hand side of ('33) with (32) is
equal to the right-hand member of (A5) in the Appendix

k/v i

ZQ869SellO
'DZ8$63 ';%le44
G(D8$(II)O'01)$$W5

BREAKDOWN N5~68$
R E G ION 2 SSS$1' 88888888
2i+iRPA 4 ii 4 il~lli 2i+i

(D ~ 02 ~ ~ ~
~ 04 ~ ~

~ 6ii ~
PERT UR- P HAS E-
BATIO N q INTEGRAL
FOR M ULA FOR HULA

Ill/v = 1/'-2m~rthv)

FIG. 2. Relative error of the perturbation-theory formulas
(properly truncated) and the phase-integral formulas for the nor-
malized wave function close to the origin for the potential 424)

with vao/Z =—,0. A "wheel" with m "spokes" indicates a point

where the relative error is greater than or equal to 10 ' and
less than 10 ~ Solid circles in the bound-state region indicate
points where the formula is exact.

with the bz/Z term and higher terms omitted (and hence
with k, =k) multiplied by

[1—exp( —4irk /v) ]' /[1+ ( —1) '+ 'exp( —4mk/v) ]'/

However, for k &(2Zv/ao)'/ this factor is precisely the
ratio between the right-hand side of the exact formula (33)
and the corresponding term of the phase-integral formula
(21). Hence, for 1=0, —,, and 1 and k)(2Zv/ao)' the
properly truncated perturbation formula (A5) in the Ap-
pendix is as exact as our phase-integral formula (21) with
(28). It should be noted that according to Sec. IV for s
states this is true for any potential. For 21+ 1 & 3, howev-
er, the perturbation-theory formula (A5) in the Appendix
gives, according to (33) with (32), a large error if
k ao/Z is small enough. For k &2Zv/ao the
perturbation-theory formulas, as mentioned above, break
down completely.

For bound and unbound states a numerical illustration
with bz/Z contributions to the respective perturbation
formula omitted is given in Fig. 2. As mentioned in the
Introduction, Froman, Froman, and the present author'
exploited the particular model potential (24) in order to
obtain the phase-integral formula (18) with (6) and (7) for
bound states and formula (21) with (6) and (7) for un-
bound states. Therefore, one cannot draw too strong
inferences from Fig. 2 as far as the respective phase-
integral formula is concerned. It should be noted that for
a problem with one classically allowed region and with
only real turning points, which contribute, the respective
phase-integral formula should give excellent results for
small absolute values of k. The discrepancy between the
phase-integral formula and the exact wave function for
small positive values of k/v illustrated in Fig. 2 is due to
the presence of extra complex zeros of Q2(r, E), the con-
tributions of which cannot be neglected, if k/v is suffi-
ciently small.
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The perturbation approximation (5) in Ref. 10 for the bound-state energy eigenvalue with quantum numbers
n =n '+1+ 1 and l is, in our notation

bo 2m ao 2m ao 2
2

——
z
E„—

z i lim[V(r)+Pi Z/mapr]
Z Z R Z

Z
+— [—3n +1(!+1)]+— n [ 5n—+3!(l+1)—1]+Z4

(A 1)

For a derivation of (Al } see Sec. II of Ref. 7.
In Ref. 7 an unbound-state unperturbed Coulomb energy iri k, /2m is introduced, and the continuum energy i)l k /2m

satisfies an equation, which is formally obtained by replacing —1/n by ( k, ao/Z) in the right-hand side of (Al):

o kao

Z2 Z

kcao

Z

r

1 b2 k ao+l(l+I) +—
2 Z4

2m ao
lim[V(r)+Pi Z/maor]2

Z r~p
—2

bi k,ap
+2Z3 Z

r

k, ap—5

—2

—31(1+1)+1 + (A2)

In other words, the unperturbed Coulomb energy is chosen such that the relation to the perturbed energy i}i2k /2m is the
same as for bound states.

We denote by FI ( Z/a p—k„k,r) the regular Coulomb wave function normalized to be equal to
sin[k, r+(Z/apk, )ln(2k, r}—,

' ln+aI—(—Z/apk, }]as r~ ao. The following conjecture was made by Pratt and Tseng
based on empirical observations for unbound s states:

uz(O, k, r)
11mr-o k'/' r

Fp( Z/a pk„—k, r)
llm
r o k,

where u~(l, k, r) is normalized to be equal to sin[kr ——,le+51(k}] as r~ao. Calculating the right-hand side of (A3}
with the aid of Chap. 14 (in particular Sec. 14.1) in Ref. 28, we obtain

—1/2
u~(O, k, r) =(nk)'i (2Z/ap)'i 1 —exp

k,ao
(A4)lim

r-+0

un (l, k, r)
limr-o p'+'

Through rather lengthy calculations formula (A4) is generalized into the following approximate perturbation-theory for-
mula [cf. Eq. (94) in Ref. 7]:

(2Z/a )'+'"
—~k '"

(21 + 1)!
1+(—1) i+'ex

k, ap

—1/2

X 1+—l (I + 1 )(2l + 1)
1 b1 Z' 5 &2 Z'

Z' k,'a,' 3 Z4 k4ao4

1/2 ( 2k 2 2 1/2

II 1+,',
s=o

or 1/2
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