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A set of indices {tr, ~,g, s) I is introduced to replace the four orbital quantum numbers that occur
in cross-section formulas. Each index belongs to a different species of a C~„point group; only cr

ranges to infinity whereas all four orbital 3's do. Results of an earlier calculation are restructured in

terms of {o,r, g, s) ) affording an improved interpretation of those results. Directions of further in-

vestigation are indicated.

I. INTRODUCTION

Collision theory combines dynamical parameters specif-
ic to the colliding partners with geometrical elements
which are unspecific and are known in analytical form.
Formulas that sort out dynamical from geometrical ele-
ments were developed long ago, mainly in nuclear con-
texts. ' The dynamical parameters take the form of
scattering matrix elements, usually in a basis of partial-
wave states appropriate to the Hamiltonian's invariance
under space rotations. The geometrical elements include
instrumental characteristics such as collimators„external
fields, polarimeters, etc., which are not invariant under
the space rotations that underlie partial-wave analysis.
The geometrical connection between the reference frames
appropriate to the measuring instruments and to dynami-
cal parameters, respectively, is accordingly complicated.

Further obfuscation of this connection arises from the
structure of quantum cross sections which are bilinear in
the scattering matrix S and in its Hermitian conjugate St.
This structure casts the dynamical parameters in the form
of direct products S, b Ss„each of whose labels
(a, Ii, . . .)—for initial and final state stands for a set of
indices that includes a quantum number of the orbital
motion in the center of mass frame. The sensitivity of ob-
servables to the value and kind of dynamical parameters
thus requires careful investigation.

Our investigation will depart from the familiar path
that centers on deriving theoretical data estimates to be
compared with the results of measurements. This pro-
cedure is not only bable to amplify inaccuracies of
theoretical models but is also often vitiated by redun-
dances of experimental data rooted in inherent, if less
than obvious, regularities. Here, as elsewhere, me examine
which information is actually contained in experimental
and theoretical data and shift their comparison to the pa-
rametrization that appears most significant and sensitive.

To this end me shall note that the dynamical pararne-
ters S;bSs, form a reducible representation of a Ci„
point group and shall recast them into linear combina-
tions labeled by quantum numbers {cr,w, g, ri J that belong
to different symmetry species of C2„. There will result a
hierarchy of such linear combinations which can be only
partially unraveled from cross section and orientation
data on electron scattering. New classes of experiments

may have to be devised to provide further evidence. The
present paper merely introduces some new concepts and
procedures whose development will require further work.

We refer here specifically to the theoretical analysis of
the observed orientation of He(n'P') atoms excited by
electron collision at 50—80 eV. Even though the transi-
tion is~iPO is gmmetricdly quite simple, its qumtum-
mechanical analysis involves infinite sums over a multipli-
city of indices including four orbital quantum numbers

(I,lsl,'ls ). We shall probe this connection between observ-
ables and dynamical parameters more deeply by carrying
the analysis of Ref. 3 through a further symmetry con-
sideration unrelated to space rotations.

II. SYMMETRICAL PARAMETERS

The differential cross section do(8)/dQ for excitation
of He(n 'P') by electron scattering as well as the orienta-
tion and alignment of the excittxl target are expanded ac-
cording to Ref. 3 into series of Legendre polynomials
Pk(cos8) or of their derivatives, i.e., of their associated
polynomials. The index k is related to orbital quantum
numbers of the partial-wave expansions by the triangular
relations of the two triads (I,l,'k) and (Iblbk) and by the
parity restrictions

I, +I,'+k =even,

Ib+lb+k =even .

Additional triangular and parity relations in Ref. 3 con-
cern the triads (I,I&j,) and (I,' lt', jt) and their parities

I, +lb+ j,=even,
(2a)

I, + Ib +jt =even .

Here j, indicates the angular momentum transferred to
the target, indicated vectorially by

(2b)

and restricted in magnitude to j,= 1 for He('S) ~He('P').
Notice here how all these relations are invariant under

the pair of symmetry operations P and Q defined by

P(l„lb}=(l,', li }, P(1,', Ii )=(l„ls), (3)

Q (I„I,' ) = (ls, Ib ), Q (Is, ls )—:(I„l,' ) .
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TABLE I. Symmetries of I cr, r, g, gI . TABLE III. Compatibility of (g, g}: X, compatible values of
(g, g};Q, 0 as in Table II.

Qtr=tr, Qr=r, Qg= —g, Qg= —g .

The triangular conditions on the triads restrict the new

quantum numbers all of them integers to

o &k, —k &r&k, —j,&g&j„—j, &rt&j, . (7a)

The parity transfer in the excitation of the He('P') com-
bined with Eq. (2a) implies

I
I.—4 I

=
I
i.' Ib I

=1, —
(7b)

whereby tr and r cannot simultaneously equal k. The
Eqs. (2) and (7), with j,=1, also require

/+at =+1, (8}

meaning that either g or rt vanishes.
Since the pair of operators tP, Q I forms (together with

the identity and PQ) the group C2„, each of the new quan-
tum numbers is seen to belong to one of the four irreduci-
ble representations of this group which are called
(tt i,ai, b i,b2), as indicated by the parity Table I. Contrast
also the ranges of variation of I l„lb,I', lb ), each of which
runs from 0 to ao, with the ranges (7) of the new quantum
numbers only one of which, o, spans an infinite range, the

TABLE II. Compatibility of (o,~}: X, compatible values of
(cr, v); Q, values compatible with g=O; O, values compatible
with g=O.

k
k —1

k —2

—k+1
—k

(These operators are understood here to apply to electron
orbital momenta only, rather than to the target's, al-

though both are included in Ia, b,a', b'I.} We replace
now the set [l,lb',

'
lb I by the equivalent set

O = —,'(I, +lb+i,'+lb },
&= i (l, + lb 1,

' —lb ), —

g= —,'(1, lb+I,'—lb) ~—

rl = —,
'

(1, lb —I,'+—Ib ),
whose elements are joint eigenvectors of P and Q with al-
ternative eigenvalues

Po =o, P~= ~, Pg=—g, Prt= —rl,

o+g+k =even . (10)

This third relation links the entries in Tables II and III
into subsets marked by a square and a circle, respectively.
The values of the new quantum numbers ter, r, g, gI are
thus partitioned into tico separate subsets. The elements
of each subset are mutually compatible. Those marked
with a circle include g =+1, which belong to the symme-
try b2, those with a square include /=+ I of the species
Q2.

A. Classification of interference effects

Tables II and III display the role of the symmetrical
quantum numbers in bringing out implications of diverse
symmetries, a role that will be prominent in the analysis
of cross-section formulas. The cross sections for elastic
collisions, which conserve the orbital momentum, would
involve only one pair of indices (l, l') instead of the two
pairs appearing in Eq. (4}. Only two symmetrical quan-
tum numbers would occur in that case, namely a. and v in-
dicating the mean and the difference of I and 1', respec-

others being bounded on both sides.
The interpretation and systematic application of the

new quantum numbers will be introduced in the following
sections and in further papers, but a few of their aspects
are immediately apparent. The single new quantum num-

ber o with infinite range represents an average orbital
number and may accordingly be viewed as an impact pa-
rameter at the given energy. The new qu:mtum number ~
relates instead to the interference between the partial-wave
expansions of Sb and S, b:, the limitation (7) to the range
of values of ~ implies that each harmonic Pb(cos8} in the
expansion of the product S, bSb, refiects only a finite
subset of interference terms. The sharp restriction to the
ranges of g and rt in our example implies that their role
will be very simple forj,= 1 but remains to be explored in
broader contexts.

The following properties of the new quantum numbers,
implied by (1), (2), (7a), (7b), and (8), will prove essential
to the analysis of observables in the next section. (a) The
parity transfer in the excitation of He('P'), Eq. (2), re-
quires that

I, +lb tr+——r od=d,

thus restricting the pairs (tr, r) to the values indicated by x
in Table II. (b) Equation (8), also stemming from pari-
ties, restricts (g, rt) to the boxes indicated by X in Table III
analogous to Table II. The range of g and rl is restricted
here to 0,+1 in contrast to the unlimited range of o in
(10). (c) Substitution of 1,+1,' =o+g from (5} into Eq.
(1) yields
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tively. Cross-section terms with r=O, i.e., with I =I, are
regarded as "direct" (or quadratic), whereas the "cross"
terms with r&0 represent interference effects.

Nonconservation of orbital momentgm in inelastic col-
lisions has led here to the occurrence of three distinct in-
dices of interference. A zero value of r no longer suffices
to identify "direct" terms of a cross-section formula, be-

ing compatible with I,
' —I, = —lb+lb&0. Each term of

such an expansion involves in fact some interference in
our example of He excitation where parity transfer ex-
cludes lb ——I, . Table I may thus be viewed as providing a
classification of interference effects.

III. CROSS SECTION AND ORIENTATION

developed in Ref. 3. As a preliminary we restate those re-
sults in a more articulated form.

A. Summary Of earlier results

The differential cross section for the process
e +He(1'S)~e +He(2'P') will be considered here as
expanded in spherical harmonics

= g& yPk(cos8) y Ckf, (la Ib Eu Ib)Su'b Sba'

L~slb~l', l

Symmetrical quantum numbers have been introduced in
Sec. II as a tool to sharpen the analysis of the formulas

where Et is the wavelength of the incident electron divided

by 2n and 8 is the scattering angle. The coefficient

Ckj (E,Eb, l,', lb )=(—1) ' ' (Zj, + 1)(2k + 1)[(21,+ 1)(2lb+ 1)(21,'+ 1}(2lb+ 1)]'~

I. 1.' k Ib lb k l. !b ji
0 0 0 0 0 0 (12)

connects the frame of the observable scattering event to that of its dynamical analysis in partial waves. The dynamical
parameters Sb„defined as

Sb, =(2'Pt, lb
~

—S
~

1'So,I, ) = g (1, m, lb—, m
~

S
~
0,0,1„0)(—1) ' (1„0,lb, —m

~
j„—m }, (13)

with j,=1, are independent of any geometrical frame The t.riangular and parity relations in Eqs. (1}and (7a) reflect the
structure of the 3j and 6j coefficients in (12}.

The orientation of the target state f( =—2'Pi) resulting from scattering with deflection 8 in the (zx) plane was represent-
ed in Ref. 3 by the mean value of the orbital momentum component orthogonal to (zx), namely (Jy )fs. Since this orien-

tation vanishes at 8-+0' or 180' in proportion to sin8, its dependence on 8 is properly expanded into associate polynomi-
als defined as in Eq. (8.6.6} of Ref. 4,

( Jy Ifs y Pk l(cos8)Dkf ~

k

du
(Jy )fs————,X QPki(cos8)

k(k+1)
k k', k" +

Reference 3 calculated the product of (11)and (14) which is represented in the present notation by
' 1/2

D k(fk', 0, "k,0
~
k, O}(k,1

~

k', l,k",0)

(14)

Ck J (l~, lb, l l ~)Sb~ b S~
l~, Ib, l~, lb

The calculation of Ref. 3 yields the alternative form of (15)

j, .k
(Jy )fs= —,Et QPki(cos8)i ' g Ckj (l„lb,l,', lb ) S, b Sb, .

k

(15)

(16)

k
(k, 1

~
k, l,k,O)Dk'f(k', O, k', 0

~
k, O)Ck ~ (l„lb,l, , lb }=—

& 'Ckj (l„lb,l„lb )

Comparison of (15) and (16) shows that the coefficients Dkf of the expansion (14}obey the equations
' 1/2

k(k+1)
k'(k'+ 1)

(17)

The vector It, identified in Ref. 3 as lb —lb ——I,' —I, and odd under the permutation P of (3), occurs in the expression
(16) of do IdQ( Jy )fs but is absent in the expression (11) of do jdQ. It is accordingly characteristic of the orientation

(Jy )fs as stressed in Ref. 3 and again in the following. The vector j,=I, —lb in Eq. (2b) is odd under the permutation

Q, in contrast to k which is odd under P. The product j, lt in Eq. (17) is accordingly odd under both P and Q, thus be-

longing to the same a2 species as g.
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B. Transcription to symmetrical quantum numbers

(1) The sums over [I„/s,I,', It', ] implied by the notation gt i t, &, in (11)and (14) may be replaced by g, & „,but the

ranges of these sums are variously restricted, as detailed in Sec. II. From Tables II and III in particular, it follows that

X = X X X + X X X (18)
(cr—k)/2=0 (v+k —1)/2=0 g= + 1 g 0 {cr—k —1)/2=0 (w+k)/2=0 /=+1 q=0l~, l~, l~, lb

The range of ~ depends here on the value of cr and on whether g or g vanishes; the range (+1) of g or ri is, however, in-

dependent of other new quantum numbers.
(2} The coefficient Ckj, Eq. (12), is manifestly invariant under both permutations P and Q in view of the symmetries

of 3j and 6j coefficients. Accordingly only its dependence on the indices (r,g, rt} should be affected by their respective
sign reversals. The 3j and 6j coefficients in (11}are generally polynomials but are monomials in our present case where
the lower indices of the 3j vanish and j,=1. They are accordingly represented in terms of (o,r, k} as ratios of factorials,
binomial coefficients, and simpler algebraic expressions, namely

o+k+1
2

C» (o,r,o, ~)= k
k

[(cr+1}—r ]' (o+k)! ! 2
o—k —1

2
'2

4(o —k }! ! (k —v)!(k+r)!o+k
2

k+r
k+r

2

(19a)

Ckj (o,r,g,0)= '2

[(o+1)2—r ]'~ (o+k)! ! !
2

2
k 1+r-

1

2

(19b)

The new quantum numbers g and ri fail to appear expli-
citly on the right of (19) since Ckj must be independent of
their values + l.

(3) The factor j, k/k(k+1) of Eq. (16), odd under both
P and Q, as noted at the end of Sec. III A transcribes into

(o+1)ri when (=0 (20a)

changes the orbital numbers l, and Ib without affecting
the target states. The operation Q reverses the "propensi-
ty" of the transition a~b. Propensity means that the
value of Ss, is much larger when the target excitation
'S~'P' is accompanied by a loss of orbital momentum of
the electron (ls & I, ) than when accompanied by ls & I, .

jg k=(cr+1}rl+rg=
rg when r1=0. (20b)

C. Sums over symmetrical quantum numbers

Notice how the oddness of j, k under P or Q emerges in
(20a) because g is itself odd under both operations,
whereas in (20b) both ~ and g are odd under one permuta-
tion and even under the other.

(4) The products of matrix elements S,bSs, will now
be indicated as elements of the direct product matrix
S XS with indices (o,r, g, g), it being understood that S
also implies target transitions 'S~'P' and S the recipro-
cal transition 'I" 'S

S, sS~=(S XS) (21)

These dynamical parameters are not eigenvectors of the
permutations P and Q. The symmetry of S under permu-
ation of its indices has, nevertheless, a consequence that
was crucial to Ref. 3, namely,

P($ XS),g„=(S XS),t „(SXS)', ——
(22)

On the other hand, the syinmetry of S,s under permuta-
tion of a and b differs from the operation Q which inter-

The coefficients Ck, of Eqs. (11) and (16) do not de-

pend explicitly on the symmetrical quantum numbers g
and ri, according to Eqs. (19), beyond the requirement
that the alternative expressions (19a) and (19b) be entered
in the separate contributions of /=0 or ri =0 terms. Re-
call also that Eqs. (19) are symmetric in r and r Expli-— .
cit dependence on g and ri is accordingly confined to the
dynamical parameters (S XS),~„and, for Eq. (16), to
the coefficient j, k, Eqs. (20). The alternative summa-
tions over /=+1 and ri=+1 can now be worked out ex-

plicitly, using the symmetry (22). The resulting expres-
sions wi11 also be symmetric in v and —~ as are the Ck .

Jr

For /=0, Eq. (22} yields the expression to be entered in
(11)

g (S'XS),,„
—2[ i

(S XS) ! ! Qi i cosljl

+ l(S XS) ! ! 0 —i I coM~!~!0 —i] (23a)

where P~ ~ z indicates the complex phase of
(S XS} ...g,„. The corresponding expression to be en-
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tered in Eq. (16},including the contribution of the factor

j, k as given by (201), is

(~+I) g q(S'XS).„„
9=+1

=2t (~+I}[I
(S'XS).~, ~

o i I »ng. ~.
~

o i

S'XS}.
/ f

0 —11»neo (.(
o- i j .

(24a)

The analogous expressions for the ri =0 terms are

g (S XS),g, o
g=+ 'j

=2[
I
(S XS}c

[ T
~

lo I
cose

] T
~

10

+ l(S XS)o (r( —iolcoM o(~( —to) ~ (231)

g(S XS)o,,,g,o
g=+]

=2i/r/[((S XS)
~

~io/sing
f /]o

—I(S XS)
[ (

—io1»n4'
[ [

—ioj (241)

The dynamical parameters with g=+ I are not related

by symmetry, as noted above, those with g= 1 being gen-
erally much larger in magnitude owing to a propensity
rule. The propensity rule has a major influence on the
interpretation of the two groups of terms in (18), those
with (=0 and those with r}=0, respectively, and on the
possibility of sorting out their respective contributions to
scattering cross section and orientation. Except for this
aspect, to be dealt with in a separate report, the contribu-
tions of the two dynamical parameters in Eqs. (231) and
(241}could not be sorted out from current experiments.

Neither can we foresee at this time how to sort out the
contributions to Eqs. (11) and (16) from terms with dif-
ferent values of r. Terms with different values of k can,
of course, be determined separately from measurements of
do'/dQ and of (J„)fs at different scattering angles.
From such data it may well be possible to sort out the
contributions from the terms with different values of o.

IV. SUMMARY AND PROSPECTS

Use of the symmetry-adapted quantum numbers

I o,r, g, rl I has enabled us to restructure the results of Ref.
3 into a form that groups the dynamical parameters
S, & Ss, into subsets of increasing scope: sums over g and
ri, over r, and finally over tr. The sums over g and ri will
be interpreted elsewhere in the light of propensity rules.
The sums over r represent interference effects, whose full-
er interpretation seetns to require a deeper analysis. The
sums over o, on the other hand, seem likely to be unrav-
eled by expressing each of their terms as a linear combina-
tion of the coefficients of Pk(cos8) or Pki(cos8) in Eqs.
(11)and (16), thus relating it to specific features of the an-
gular dependence of observables.

The observables (11) and (16) are themselves invariant
under the permutation P. Indeed, in Eqs. (23) and (24),
the sums over the parameter r remain invariant as r~ r-
even though r is itself odd under P. On the other hand,
the observables (11}and (16) are not invariant under the
permutation Q. Analysis of the propensity effect on
S~—to be reported separately —will, however, relate the
terms of Eq. (18) with g or r}=0 to collisions with for-
ward or backward scattering, respectively, as a by-product
of symmetry under Q.

Beyond these tasks lies the major one of extending the
scope of our treatment, which has been restricted here to
the He excitations considered in Ref. 3. Target alignment
remains to be treated. More important is lifting the re-
strictions to unit angular momentum transfer (j,=1) and
to excitations with parity transfer, both of which hold
only for 'S~'P' transitions. Spin-orbit coupling also be-
comes relevant for higher-Z processes. Most of the treat-
ment of Sec. II should thus be extended, particularly
Table II. Sums over alternative values of j, will occur in
the analysis of (11) and (16), including generally cross
terms (j I+j,) whenever target orientation, alignment, or
higher multipoles are observed. The appropriate structure
of the relevant equations remains thus altogether unex-
plared.
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