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For potential scattering, with 5L(k) the phase shift modulo m for an incident wave number k,
Levinson's theorem gives 5L(0}—51 (00) in terms of XL, , the number of bound states of angular

momentum L, for 5L, (k) assumed to be a continuous function of k. NL also determines the number

of nodes of the zero-energy wave function ul (r). A knowledge of the nodal structure and of the ab-

solute value of 5L, (0) is very useful in theoretical studies of low-energy potential scattering. Two

preliminary attempts, one formal and one "physical, " are made to extend the above results to

single-channel scattering by a compound system initially in its ground state. The nodal structure

will be of greater interest to us here than an extension of Levinson's theorem. The formal approach

is applied to e+-H and e+-He scattering. Both H and He have zero orbital angular momentum and

a tiodeless ground-state wave function gr. An effective one-body wave function uL for the positron

incident with zero kinetic energy can be constructed by factoring out the spin and Euler-angle

dependence of the full scattering wave function 4' and projecting the remaining "radial" function

Rt, onto gr. The nodal surfaces of Rt are shown to divide configuration space into at most Xt. +1
subdomains, where XL is the number of composite bound states of the given L. Since XL ——0 for
e+-H and e+-He, it follows that uL, is nodeless and that 51 (0)=0, for all L. Partial but useful in-

formation on the nodal structure of 0 for e -H scattering is also deduced. Interestingly, nodal sur-

faces exist which are not consistent with a naive generalization of (bound-state) one-dimensional

Sturm-Liouville theory. The physical arguments, based on the qualitative concept of an effective

central potential seen by each target particle and by the incident particle I', strengthen a previous

surmise on the value of 51.J(0) for e+—-atom scattering and for the scattering of neutrons or protons

by a heavy nucleus; L and J are the quantum numbers of the incident P, and fr is assumed to have

zero spin and zero orbital angular momentum, but gr need not be nodeless, and P need not be dis-

tinguishable. Roughly, the surmise is that 5~(0)=E~n, where, for the given L and J, EL& is the

number of composite bound states plus the number of one-particle states excluded by the Pauli prin-

ciple.

I. INTRODUCTION

The low-energy scattering of a particle by a potential
V(r) is conveniently described in terms of phase shifts

5L, (k), where L is the orbital angular momentum and k
the wave number. Levinson's thtxirem' relates

5r, (0)—5L, ( oo ) to NL, , the number of bound states of that
I. supported by the potential. If one adopts an absolute
definition of the phase [one may, for example, choose

5L, (ao )=0] the theorem can be expressed in terms of the
zero-energy phase shift alone and can then be used to pro-
vide information on the nodal structure of the zero-energy
wave function. Alternatively, still in the context of a po-
tential problem, one can extend the standard methods
used in the analysis of the discrete eigenfunctions of the
Sturm-Liouville equation to an analysis of the zero-energy
scattering wave function; combined with a knowledge of
the threshold behavior of 5L (k), one obtains an alternative
proof of Levinson's theorem. [We note that one can ex-
tend Levinson's theorem from scattering by potentials
V(r) for which r V(r)~0 as r~ao to potentials which
include a long-range repulsive Coulomb tail, the relevant
phase shift then being 5,L (k), the phase shift relative to
the Coulomb phase shift. ] However arrived at, an abso-
lute definition of 5L(k) and a knowledge of the nodal

structure of the zero-energy scattering wave function can
be very useful as self-consistency checks in a theoretical
study of zero-energy and low-energy potential scattering
in a fashion which has been discussed previously. (Note
that for very low incident momentum irik, the nodal struc-
ture for most Vs will not be expected to vary from its
structure at zero energy for distances less than of the or-
der of I/k. )

While the potential scattering problem is of consider-
able interest, one must ultimately address the much more
difficult problem of scattering by a system with internal
degrees of freedom (the many-body problem). We will
consider the possibility of generalizing some of the results
obtained for potential scattering to many-body scattering
problems. One of the limitations which we will impose
upon the many-body problems to be considered is that
there be an energy interval —which includes zero incident
kinetic energy —which is describable in terms of single-
channel scattering processes. %'e will consider two ap-
proaches. In Sec. II we will use a formal approach,
rigorous except when noted otherwise. These results are,
perhaps, the first rigorous results concerning the nodal
structure of the zero-energy wave function obtained for
scattering by real compound systems, but the corollary of
rigor is, unfortunately, a narrowness of the domain of ap-
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plicability. In our rigorous approach, we have restricted
our atomic targets to just H and He; these are the only
atoms for which, for the ground-state wave functions, the
spin dependence appears as a factor and for which the
spatial function is nodeless. This in no way implies that
the nodal structure of the zero-incident-energy wave func-
tion cannot be determined for other targets, but that
determination will surely be more difficult. In particular,
the Sturm-Liouville differential equation and the associat-
ed theory, or rather the extension to the many-body par-
tial differential equation, is applicable when there is only
one function to be determined and when the coefficient
functions which appear in the differential operator are lo-
cal; because of the Pauli principle, neither of these condi-
tions is met for either the target wave function or the full
scattering wave function for targets other than H or He,
and an approach different from that used here will be re-

quired. Again to avoid the additional complexities ori-
ginating in the Pauli principle, in our rigorous approach
we have largely restricted our considerations to a distin-
guishable incident particle. In the case of a nuclear target,
we cannot even consider a deuteron in our rigorous ap-
proach; for neutron-deuteron or proton-deuteron scatter-
ing, the Pauli principle involves an incident particle and a
target particle. (This is not the case for e+-He scatter-
ing. ) For A-d scattering one has a composite bound state
to contend with. (This too is not the case for e+-He
scattering. ) Except for heavy nuclei, the nuclear case also
presents the problem of separating out the center of mass,
a problem not present effectively for e+--atom scattering
for any atom.

Simple extensions of formalisms found useful in
bound-state problems to analyses of zero-incident-energy
scattering problems have proved very fruitful in the past.
It is therefore interesting that, as will be shown in Sec.
IIG, the zero-incident-energy scattering wave function
can have a nodal structure different from that predicted
by a naive extension of bound-state Sturm-Liouville
theory.

In our rigorous analysis we are sometimes able to deter-
mine the nodal structure of the full scattering wave func-
tion even though we are unable to remove the ambiguity
in the multiple of rr in the value of 5L (0). It should be
noted that a knowledge of the nodal structure by itself can
be valuable in theoretical studies.

In Sec. III the approach is physical and nonrigorous,
and this section can be read independently. Useful in-

sights are obtained by adopting a simple model of the
scattering system based on the assumption of an effective
central potential seen by each of the particles. This model
leads to a prediction concerning the zero-energy phase
shift which agrees with one made some years ago by
Swan who used a different (and, in our opinion, rather
more complicated) argument to arrive at his very interest-
ing result. Our schematic approach depends so little upon
the details of the scattering components that its extension
to scattering processes in which a repulsive Coulomb in-
teraction is included is immediate. (Examples include
proton-nucleus scattering and e+—positive-ion scatter-
ing. ) Swan did not consider cases which involve Coulomb
interactions.

II. RIGOROUS RESULTS

A. General remarks

In our earlier treatment of potential scattering we
showed how classical Sturm-Liouville theory, applicable
to systems with a discrete spectrum of energy eigenvalues,
could be generalized to the zero-energy scattering problem
to provide information on the nodal structure of the zero-
energy wave function. The analysis consisted of the fol-
lowing steps.

(i) The minimum principle for the scattering length
was used to show that the number of nodes of uL (r), the
zero-energy wave function of angular momentum L, can-
not exceed the number Nr. of negative-energy bound
states of the same L. In particular, it follows, if Nl ——0,
that uL, is nodeless and 5L, (0}=0.

(ii} Discrete eigenfunctions of the radial wave equation
have the property that nodes of successive eigenfunctions
interlace one another. Since this property may be extend-
ed to include the zero-energy wave function it follows that
uL has precisely Nl nodes.

(iii} This information on the nodal structure of uL, ,
combined with the nodal definition of the phase shift, was
shown to provide an alternative derivation of Levinson's
theorem.

Since, in going from the one-body to the many-body
bound-state problem, the interlacing property is lost, we
have no simple generalization of steps (ii) and (iii) above.
However, the minimum principle for the scattering length
does have a multiparticle generalization so that one may
attempt to generalize step (i). While the information to be
derived from this approach is necessarily less complete for
the multiparticle case than for single-particle scattering it
is potentially more useful as a guide to numerical calcula-
tions since these are so much more difficult in the former
case.

It will be convenient to discuss the extension of step (i)
in the context of a few specific scattering systems and we
shall do so below. We mention first, however, that we
limit our considerations to systems for which only elastic
scattering is possible, and for which the spin and Euler
angular dependence of the wave function can be factored
out, leaving a single "radial" function RL of internal
coordinates. In generalizing step (i) we might adopt as a
guide the Courant-Hilbert treatment of the multidimen-
sional Sturm-Liouville problem5 and attempt to show that
for scattering at zero incident kinetic energy of the projec-
tile the number of nodal surfaces in Ri, divides the
domain in which it is defined into no more than NL +1
subdomains, where XL is the number of composite bound
states of total orbital angular momentum L. (We assume
for simplicity that there is no composite bound state at
threshold. ) Some of the examples given below satisfy this
property but some do not; it follows that the property
cannot be valid in general. The reason the property is not
necessarily valid in many-body scattering processes is best
understood in the context of concrete examples, and we
postpone a somewhat more general discussion until the
end of this sation, after consideration of some of those
examples. Basically, the reason is that nodal surfaces may
be demanded by antisymmetrization requirements: not al/



948 Z. R. PVINSKI, LEONARD ROSENBERG, AND LARRY SPRUCH 33

nodes are a consequence of the existence of states of lower

energy.
Note though that if only elastic scattering is possible, if

the spin and Euler angles can be factored from the wave

function, and if the incident particle is distinguishable, we
can adapt the Courant-Hilbert treatment of the multidi-
mensional Sturm-Liouville problem and we can therefore
show that the domain of RL contains at most Nt + 1 sub-

domains, and, in particular therefore, if there are no com-

posite bound states of the given L, the RL, is nodeless.
We will assume initially that the Hamiltonians are spin
independent.

B. e+-H scattering

As a first example we consider the scattering of a posi-
tron, incident with zero energy and angular momentum L,
by a hydrogen atom in its ground state. The locations of
the e+ and e with respect to the proton (assumed to be
fixed in space} will be denoted by r and ri, respectively,
with 8 representing the angle between r and ri. After fac-
toring out the spin and angular momentum functions we
are left with the function Rt(ri, r, 8}, the radial com-
ponent of the Lth partial wave. It follows from the dis-
cussion in the above subsection that this function is node-
less since, as has been shown, there is no composite e+-H
bound state. [There are no hitches in the argument since
the particles are distinguishable and the hydrogenic
ground-state wave function fr(r 1 ) is of course nodeless. j

A straightforward (if not unique) way to assign an ab-
solute value to the phase shift 5L, (k) is to project the radi-
al wave function (appropriate to scattering with wave
number k) on to the target wave function; the phase shift
is then chosen to be that which one would assign in a
one-body problem whose wave function uL (r) was given

by that projection. [Note that ut (r) satisfies the boun-

dary conditions at r =0 and at r 00 o-f a one-body
scattering wave function. ] More explicitly for e+-H
scattering with k =0 we define

uL, (r) =f f it1T(r, )Rt (r„r,8)r 1dr1 sin8d8, (2.1)

which is interpreted as the equivalent one-body wave
function. Since both PT(r, ) and RL (r„r,8} are nodeless
functions we conclude that uL (r) is nodeless from which
it follows that 5L, (0}=0 for all L.

The analogous problems involving the systems e+-
He+, e+-Li +, etc., could be treated using considerations
very similar to those given above for e+-H zero-energy

scattering. To begin, we note that it can be shown that a
positron cannot be bound to any hydrogenlike target with
nuclear charge Z & 1. Furthermore, the modifications in
the analysis made necessary by the presence of a repulsive
Coulomb tail in the effective e+-target interaction have
been worked out. We shall not elaborate on these matters
here, but shall return in Sec. III to a consideration of
Coulomb effects in the context of the proton-nucleus
scattering problem.

C. e+-He scattering

We may ignore the spin of the e+; the spina of the tar-
get electrons play a role only in connection with the ex-
clusion principle. The He ground-state wave function is
the product of a symmetric function Q(ri, r2, 812) of the
spatial coordinates of the two electrons (81& is the angle
between r1 and ri) and of a singlet spin function. The
determination of Q(r„rz, 812} is then equivalent to the
determination of the ground-state wave function of two
bosons interacting with each other and with a center of
force, and it is known that the wave function is then node-
less. (In the context of the theorem which we have been

using, this can be readily understood if we invoke the non-

degeneracy of the ground state of He. The theorem tells
us that with no restrictions on symmetry the ground-state
wave function is nodeless. Since the Hamiltonian is sym-

metric in the electron coordinates it follows from the as-
sumption of nondegeneracy that the ground-state wave
function is either spatially symmetric or spatially an-
tisymmetric. Since any antisymmetric wave function has
a node, it follows that the ground-state wave function is

symmetric and nodeless and represents the physical
ground state of He. ) The full scattering wave function
will also have a singlet spin function as a factor, the radial
factor RL being a function of six spatial coordinates.
These may be chosen to include, in addition to r „r2, and
81z, the angle 81& between r, and the position r of the pos-
itron, the magnitude r, and an azimuthal angle 1I}ii which
specifies the rotation of the r, ,r2 plane about an axis
along ri, two of the Euler angles would then specify the
direction of r and the third would be the azimuthal angle
of ri relative to r. It is known that there is no composite
e+-He bound state and it follows from the previous dis-
cussion that RL is nodeless. To determine 5L (0) we de-
fine the equivalent one-body function uL, as the inner
product

uL (r)= f r idr1 f r2dr2 f sin812d812 f sin81qd81q f dy12Q(ri, r2, 812)RL (r„r2,812,81'„F12,r) . (2.2}

Since each of the functions Q and RL is nodeless, uL is it-
self nodeless and one deduces here too that 5t, (0)=0 for
all I.

D. I.=0 e -H scattering, for H in its ground state

With 50
—'(0} defined in a manner analogous to that dis-

cussed above for e+-H and e+-He scattering it has been
shown' that 50 '(0) &m for the spatially antisymmetric

f

L =0 triplet state for e -H scattering. Thus, with
R0 '(ri, r2, 81') the spatially antisymmetric factor in the
full zero-incident-energy scattering wave function, where

812 is the angle between ri and r2, and with t/ii, the spatial
factor of the hydrogenic 1s state, the spatial component
uo

' of the equivalent one-body L =0 zero-energy triplet
scattering problem is given by

u0 (ri ) ((1 ( 2)RO ( 1 2 812)
{—) ( —)

x r 2dr2 sin8)288)2 . (2.3}
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It follows that

f 0i (ri)iso (ri)ri«i =0 (2.4)

since fi, (ri)1(Ii, (rz) is symmetric in ri and r2 while Ro
is antisymmetric, and integration is over ri and r2 (and
8i2). Since fi, is nodeless, uo '(ri) must have at least
one node, which leads to the result quoted; in fact, one
would expect to have 50 '(0) equal to m, but this has not
been proved. Of course, one can obtain a rather accurate
representation of Ro '(ri, rz, 8i2) in the course of a
many-parameter variational calculation of the triplet
scattering length Ao

' for the triplet L =0 case, and if
this is based on a close-coupling calculation in which one
expands Ro '(ri, r2, 8i2) as an antisymmetrized product
of hydrogenic functions and arbitrary functions, uo '(r i )

is the function which multiplies 1(»(r2). One can then
simply examine uo '(r, ) and see how many nodes it has,
but it is somewhat unsatisfying to require a heavy calcula-
tion to obtain what would seem to be a simple result,
namely, that as a consequence of the Pauli principle, one
has 50 '(0)=ir. (We will shortly return to the numerical
evaluation of phase shifts when we comment on e -Li
scattering. )

In reality, we know more about R o
' than that it is an-

tisymmetric. Working in the region defined by
0 &8i2 & n, 0 (ri & oo, and rI & r2 & cc, and imposing the
boundary condition that Ro (ri, ri, 8ii) =0 and the usual
boundary conditions elsewhere, it is simple to show that
Ro ' is nodeless within the region just defined. In other
words, the only nodal surface of Ro '(ri, rq, 8i2) over its
entire domain is that at r i rz, a nodal sur—face demanded
by the Pauli principle. We have been unable to exploit
this information and the knowledge that P» is nodeless to
show from Eq. (2.3) that —what we assume to be the
case—u 0

' has only one node.
Correspondingly, we know that Ro (pi p2 8iz), the

spatially symmetric L =0 zero-incident-energy singlet
scattering function, has at most one nodal surface, for
there is one and only one singlet state of H with an ener-

gy below that of the ground state of H. As in the spatial-
ly antisymmetric case the proof is based on an application
of the basic theorem to the function Ro+'(ri, rz, 8i2) in
the region 0&8»&ir, 0&r, & cc, r, &r, & oo, but now
with the boundary condition BRO+'Imari ——BRO+'IBr2 to
be satisifed on the surface ri r2. (The reason——for work-

ing in the subdomain r i & r2 rather than the full space in
the e -H problem will be clarified in Sec. IIG below. )
The fact that Ro+' must be orthogonal to the H
ground-state wave function (which is nodeless) allows us
to exclude the possibility that R o+ ' has no nodal
surfaces —there is one and only one such surface.
Nevertheless, we have been unable to exploit this
knowledge to obtain information on the number of nodes
of uii+'(r ), defined similarly to the uo ' of Eq. (2.3) but
with Ro replaced by Ro+'. One should be able to prove
that 50+' ——m, with the origin of the m the bound state, not
the Pauli principle.

E. e -Li scattering

We have no rigorous results to report for this system
but we include some remarks on it here, introducing phys-
ical considerations developed more fully in Sec. III. The

ground state of Li is reasonably well described by the con-
figuration (ls) (2s), and, experimentally, it is known that
the only composite bound state of Li and an e is a spa-
tially symmetric singlet bound state of zero total orbital
angular momentum. One might therefore expect —there
is no question of a proof here —that 5O+'(0) =2m and that
50 '(0) =2m. , the superscripts + and —referring, as for
e -H scattering, to spatially symmetric singlet scattering
and spatially antisymmetric triplet scattering, respective-
ly. In both cases one n. should come from the presence of
the ls state and the demands of the exclusion principle.
In the singlet case the second n should arise because of
the singlet bound state, while in the triplet case the second
n should again originate in the exclusion principle. These
expectations are consistent with numerical computa-
tions;" the numerically calculated zero-energy scattering
wave functions were obtained and projected onto the nu-
merically calculated Li ground-state wave function, and
the equivalent one-body singlet and triplet wave functions
were each found to have two nodes, a result which gave
the authors greater confidence in the accuracy of their
calculations.

Since the basic configuration of the ground state of Li
has no one-particle state with orbital angular momentum
greater than zero, and since there is no bound state of Li
with total orbital angular momentum greater than zero,
one would expect to have 5P '(0) =0 for all L & 0.

F. L = j even parity e -H scattering
(H in an excited state)

%e have up to this point always assumed the target to
be initially in its ground state. The following discussion
may be of some interest, in spite of its rather restricted
nature, because it deals with the fundamental e -H sys-
tem and because it is the only case considered here in
which the target is not in its ground state. In general, the
problem of scattering from an excited target is a mul-
tichannel one and the nature of the discussion thus far
limits our considerations to single-channel scattering,
characterized by a single partial differential equation con-
taining only one unknown function. Furthermore, the to-
tal energy should be at the bottom of that portion of the
continuum to which the state is coupled. We now show,
however, that by virtue of certain selection rules our
analysis can be extended (in at least one case) to allow for
an excited target.

In general, in an analysis of e -H scattering, we do not
have one second-order partial differential equation for one
function, as we do for L =0 singlet and triplet scattering
of e by H in its ground state. Rather, we have coupled
partial differential equations, with the number of equa-
tions equal to the number of functions to be determined.
More precisely, for both singlet and triplet scattering,
with L„, the total orbital angular momentum and 0 the
parity of the entire system, we have'

L„,even, II = + 1: L„,+ 1 functions

L„, even, H= —1: L,„,functions

L«, odd, II=+1: L«, functions

L„,odd, II = —1: L„,+ 1 functions .



Z. R. PYVINSKI, LEONARD ROSENBERG, AND LARRY SPRUCH 33

In particular, therefore, there is no state with L„,=0 and
II= —l. (That is easy to see; L„,=0 requires a superpo-
sition of products of states with the same orbital angular
momenta, so that the parity must be even. ) To have one
and only one function, we must consider (i) L«, ——0,
II=+1 or (ii) L«, ——1, II=+1. For case (i), one possibil-
ity is to have the H atom in its ground state and the in-
cident electron to have zero incident orbital angular
momentum, but that is the case considered in Sec. IID;
other possibilities are for the target to be in an excited
state and for the target and the incident particle to have
the same orbital angular momentum, coupled to L«, ——0,
but these states are coupled to the ground state and must
be excluded from our considerations for a number of
reasons, one of which is that they represent multichannel
situations. We turn to case (ii}. This does not allow the
target to be initially in its ground state, nor is the state
coupled to the ground state. (With the H atom in its
ground state the incident particle would have to have
L =1 and even parity, which is not possible. ) There is,
however, one interesting example of (ii), a particle incident
with unit orbital angular momentum on a H atom in the
2p state, so that II= + 1, with the orbital angular momen-
ta coupled to give L«, ——1. The spatial wave functions of
the associated states, with angular momentum projections
m =+1 and 0, are the x+iy and z components, Q~ ', of
Q~ '(r~, r2)=(f~xi2)g; we assume that g—=g(r&, r2, 8&&)

=g(rz, r„8,z), so that the wave functions are spatially
antisymmetric and we are concerned with the triplet case.
The situation is a single-channel one, describable by one
partial differential equation for the one function

g (r&,r2, 8~z)—the Euler-angle dependence, contained in
the factor %~X', can be factored out—and the basic
theorem is applicable to the region 0 & 8~2 & n, 0 &r, & oo,

r~ &rz& oo with dgldrt ——Bg/rq for r, =r2 We m.ay
conclude that the nodal surfaces of g (r &,r2, 8&2) divide the
full domain into no more than N'~ '+1 subdomains,
where N' ' is the number of triplet bound states of unit
orbital angular momentum, where a bound state is here
one with an energy below ——„' rydberg, the energy of the
n =2 level. (We are assuming that the interaction with
the radiation field has been turned off, so that we are con-
cerned here with true bound states. ) One such state is
known to exist. ' Assuming that there is only one such
state, the nodal surfaces of g(r, ,r2, 8,2) divide the full
domain into at most two subdomains. The spatial wave
functions of the above-mentioned bound state, that with
II=+1 and L =1, with angular momentum projections
m =+1 and 0, are the x+iy and z components, P

&
', of

P', '(r&, r2) =(9&X92)h (r, ,rz, 8,2) .

Since h (r&, rz, 8~2) and g(r, ,rz, 8&2) are eigenfunctions of
the same (modified) Hamiltonian, they must be orthogo-
nal; furthermore, since h is the eigenfunction of that
Hamiltonian associated with the lowest eigenvalue, h
must be nodeless. It follows that g must have at least one
nodal surface. Combined with the upper limit on the
number of nodal surfaces discussed just above, it follows
that g must have just one nodal surface. It may be help-
ful to note that the analysis of the nodal structure of g is
almost identical to the analysis of the notlal structure of

the radial function Ro+'(r &,r2, 8&2) introduced in connec-
tion with e -H scattering in Sec. II D.

Considerations of the absolute phase shift for the
present problem are also almost identical to those which
arose in Sec. IID. The present case is in some regards
more interesting, however, for one might have supposed
that the zero-incident-energy phase shift would be 2m,
with one m arising from the nodal surface along 9,=rz, a
nodal surface intimately connected with the Pauli princi-
ple„and with the second m having its origins in the ex-
istence of a composite bound state. In fact, if one makes
the seemingly natural assumption that the absolute phase
shift is to % defined by the structure of g, a function with
one nodal surface, one would guess that the absolute phase
shift would be n, not 2n.. (The difficulty in being more
precise is the same as that in the case discussed in Sec.
II D; a knowledge of the nodal structure of the many-body
wave function, by itself, does not determine the absolute
value of the phase shift. ) The somewhat surprising
feature is that the factor V&)&rz, the Euler-angle factor,
plays no role in the dynamics if the absolute phase shift is
defined by the properties of g.

In the next section we consider a scattering process
under some simplifying assumptions —the target is mas-
sive and has no spin or orbital angular momentum, and
there exists an "equivalent" one-body central potential. It
is then shown that the absolute zero-incident-energy phase
shift is a multiple of m, where the multiple contains two
contributions, one associated with states excluded by the
Pauli principle and one with composite bound states. If
that result were always valid, the phase shift in our
present problem would be 2m. Since, in fact, that phase
shift seems to be n rather than 2m, it is to be expected that
the result just quoted, and derived in Sec. III under the
specified assumptions, cannot be valid under all cir-
cumstances. (There is no contradiction, since the H target
under consideration here, having nonzero orbital angular
momentum, does not satisfy those specified assumptions. )

G. Special features of the nodal structure
of the zero-incident-energy many-body wave function

In a partial-wave analysis of the single-channel scatter-
ing of a particle incident with zero kinetic energy on a tar-
get, it is often convenient to think of the system as being
at the top of the discrete spectrum rather than at the bot-
tom of the continuous spectrum. The convenience lies in
the fact that the properties of the continuum state, and in
particular its scattering length and its nodal structure, can
often be studied by the Sturm-Liouville (SL) methods
applicable to bound states. We will now show that this
extension of SL bound-state results to the continuum state
is not always possible. In particular, we will show that the
continuum state can have a nodal surface which would
not be expected on the basis of SL theory.

Let us return to the study of L =0 zero-incident-energy
e -H triplet scattering from the ground state. The an-
tisymmetric spatial wave function Ro '(r&, rz, 8,z) has of
course a nodal surface (along r& r2}. Since e and H——
can form a composite bound state, the existence of a nodal
surface of Ro in no way violates the theorems which
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might be expected to serve as the natural generalizations
of (bound-state) SL theory. However, let us consider a
model problem, rather similar to the e -H problem, but
with the two-particle Coulomb interactions modified; we
allow them to be short ranged, but they must be local and
energy independent. As for e -H, there would be two in-
distinguishable spin- —, particles. With the interaction
strengths appropriately chosen, each particle would be
capable of forming a bound state with the target, but, as
opposed to the physical potentials, the model potentials
would be unable to support a composite bound state. The
nodal surface along r, =ri of the triplet I. =0 zero-
incident-energy wave function, denoted by
Ro (ri ri, 8)2) as for the true problem, would be present
even though there is no state of lower energy. This result
is in definite contradiction to what one might expect as a
generalization of bound-state SL the)ry, perhaps the first
such contradiction to have been found, and it is important
to understand how this comes about.

Nodal surfaces originating in the Pauli principle divide
configuration space into subdomains which extend out to
infinity and in which the scattering wave function satis-
fies inhomogeneous boundary conditions. For our model
problem we have

Ro '(ri, r2, 8)2)-/is(r) )(ri —A), r2

——P„(r2)(r) —A), r, —oo

where p)s is similar to the hydrogenic ls wave function,
and, in particular, is nodeless. It follows that a trial func-
tion which vanishes identically in one of the two sub-
domains of our model problem, the suMomain r» ri or
r2 & ri, fails to satisfy the boundary conditions at infinity
and is therefore inadmissable. Since in bound-state prob-
lems the theorems which place upper limits on the num-
ber of subdomains are based on trial functions which van-
ish identically over subdomains, these theorem s are
inapplicable to our e -H problem, for the physical system
or for the model system. In other words, for our model
system we have a (Pauli-induced) nodal surface in a zero-
incident-energy scattering wave function even though
there is no state of negative energy. This is contrary to
what one might have expected on the basis of SL bound-
state theory, but there is no contradiction since the SL
proofs are inapplicable.

We note that an analogous situation —the existence of a
nodal surface for a state even though there is no state of
lower energy —cannot occur for any bound state of our
model problem; the lowest state cannot have a node in-
duced by the Pauli principle because whatever the model
potentials the ground state will not be spatially antisym-
metric, and the (Pauli) node associated with the lowest
spatially antisymmetric state will come as no surprise.
Indeed, in a SL approach, one ignores all symmetry re-
quirements and {for any number of particles) finds that
the state of lowest energy —it might not be physically
allowable —is nodeless. For our model problem that ex-
cludes the possibility that the ground state is spatially an-
tisymmetric. (One must go further to prove that the state
of lowest energy is nondegenerate and is the physically al-
lowed spatially symmetric state, but that is not relevant to

the present argument. ) A nonmathematically oriented
physicist might find more satisfying the following alterna-
tive proof that the ground state of the e -H model prob-
lem cannot be spatially antisymmetric. Let the lowest
spatially antisymmetric state have an energy E' ' and a
normalized spatial wave function

'(r), rz, 8)2) =P(ri, r2, 8)z) —(()(r2,r), 8)z)—:4' —4';

{)I) is a solution of the Schrodinger equation in the region
0&r2&ri & o(), which vanishes at r, =ri and at ri ——oo.

p will be positive for 0&rz &ri & oo. [It will be of the
form (ri —r2)g(r), rz, 8,z), with g&0 for 0&re &r«o().]
In a Rayleigh-Ritz estimate E,'+' of the energy E'+' of
the lowest spatially symmetric state with E'+'&E,'+',
choose as the trial function

4t (rlSr2~812)= I
0' '«) r2S812)

I

is continuous with a piecewise continuous first
derivative and is therefore an admissable trial function.
With X(x) a step function, one has

g't+'=(P —P)X(r( —ri }+(P—(() )X(ri r i ),—
and, using the fact that P —P vanishes where i))I+' has a
discontinuous derivative, it is simple to show that

E(+)&E(+) (y(+)
~

~
~

y(+) }
= &

I
O' 'I

I
H

I I
@' 'I &

{y(—) f~
~

y( —)} E(—)

Once again, this does not show (though it very strongly
suggests} that the ground state is spatially symmetric —as
it is—but it does show that it is not spatially antisym-
metric.

We close this section with just one remark on systems
containing more than two electrons, noting that even the
meaning of a nodal surface must be reexamined. It will
be sufficient to consider a three-electron system, which
might be the ground state of Li or an e -He scattering
state. Since the spin dependence cannot in general be fac-
tored out for a system with three electrons, the wave func-
tion will be an antisymmetrized sum of products of spa-
tial functions and spin functions and may well not have
any nodal surface of sufficiently high dimensionality—
dimensionality eight in the nine-dimensional problem
under consideration —to separate the full volume into sub-
domains. For such a system, any theorems on nodal
structure which one might hope to obtain would refer to
the nodssl structure of one of the spatial factors in the sum
of products.

III. NONRIGOROUS RESULTS:
A PHYSICAL ARGUMENT

When we consider the scattering of positrons by atoms
heavier than helium we no longer have the pleasant situa-
tion that the target ground-state wave function factors
into a spin function and a nodeless spatial function. We
now turn our attention to the scattering of electrons and
positrons by atoms, and neutrons and protons by heavy
nuclei, in the context of some simple models.
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A. e —-atom scattering

Soine very interesting speculations on 5L(0) for the
scattering of an electron by a neutral atom were made by
Swan. Using approximate antisymmetrized wave func-
tions based on an independent-particle model, he derived
an integro-differential equation and showed that the relat-
ed (approximate) 5L(0) satisfied a modified form of
I.evinson's theorem. (This approach has been developed
further, though still within the context of a specific
scattering model, by Glockle and Le Tourneux. ' The dis-
tinction between a rigorous proof and one based on a
model should be kept clearly in mind throughout this dis-
cussion. ) We will here adopt a much simpler and less
mathematical viewpoint, also approximate, one which
would be expected to be most useful for heavy atoms; our
simple viewpoint will reproduce Swan's results for e
atom scattering. We assume that the ground state of the
neutral atom has a total orbital angular momentum of
zero and a total spin of zero, and for the moment, that the
e and the atom cannot form a negative ion. We assume
in addition that there exists an effective short-range cen-
tral potential V(r) which, in an independent-particle
model, generates an approximate target ground-state wave
function QT,~~, an antisymmetrized product of one-
particle states, which provides a good description of the
properties of the atom. To be concrete, we will choose a
particular atom (Z =30) with a particular configuration,
( ls) (2s) (2p) (3s) (3p) (3d)' (4s) . We must then also as-
sume, since for the moment we wish to exclude cases for
which a negative ion can be found, that V(r} supports
only ls, 2s, 2p, 3s, 3p, 3d, and 4s states. Finally, we as-
sume that the scattering of the incident electron can be
reasonably described by assuming that the problem is a
one-body problem with the same potential V(r) Since, i.n
the above example, V(r) can support four L =0 states,
two I.=1 states, one I.=2 state, with all bound states as-
sumed to have negative energy, and no states with L, & 2,
it follows from Levinson's theorem as originally derived,
that

5o(0) =4ir, 5i(0) =2m', 52(0)=ir, 5L, (0)=0

for L &2 . (3.1)

In obtaining Eq. (3.1), we used results obtained from an
analysis of the radial equation for a particle of angular
momentum L in a potential V(r), and it follows that the
degeneracy with respect to projections of the spin or orbi-
tal angular momenta of the individual target electrons
does not enter in the determination of 51.(0).

%e now drop our assumption that a negative ion can-
not exist and assume, to be concrete, that one and only
one negative-ion state, a 5s state, does exist. %e would
then deinand of V(r) that it be capable of supporting one
and only one additional state, a 5s state, and one would
expect to have 50(0)=5m-, Uery crudely, one might think of
4m as the contribution arising from Pauli effects and m as
arising from the bound state. The phase shifts 5L(0) for
L+0 would not be affected.

In the same approximate spirit, one might assume that
the potential seen by a e+ incident on an atom is equal
but opposite to the V(r) seen by an e incident on an

Since PT(p) is a state of zero total orbital angular momen-
tum, we can replace

~
r; —r

~

'
by 1/r; &, where r; & is the

larger of r; and r. V,rr then becomes

Z
V ff(r)=e' f &T(p) g

i=1

1
dp, (3.3)

a repulsive potential. [Note that in the static approxima-
tion the nodal structure of u (r), namely, its nodelessness,
follows without any information about QT(p) other than
that it has zero total orbital angular momentum; in partic-
ular, the nodal structure of QT(p) does not enter the argu-
ment. ] The assumption made in the second viewpoint,
that the target is unaffected by the e+, is surely a more
restrictive assumption than one would like to make, but
the argument does provide some physical insight.

It is important to recognize that while V(r) must give
all of the appropriate one-particle states (and only those
states} for the atom under consideration, V(r) need not
give the correct energies of those states. It follows from
the above remark and from one's experience of effective
central potential studies that an adequate V(r) is available
for almost all of the atoms, those with zero spin and zero
total orbital angular momentum, under consideration. On
the other hand, if it is because we do not need a V(r)
which is precisely defined that we can readily accept the

atom. Since V(r) is expected to be attractive for all r,
that would imply that —V(r) is repulsive everywhere.
The e+ could not then be bound to any atom, and one
would have 5L, (0)=0 for all L for all atoms. [In fact,
there are some atoms with which an e+ can form one
bound state, with the e+ in an s state, and for such atoms
the assumption that the effective potential is everywhere
repulsive is of course incorrect and one would expect to
have 5o(0)=n and 51,(0)=0 for L &0.] Looking at the
problem slightly differently, it would not be too unreason-
able to assume, for a e+ incident on an atom to which it
cannot be bound, that the e+ has little effect on the target
atom, and that the zero-energy scattering wave function is
therefore a product of the target ground-state wave func-
tion fT (p) and a function of u (r) of the positron coordi-
nate; this is the static approximation. The inner product
of fz (p)u (r) and fr (p) would then be u (r). Since the ef-
fective e+-atom interaction has been assumed to be weak,
we expect u (r) to be nodeless, and it follows that
5L, (0)=0 for all L In th.is slightly different approach, we
made three assumptions: that there was no composite
bound state, that the static approximation was a good ap-
proximation, and that the factor u (r) in the static approx-
imation was nodeless. In fact, once we have made the
static approximation the other results follow, for the
nodelessness follows if the equivalent one-body potential
cannot support a bound state and, following Ore, '5 one
can easily prove that in the static approximation the e+
cannot form a composite bound state. Thus, the e+ satis-
fies a one-body equation with an effective potential

Z g 2 Zp 2

V ff(r)= f P&(p) g + PT(p)dp .
i=i

(3.2)



33 NODAL STRUCTURB AND PSLASB SHIF'IS OP ZBRO-. . . 953

validity of the surmise on 5L (k}, it is for that very same
reason that we do not have a proper proof of that surmise.
Stated somewhat differently, the requirement that V(r)
generate a QT,vv

"which provides a good description of
the properties of the atom" can hardly be the starting
point of a rigorous proof of the surmise. The point is that

QT is not one configuration but a superposition of config-
urations, and that the zero-incident-energy wave function
ql is not the product (antisymmetirzed if the incident par-
ticle is an e ) of a one-particle function and of the one
configuration for gr but a sum of products of one-

particle functions and of target configurations, and that
the surmise involves the assumption that the superposi-
tion of configurations in gr and in 4 alters neither the
nodal structure of ql nor 5t, (0) from the results obtained
using just one configuration for Pr and for %. (One can
hope, as we do, to use an approximate theory to obtain an
exact result if the result has a discrete rather than con-
tinuous characterization. }

B. Neutron and proton scattering by heavy nuclei

The physical argument for the value of 5L (0) just given
for e+--atom scattering can be applied with essentially no
change to neutron —heavy-nucleus scattering. We here al-

low for spin-orbit coupling, since that coupling is general-

ly more significant in the nuclear case; allowance for that
coupling could just as easily have been made in the e+

atom case.
We consider a nucleus heavy enough so that the neu-

tron mass can be neglected with respect to the nuclear
mass. We assume that no composite bound state can be
found, that the ground state has zero total spin and zero
total orbital angular momentum, and that there exists an
effective one-body potential of the form
V(r)+I.t S;U(r), where L; and S; refer to the ith parti-
cle, such that the ground-state wave function is adequate-

ly described by a product of one-particle states determined

by this potential. The potential is such that it supports all
of those and only those one-particle states which generate
a wave function providing a good description of the prop-
erties of the ground state. We assume further that the in-
cident neutron experiences precisely the same effective
one-body potential, which we can rewrite as V(r, L,J},
with L and J referring to the quantum numbers of the in-
cident neutron. It follows that the phase shift at zero en-

ergy, 5~(0},is, in this approximation, a multiple of tt, the
multiplicative factor KLJ being equal to the number of
neutrons in the target in states with the given L and J, de-
generacy playing no role. In analogy with the discussion
in the previous subsection, one would expect E~, for the
case in which V(r) can support vLJ additional states of
the given L and J, to be increased by vL,s. (The additional
states would represent composite bound states. }

It has recently been shown' that Levinson's theorem is
satisfied for potential scattering, where the potential is the
sum of a repulsive Coulomb field and a short-range poten-
tial; the relevant phase shift is 5,~(k), the phase shift rel-
ative to the Coulomb phase shift. We therefore expect the
argument just given for the value of 5~(0}for the scatter-
ing of a neutron by a heavy nucleus to be valid for the
5,~(0) which appears in the scattering of a proton by a
heavy nucleus. The effective one-body central potential
would now include the component Ze /r, where Z is the
atomic number of the target nucleus.¹teadded in proof. Sturm-Liouville theory has been
ustd to obtain a Levinson-like theorem for the Dirac
equation. See Z. Q. Ma, Phys. Rev. D 32, 2213 (1985)
and references therein.
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