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Distorted-wave amplitudes, distorted-wave Born approximation, and self-energies
in the Fock-Tani theory of rearrangement collisions
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In the Pock-Tani representation for rearrangement collisions, the interaction Hamiltonian decom-
poses into terms representing interactions within each arrangement channel and channel-changing
rearrangement interactions. The two-potential formalism is used to cast transition amplitudes into
a distorted-wave form in which in-channel interactions are treated exactly and interchannel transi-
tions in finite order, thus separating initial- and final-state interactions from rearrangements. Self-
energies arising from infinite-order summations of selected interchannel transitions are also con-
sidered and illustrated by shifts and broadenings of scattering and reaction resonances.

I. INTRODUCTION

where

a, s k,j

e~= f $~(Xs)Hs(Xs)$~(Xs)dxs, (2)

P~ being the wave function of a composite of species s in
state a, X, being the configuration variables (space and
spin) of all the constituents (electrons, nuclei) of the com-

The Fock-Tani representation' for rearrangement
collisions in a system of composite particles is obtained by
a suitable unitary transformation, starting from the stan-
dard Fock representation in terms of annihilation and
creation operators for all the constituents. The applica-
tions made thus far are to problems in the theory of
atomic collisions and chemical reaction dynamics, in
which the constituents are the electrons and nuclei of the
atomic, molecular, and ionic species involved. The gen-
erator of the unitary transformation to the new "Fock-
Tani" representation is constructed in such a way as to in-
troduce new elementary particle (Bose or Fermi) annihila-
tion and creation operators a~ and a ~ for the various
composite (atomic, molecular, ionic) species s involved.
This approach is closely related to Weinberg's "quasipar-
ticle method" for bound-state scattering theory, to
Dyson's "ideal-space" representation' for spin waves in
the Heisenberg model, and to the canonical transforma-
tion method of Bohm and Pines" for the theory of
plasmons in an electron gas. The reader is referred to the
literature' for details of the derivation and structure of
the Pock-Tani representation. Here only the qualitative
features will be listed.

The Fock-Tani Hamiltonian H decomposes naturally
A A A

into H =Ho+ V where Ko describes both free composites
and free (unbound) constituents, and V describes all possi-
ble scattering and reaction processes between the compos-
ites and constituents. All internal binding of composites
is included in Ho, as in the quasiparticle method. The
explicit expression is

AS A
Ho y ~asa asaas+ y~kj it kj 4j t

posite, and H, (X, ) the Schrodinger Hamiltonian of these
constituents, including their interactions. The pkj and

fkj are annihilation and creation operators for free con-
stituents, ekj being the energy of a constituent of type j in
state 4k, (x;}:

Ejfj f ykj (xj }Hj(xj )stskj(xj )dxj

Here Hj(xj ) is the single-particle Schrodinger Hamiltoni-
an of a constituent of type j. If the pkj are chosen to be
eigenstates of Kj (plane waves, if there is no external po-
tential}, then ekj is the single-particle energy eigenvalue.
Similarly, if the P~ are chosen to be eigenstates of H,
then e of Eq. (2) is the energy eigenvalue of a single (iso-
lated) bound composite of species s. However, there are
cases where it is desirable to include quasibound resonance
states in (I). For these states e~ is only a (real) expecta-
tion value, coupling to the continuum leading naturally,
through an appropriate self-energy formalism, to a com-
plex resonance energy including shift and broadening. An
example will be discussed in Sec. IV. In applications to
scattering and reaction problems the quantum numbers a
of a composite state P~ usually include both a transla-
tional wave vector k and a set of internal (atomic or
molecular) quantum numbers. Similarly, the k quantum
number of a free-constituent state pkj usually stands for
both the translational wave vector k and a spin z-

component quantum number.
The Fock-Tani interaction Hamiltonian V contains

terms representing all possible scattering and reaction
channels of the system of composites and their constitu-
ents. For example, if P is not a single-composite energy
eigenstate but rather a resonance, then there are off-
diagonal terms

g'a (a ~H
~
13)alt (&)

a,P

with

(a ~H ~P)= f y.'(x, )H, (x, )yjt(x, )dx, ,

as well as terms
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const X
k) y ~ e y k

[0k,g,
. Pk„J„«iji

+H.c.]

where 6, is the composite-state kernel

b„(X„X,' }=gP (X, )Q' (X,'),

with X, =(xi, . . . ,x„}.Using the identity

f h, (X„X,' )P (X,' )dX,
' =P (X, )

following from orthonormality' of the P~, one proves
easily that (7} vanishes identically if H, P =e
(bound state}. Thus these matrix elements are nonzero
only for states which really do decay (resonances). In the
case of monomolecular decay reactions A '~8 +C
(predissociative decay of a molecule into smaller mole-
cules rather than free constituents), there are also terms

const&( g [a plia rc(Pb, yC ~H
~
aA)a~g+H. c.] .

a,P, y

(10)

Descriptions of molecular predissociation in this represen-
tation have been given recently. ' More complicated
terms in V describe bimolecular reactions (terms propor-
tional to a za~zasDazz), scattering and reactions be-
tween composites and constituents, etc. '

In the remaining sections of the paper the treatment of
initial- and final-state interactions and self-energy effects
in this representation will be described. %'e will not be
concerned here with details of the explicit forms of the
matrix elements but rather with the general structure of
the theory. In Sec. II the two-potential form of
Lippmann-Schwinger collision theory is used to cast T-
matrix elements into a distorted-wave (DW) form in
which initial- and final-state interactions are treated ex-
actly and rearrangements in finite order. The general for-
malism is illustrated by explicit examples of higher-order
Fock-Tani diagrams for the process D++H~D+H+.
The resultant D% Born series involves distorted inter-
mediate states of the form G+"

~

v) where
~
v) is an eigen-

state of Hp (undistorted state) but the distorted Green's
operator 6 + contains initial- and final-state interactions
to infinite order. A method of evaluating such states

representing decay (formation) of the resonance as into
(from) the continuum. The explicit expression for the de-

cay matrix element is *

(k iji k„j„~H
~

as)

k& j& &1 k j +n +1 +n H CtS

(7)
(x, x„ iH i

as)

=H, (xi x„}PI(xi x„)

—f h, (xi . x„,x'i x„')H (xi x„')

&(P~ (x i x,' )dx'i dx„',

through solution of appropriate inhomogeneous equations
is described in Sec. III. In certain physical situations it is
important to also treat some rearrangement transitions ex-
actly. This is the case, for example, in determination of
shifts and broadenings of scattering and reaction reso-
nances, in which decay and formation reactions of the
form of (6) or (10) must be treated to infinite order. In
Sec. IV a self-energy formalism for doing this is
described. It involves distorted intermediate states which
can be determined by the method of Sec. III; expressions
for resonance shifts and broadenings are derived in a sim-
ple example.

II. TWO-POTENTIAL FORMALISM
AND DISTORTED-WAVE AMPLITUDES

Consider a rearrangement collision with initial arrange-
ment channel i and final arrangement channel f. We
denote the Fock-Tani representation asymptotic initial
and final states by

~
a;) and

~ af ), respectively, where a;
(ay) is a complete set of quantum number labels for a
state in arrangement channel i (f). They satisfy

Hp ~a;)=E; ~a;),

Hp ~uf) —Ef ~af)

The exact transition amplitude ( T-matrix element} for the
process a;~o.f is given by Lippmann-Schwinger theory
as

T~ I =(af
i
Tia.i)

=(af ( [V+ V 6 p+(E) V

+ VGp (E)VG p (E)V+ ] ~
a;)

where

6 p+(E) =(E +i rl Hp)—
with r1=0+, E=E;=Ef. The in state ~a,+) (ingoing
plane wave, outgoing spherical wave) satisfies the
Lippmann-Schwinger equation

~a,+)= ~a;)+6 p+(E)V ~a,+)

=[1+6p (E)V+6 p (E)VG p (E)V+ . . ] ~

~()

(14)

whereas the out state (outgoing plane wave, ingoing spher-
ical wave) satisfies

~f I+(&f I
VGp+(E)

=(af
i [1+VG p (E)+VG p (E)VG p (E)+. . . ]

(15)

or equivalently

(CXf )= ~af)+Gp(E)V~af )
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One should distinguish carefully between the initial and
final arrangement channels (generic labeling, only species
specified), which we denote simply by i and f, and the ini-
tial and final channels (specific labeling, both species and
states specified), which we denote by a; and af.

Each term in the Pock-Tani interaction Hamiltonian V
is of the form

Tf;=gT (19)
af,a;

as the sum of all those terms in the Fock-Tani transition
operator T connecting given initial and final arrangement
channels (generic) or states (specific). It is then clear that
the exact transition amplitude (12) can be rewritten as

Ta a, =«f
I
T

I
a )=«f I Tfi I

ai) . (20)

The relationship between Tf; and the various operators
V ti is in general quite complicated. It would be useful,
both conceptually and for efficient organization of calcu-
lations, to rewrite (20) in a form which divides the various
contributions into initial-state, final-state, intermediate-
state, and rearrangement interactions. This can be done

by separating the interaction Hamiltonian V into

V, =constXII (af)(af IH I
a;)II(a;), (17)

where II(a;) is a product of annihilation operators for all
the particles ("elementary" constituents and bound com-
posites) defining a particular initial channel a;, II (af ) is
a product of creation operators for the particles defining a
particular final channel af, and (af I

H
I
a;) is a matrix

element generated by the Fock-Tani canonical transfor-
mation from Fock to Fock-Tani state space. ' It is
notevvorthy that in Pock-Tani representation rearrange-
ment collisions are described by amplitudes of the form
(12) used in standard Lippmann-Schwinger scattering
theory, i.e., one does not need the more complicated rear-
rangement collision theory expressions involving different
initial-arrangement-channel and final-arrangement-

A A A
channel decompositions H =Ho;+ V; =Hof+ Vf in
Fock-Tani representation the same decomposition H

A
=Hp+V applies to both scattering and reirrangement
processes and to all possible initial and final arrangement

channels. Those terms in V contributing to a given real
or virtual scattering or rearrangement process are selected
automatically by the particular creation operators occur-
ring in the initial state const)& II (a;)

I
0), the final stateA

const X II (af )
I
0), and any intermediate states

II t(a)
I
0).

The sum of all those terms in V describing a (first-
order) transition from a given initial agreement channel i
to a given final arrangement channel f is conveniently

denoted by Vf;.

Vf;
——Q V

af, a;

where i and f are held fixed in the summation, but a; and

af range 'over all possible quantum numbers for given i
and f. One can, similarly, define T and

V=V +V„, (21)

where V„ is the (inelastic and elastic) scattering part of V
(diagonal with respect to arrangement channel indices)
and V„ is the rearrangement part of V (completely off di-
agonal with respect to arrangement channel indices}:

V~ = X Vii ~

j j,l
Define the initial- and final-state distorted ipaues by

la+ )= la;)+Go(E)V la+ )

(22)

T,=(af
I

V
I
a+)

af I
Vla+}—(af I

V' Go(E)Vla

=(af"
I VI ai+} «f'I v—~ I

ai+)+«f'I V~
I
ai}

(af 'I v-
I
ai+)+(af'I v

I
a )

v (24)

The penultimate equation is a special case of the general
two-potential theory' and the final equality follows from
the orthogonality of states in arrangement channels i and
f. We assume here that we are dealing with a true rear-
rangement process, i &f. Note that different arrangement
channels are orthogonal in Fock-Tani representation'
even before passing to the infinite-volume limit.

The expression (24) is asymmetrical, involving a distort-
ed wave (af"

I
on the left but the full Lippmann-

Schwinger state (a,+) on the right. ' One can obtain a

=[1+6p+(E)V

+6 p+(E)V Go+(E)V + ] Ia;), (23)

f I (af I +(af I
v Go (E)

=(af I [1+V 6 p (E)

+V 6,+(E)V 6+, (E)+ ].
Note that all the terms in this series for

I a,+ } lie in the
same ( ith) arrangement channel; hence

I
a,+ ) differs from

I
a;) by inclusion of all initial state in-teractions. Similar-

ly, (af I
differs from (af I by inclusion of all final state-

interactions. The various intermediate states occurring in
these expressions involve sums over translational quantum
numbers of the various particles involved, and in the case
of composite particles the internal quantum numbers are
summed over as well (inelastic scattering). The sums over
internal quantum numbers are essential for inclusion of
certain initial- and final-state interaction effects. For ex-
ample, monopole-induced dipole interactions involve cou-
pling between atomic (or molecular) translation and inter-
nal excitation arising from induced dipole transitions.

The exact transition amplitude Taft, can be re.written

in terms of the distorted waves
I

a;+ ) and (af I by use
of the same algebraic manipulations involved in deriva-
tion of standard distorted-wave amplitudes. Using the
definitions (23) one has
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symmetrical and more useful expression by rewriting

~
a,+. ) in terms of the initial distorted-wave state

~
a,+ ).

To do this, note from (14) and (23) that

[a+) ~a+4)

=Go(E)V
~

a+) —6+(E)V ~a+ }

=6 o+(E) V„~ a+;")+6o+(E)V[
~

a+) —
~
a,+ )] . (25)

By iteration one generates the series

~

ai+) =[1+Go+(E)V-+6 o+(E)VG o+(E}V-

+Go (E)VGp(E)VGp+(E)V„+ . ] ~a+ ) .

I
ai+) =(E+i71 H—o —V sc

—Vre)

X(E+irt —Hp —V„)
~
a,+ )

=[1—6+"(E)V„] '~a+'),

with G + the distorted-wave Green's operator

6+ (E)=(E+irt H ——V„)

Substitution into (24) yields a DW Born expansion

Ta~, =(af
I Vre I

ai+ )+(af I
VreG+ (E)Vre I

ai+'")

+(af" i
V„G+ (E)V„G+ (E)V„ i

a+i )+

(33)

(34}

T. ..=(af
~
T„~ ~+a),

where the rearrangement operator T„ is defined as

(27)

Tre= Vre+ VreGo (E)Vre+ VreGo(E)VG o(E)Vre

+ VreG o (E)V 6 o (E)V 6 o+(E)Vre+ ' ' '

V=„+V„G o+(E)V„+V„G o+(E)T6 o+(E)V„,
(28}

Substitution into (24) yields an exact distorted ioav-e repre-
sentation of the transition amplitude:

(35)

in which initial-, final-, and intermediate-state interac-
tions are included to infinite order in each term via

~
a,+. )

(initial-state interactions), (af
~

(final-state interactions),
and 6+ (intermediate-state interactions), whereas the
rearrangement interaction is taken to nth order in the nth
term of the series. A method of evaluating the effect of
6+~ on various eigenstates of Ho (necessary for explicit
evaluation of the various terms in the expansion) will be
discussed in Sec. III. The initial and final DW states may
be taken as the outgoing- and ingoing-wave solutions of
the DW Schrodinger equations

and T is the full transition operator

T= V+ V G p+(E) V+ V 6 o (E)V 6 +(E)V+ (29)

(Hp+V )
~

a+ )=E ~a+ ),

(Ho+ V )
I
aj')=E

I
a

(36)

T =(ag
~

V„[a+. )=(af
~ Vf; ~a,

+
) . (30)

There is more physics in this first-order amplitude than in
standard first DWBA, in that additional orthogonaliza-
tion contributions are included via the explicit expres-
sion' for the operator Vf;.

The expansion shown in (27) and (28) of the exact T
matrix element can be rewritten in a form in which the
infinite-order summations over V„are absorbed into a
distorted Green's operator. To do this, first use the stan-
dard identity

~

a+ }=(E+iil—H)-'(E+iri —H, )
~
a, )

and the similar one

~

ai+ )=(E+iri Hp V„) '(E+—iq Hp—) ( a;) . —
Then

(31)

Note that T„ is represented by diagrams in which the
first vertex on the right and last vertex on the left are

rearrangement vertices (from V„), but all other vertices

may be either from V (scattering) or V„(rearrange-
ment).

The expression (27) is exact. In order to obtain explicit
results in calculations, one can introduce various approxi-
mations, obtaining various distorted-wave Born approxi-
mations (DWBA). The crudest one is to replace T„by its

first term V„, obtaining a form of first DWBA:

where E =Ei Ef, obtaine——d by multiplication of (32) and
the corresponding equation for

~
af ) by

A A
(E+irt Hp V~) an—d pas—sage to the limit rt=0.

An expansion of the general form (35) has been derived
and used previously in a different context (elastic and in-
elastic electron scattering) by Dewangan, Walters, and
Kingston. ' lt is also closely related to the DWBA of
Hubbard et al. ' Various other forms of DW Born ex-
pansions and DWBA could be obtained by somewhat dif-

ferent decompositions of the Fock-Tani V, either through
restriction of V through inclusion of only some inchan-

nel interactions, or through extension of V~ through in-
clusion of certain virtual rearrangement terms (for exam-
ple, virtual dipole transitions to or from the continuum),
or both.

In order to make these abstract definitions concrete,
consider the reaction

D+(k;)+H( —k;, ls)~D(kf, ls)+H+( —kf ) . (37)

The only diagrams contributing to
~
k, ; —k;, ls;+d) are

those of the form shown in Fig. 1 for j ranging from zero
[corresponding to the term

~
k;; —k;, ls), the "bare asymp-

totic state"] to infinity; a similar situation holds for the
distorted final state (kf, ls; —kf, —d

~

. The vertex giving
the only contribution to (30) or the first-order (in V„)
contribution to (35) is shown in Fig. 2. In second order
there is again only one type of diagram, shown in Fig. 3,
in which it is to be understood that the intermediate-state
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D{q&,nklkmk)

H+(-q-q )
H(-q, , n. l. m )j' jj j

FIG. 1. The general term in the distorted initial state for the
reaction D++H~D+ H+.

FIG. 3. The general second-order rearrangement contribution
for the reaction D++H~D+H+.

lines stand for a distorted intermediate state, to be ob-
tained by the method of Sec. III. Similarly, the initial and
final lines in Figs. 2 and 3 stand for distorted initial and
final states to be obtained by solution of (36).

As an example of a situation where one might wish to
extend the definition of V by inclusion of some rear-
rangement terms, consider the long-range monopole-
dipole initial- and final-state interaction effects on the re-
action D++H~D+H+. In order to include the relevant
virtual bound-continuum transitions one can include the
vertices of Fig. 4 in the definition of a modified initial-,
final-, or intermediate-state interaction Hamiltonian V~,
but with the corresponding matrix elements evaluated
only in dipole approximation. The same diagrams will

also occur in V,', (such that V= V~+ V,', ), but with the
dipole contribution subtracted from the full matrix ele-
ments. These dipole contributions need only be included

up to second order in evaluating the modified G+~,
equivalent to treating the dipole contributions by second-
order perturbation theory when solving the Schrodinger
equations (36) and the related inhomogeneous equations of
Sec. III. The corresponding modified DW Born expan-
sion is

, =( I"
~
V,', ~,+ )+( f ~

V' ~;)

+(af ( V,',G+~(E)V,', (a,+ )

+(~f~
~
V,',G+"(E)V'„G+'(E)V,',

~

a+")+ .

(ay )
V„G+ (E)V„[a,+ )

can in principle be evaluated as follows. (a) Determine the
DW initial state

~
a,+ ), expressed as some known linear

combination of eigenstates of Ho, i.e., states of the form
A A
II 1 ~

0) where each II J is a product of creation operators.

(b) Operate with V„, giving a known linear combination

of such states. (c) Evaluate 6+"(E)IIJ
~

0) for each such
state II J ~

0), resulting in a known linear combination of
such states. (d) Operate with V„, giving a known linear
combination of such states. (e) Determine the DW final
state (af

~

as a known linear combination of left eigen-

states of Ho, i.e., states of the form (0
~
IIJ. (f) Take the

inner product of each such state with the result of step (d).
Steps (b), (d), and (f) of this program are in principle

trivial, given V„as an explicit linear combination of
terms of the form (17). Steps (a), (c), and (e) are nontrivi-
al. However, steps (a) and (e) are formulated as eigenvalue
problems via (36), and these eigenvalue problems may be
treated by standard methods. Step (c) is the most diffi-
cult. Indeed, it is often circumvented in standard second-
order Born treatments by rather crude approximations,
such as the well-known use of closure on intermediate
states, with an "average excitation energy" whose precise
definition is not clear. However, it is possible to do much
better, using a method first advanced by Dalgarno and
Lewis' and subsequently employed by a number of other
workers. ' ' The distorted intermediate states that have
to be evaluated are of the form

where V is replaced by V,', in (34) and (36).

(38)
~

iI)j~E ) =G + (E)11J ~
0) . (39)

III. DISTORTED INTERMEDIATE STATES Then by (34),
~ PJs ) satisfies the inhomogeneous equation

In order to evaluate the various terms in the D% Born
series (35) or (38), one needs to evaluate the effect of the
DW Green's operator G + (E) on various states. For ex-
ample, the second DW Born amplitude

0+(q }

H {-q.,n. l. m. )

FIG. 2. The general first-order rearrangement contribution
for the reaction D++H~D+ H+.

FIG. 4. Additional diagrams to be included to dipole approx-
imation in the definition of P' .
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Vd, ———,
' g d k, e k,(kiki

I Hd, I ksk4)ek, dk, ,
k1) ~ ~ ~ ) k4

VdP 2 g d k)P ki(klk2 I H@ I k3k4)Pkedk)
k1) ~ ~ ~ ) k4

e k, p k,«ik2 I
H.i I ksk4)pk„ek,

k1) ~ ~ ~ )k4

(42)

Vdet 3t g d kr e kgb k)(klk2k3 I Hdep I k4ksk6)
3 1 2 3

(Ho+V ) IP+g )=(E+i7})If' ) —II jt
I
0)

which is an inhomogeneous generalization of the DW
eigenvalue equation (36), whose solution is expected to be
of comparable difficulty to solution of (36).

As an example, consider the second 0% Born approxi-
mation for the reaction D++H —+D+H+. The three-line
intermediate state of Fig. 3 stands for a distorted state of
the form

I q, q', —q —q', E, +d}=G+d(E)dqeqj q q IO), (41}

where d, e, and p are creation operators for the deute-
ron, electron, and proton, respectively. ' This state satis-
fies an inhomogeneous equation of the form (40), in which

the only contributing terms in Ho and V„[i.e., those
which do not annihilate the states d e P I 0)] are'

A fA
Hod = g ekdd Irdlr. r

k

H„= ye„e'„e„,
k

Hoi = geiqpkpk
k

vector k. The same is true of Vd~, i.e., the matrix element
has the usual "bare Coulomb" form. On the other hand,
the matrix elements in Vd, and Vez differ from the bare
Coulomb form by subtraction of orthogonalization
terms' involving the bound deuterium and bound hy-
drogen kernels, analogous to (8). These have the effect of
weakening the free d-e and free e-p interactions so that
they no longer support bound states (these bound states
already being included elsewhere, namely, in Ho), thus
greatly improving the convergence9 of the Born series for
d-e and e-p scattering. The three-particle interaction ma-

trix element in the term Vd,z in (42) involves coupling be-
tween the d-e and d-p Coulomb interactions and the
bound hydrogen kernel, as well as coupling between the
e-p and d-p Coulomb interactions and the bound deuteri-
um kernel. It arises physically from the fact that (for ex-
ample) the "free" electron interacting Coulombically with
a deuteron is really moving in a continuum state orthogo-
nal to bound hydrogen, inasmuch as the deuteron-

hydrogen interaction appears elsewhere in V (as a dif-
ferent arrangement channel term}. The explicit form of
this matrix element (which we do not require here) can be
found from the algebra of the Fock-Tani transformation,
for example as represented diagrammatically by Gilbert. '

The explicit form of (40) is easy to determine in the
present case. It is clear from (41), (42), and (34) that the
state (41) can be expanded as

I q, q', —q —q', E, +d)

= g fqq q q(kk', E)dkekP k —k'IO),
k, k'

(43)

xpk ek, d„

Here e~, ek„and ek are the same as in the standard
Fock Hamiltonian, i.e., they are the kinetic energies of a
free deuteron, free electron, and free proton with wave

where the amplitude f+ is to be determined. Substituting
(41)—(43) into (40) and equating coefficients of linearly in-

dependent states d ke k p k k I
0), one finds the follow-

ing inhomogeneous integral equation for f+:

(ekd+ek, +e k k ~)fq+q q q(kk', E)

+ i g(kk IHde I
k+1 k l)fqq' q q (k+1 k 1 E)

1

+ —, g(k, —k —k'IHg~ Ik+1, —k —k' —l)fq+q q q(k+1, k', E)
I

+ —,
' g(k', —k —k'IH, q I

k'+1, —k —k' —1)fq+q q q(k, k'+1,E)
1

+ —,g (k, k', —k —k'
I Hd,q I

k+1,k'+1', —k —k' —1—1')f
q q q q (k+1,k'+1', E)

1

11'



33 DISTORTED-%AVE AMPLITUDES, DISTORTED-VIVE BORN. . . 911

This is to be solved subject to the outgoing-wave boundary

condition implied by the term +i g in (40).

IV. SELF-ENERGIES AND SCATTERING
AND REACTION RESONANCES

%e shall consider in this section scattering and reaction
resonances arising from a discrete metastable (resonance)

state embedded in the scattering continuum. Examples of
such states are autoionizing states of atoms and predisso-

ciating states of molecules. A general "half-collision"
form of Lippmann-Schwinger theory of differential decay
cross sections of such states has been given elsewhere. '
Here we consider the case where the metastable state does
not occur as an initial (or final) state, but as an intermedi-

ate state, producing resonance behavior in the transition
amplitude between initial and final continuum states.

In order to illustrate the ideas without inessential com-

plications, consider first the case of a single discrete reso-

nance wave function p, (x]x2) embedded in a continuum

of two-particle scattering wave functions pk(x]x2) ~ The
scattering wave functions are eigenstates of the full two-

body Hamiltonian including interactions, but the reso-

nance is not a stationary state, hence not an exact energy
eigenstate. However, it has a mean energy

e, =(P, I
H

I P, ) which is assumed to be embedded in the
continuum in the sense that the equation Ek ——e, has a
solution k, where Ek is the energy eigenvalue of some

continuum state pk. In Fock-Tani representation the res-

onance state P, is represented by

Ia)=a'Io) (45)

and the continuum states pk by

I (k) }= g Nk(klk2)]I('k fk I
0)

k), k2

(46)

in a notation essentially the same as that of the previous
sections. The asymptotic continuum states (not exact en-

ergy eigenstates) are

I
k, k, ) = ]](' 'k, 0 k, I

o) . (47)

Initial and final states of this form will be abbreviated
herein by

I g;) and
I Pf ). The unperturbed Fock-Tani

Hamiltonian H0 [of which
I
a) and the

I
k]k2) are eigen-

states] and the Fock-Tani interaction Hamiltonian Vdf

describing decay and formation of the resonance are of
the form

HO eaa a+ g'k]fk] 4k]+ g'»24»2 4»2 ~

k) k2

Vdf= g [0k, 4'k, «ik2 I
H

I
a)a+H c ]

k I,k2

(48)

where the 1-particle and 2-particle are assumed to be dis-
tinguishable. The resonance is embedded in the continu-
um in the sense that the equation ek +ek ——e, is assumed

I 2

to have solutions for k] and k2. Direct scattering in-

teraction terms

0k] kk2(k]k2 I
H

I
kik2 Wk' 4k

will also be present in a more realistic model, but are om-
itted here since we wish to investigate the role of the reso-
nance as an intermediate state in indirect scattering pro-
cesses of the folm k]k2~a~k]k2, k]k2~a~k]k2
—+a~k]'k2', etc. The decay-formation interaction Vdf is
a s™plifiedform of (6).

The second Born contribution to the exact scattering
amplitude Tf; is

~f~ =(~f I ~~f G ]] (E)Vdf I g] )

(k']k2
I
H

I
a)(a

I
H

I
k]k2}

E —e, +ig
(49)

G + (E)= (E +i ri H0 Vdf )— — (50)

In the case of the simple model (48), 6 +d is the exact
Green's operator (there is no analog to V„of Sec. II) and
the exact transition amplitude is

Tf =(]tf I VdfG +"«)Vdf I
])' } (51)

Indeed, expansion of G + in (51) in powers of Vdf yields
the bare Born series

~fi (0f I Vdf(G 0 +G 0 VdfG 0 + (52)

Use of this series is, however, circumvented by solution of
the inhomogeneous Dalgarno-Lewis equation

(HO+ Vdf) I NaE) (E+]n)
I kaz) —a '

I o»
yielding the state

I
y+, ) =G +'(E)a '

I
O) .

The transition amplitude (51) is then

~fi (k]k2 IH I
a)(0

I
a

I
0'aE)(a I

H
I
klk2)

(53)

(54)

(55)

where we have taken
I p;)=f» fk I

0) and
z

I gf)=gk, fk, I
0), as in (49). We expect, and will

where G 0+ is the totally unperturbed Green's operator

I ]t])=4k, kk I
o» and

I ff )=4k'; Pk, I
0)

approximation (49) diverges at the resonance energy
E =e„signaling inapplicability of the "bare Born" ex-
pansion of which (49) is the first nonzero contribution.
More generally, the term of order 2n in the Born expan-
sion diverges like (E —e, +i )) " at E =e, for all n & 1

due to "pileup" of energy denominators all giving poles at
the same point E =e, . These divergences form a
geometric series which can be summed by the usual
self-energy formalism of quantum field theory and
many-body theory, leading to a complex self-energy of the
resonance incorporating both width (finite lifetime) and
shift contributions.

An equivalent but more elegant approach avoiding the
direct summation of divergences can be based on use of an

appropriate distorted-wave Green's operator G + of the
form (34) followed by solution of the resultant Dalgarno-
Lewis' equation (40}. Here the decay-formation in-

teraction Vdf plays the role of V in (34), (39), and (40).
Thus we define
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demonstrate, that the matrix element (01a 1$,+z) is
peaked about E=e, +5, and has a half-width y„where
b,, is the shift and 2y, the decay width of the resonance.

The solution 1$,+E }of Eq. (53) is clearly of the form

10.+E)=c«)&'Io)+ g da, a,«W'a, fa, Io» (56)
kl, k~

where c(E) and dk k (E) are to be determined. Then

1(kik21H I
a)1~

c(E} E —k, +it) —P g
ki, k2 kl k~

+i~ g I «ik2 IH I
~) I'@E —ek &k

kl, k2

(60)

Tfj —c(E)(kiki
I
H

I
a)(a

I
H

I
kik2} (57)

The it) in (60) can obviously be dropped so long as
(kikz

I
H

I
a) does not vanish identically on the hypersur-

face ek, +ea,=E. Then

Substituting the above expression for 1$,+x) into (53) and
equating coefficients of the linearly independent states

10) and pk, pk, 10) on both sides, one finds the fol-

lowing coupled equations for the coefficients:

e,c(E)+ g (a
I
H

I kik~)dk a (E)=(E+ig)c(E) 1, —
kl, k2

(ek, +ek )dk k (E}+c«)«ik2 I
H

I
&)

=«+it))da, a,«) .

c(E)=[E—e, b,,(E—)+iy, (E)]

with

6, (E)=P 1(kikg I
H

I
a)1'

E —&a, —&k,

y, (E)=n g 1(kik21H I
a)1 5(E —ek, ek, ) .—

k), k2

Thus finally

(kik2
I
H

I
a)(a

I
H

I
kik2)

E —e, b, (E)+i—y, (E}

(61)

(62)

(63)

These equations are very similar to those occurring in
Pano's theory2s of resonances associated with atomic au-
toionizing states. Aside from notation, they differ in two
ways: (a) Eqs. (58) contain an inhomogeneous term (the
—1 on the right-hand side of the first equation) whereas
Fano's Eqs. (3) are homogeneous; (b) the ill in Eqs. (58)
implies an outgoing-wave solution, whereas Fano's solu-
tion corresponded to a standing wave.

Solution of the second Eq. (58) yields

c(E)(kik2 I
H

I
u)

da a «)= E —ek —ek +ig
1 2

=c(E)(kik2
I
H

I
a)

In the narrow-line approximation 5,(E)=b,,(e, ) and

y, (E)=y, (e, ), Eqs. (62) reduce to the standard golden-
rule expressions, ' and (63) yields a Lorentzian line shape.

In a more realistic model than (48), including direct
scattering interaction terms

|( a, tr' «,«ikz IH I kik2 4'a, Nk;

and/or more than one resonance, it is not possible to
evaluate the exact scattering amplitude Tf; in closed
form. Nevertheless, in such cases the subset of divergent
Born-series contributions resulting from multipole poles
E =e, can be effectively summed by solution of
Dalgarno-Lewis equations of the form (53), yielding com-
plex resonance self-energies b„iy, Th—e corr.esponding
resonant contribution to Tf; must then be added to the
nonresonant contributions.
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