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Nonlinear stopping power of an electron gas for slow ions
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Theoretical calculations of the stopping power of the electron gas for slow ions, U g v~, are re-

viewed. New results are presented for stopping power and effective charge based on nonlinear

density-functional calculations. Extensive comparisons with available experimental data show that
these new theoretical results are clearly superior to earlier calculations based on linear theory.

INTRODUCTION

The problem of energy losses suffered by energetic ions
moving in condensed matter is one of continuing interest
in physics. When the ion velocity is greater than the aver-

age velocity of valence electrons in solids, a good descrip-
tion of the loss process can be achieved using a linear-
response theory to calculate the loss due to the valence-
band electrons together with atomic-type calculations to
evaluate the effect of losses due to core-electron excita-
tions.

The case of ions traveling with velocities smaller than
the Fermi velocity of the electron gas is of special interest
in cases such as the slawing and reflection of hydrogen
atoms impinging on the inner wall of a controlled ther-
monuclear reactor. ' Oen and Robinson have estimated,
using Monte Carlo methods, the number and energy of
atoms reflected from a metal surface. Following the
pioneering work of Fermi and Teller, some calculations
were done within the framework of linear-response theory.
An attempt ta include the effect of an electron bound to
the projectile was perfarmed by Ferrell and Ritchie. 4 The
first nonlinear calculation in the static limit was per-
formed by Echenique, Nieminen, and Ritchie using
density-functional formalism to calculate the response of
the electron gas to the perturbation produced by the in-
coming ion. The density-functional formalism has proven
to be a very useful tool in calculating many atomic and
electronic processes similar to the stopping po~er such as
the impurity resistivity and the damping rate of a vibrat-
ing atom on a metal surface. Phase shifts and cross sec-
tions related to these problems have been calculated by a
number of authors. ' In this paper we present a de-
tailed analysis of the density-functional results and corn-
parisons with experimental data, as well as predictions of
the stopping power for media for which no experimental
data are available. An extension of the results for pro-
tons to higher charge is also included, showing in a
natural way the "Z~ oscillation. " We begin with a
description of the linear-response theory and the Ferrell-

Ritchie theory to put the density-functional results in
their proper perspective.

L h

where a=(4i9m)'~, r, =(3/4mn)'~ is the "one-electron
radius" (the radius of a sphere containing, on average, one
electron), and n is the electron density. We use Hartree
atomic units, in which e =A'=m =1, throughout this pa-
per. In linear-response theory the stopping power of a
medium for a charged particle, with charge Zi, is given

by
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where e(k, co) is the longitudinal dielectric function for the
stopping medium. For high velocities a classical dielectric
function can be used
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where y is a positive infinitesimal and to& is the electron-

gas plasma frequency, co& (3lr, )'~ . This lead——s to an ex-

pression having the general form of Bethe's result" for

THEORY OF ELECTRON-GAS
STOPPING POWER

Fermi and Teller' were the first to report a calculation
of the energy loss per unit path length of a slow, charged
particle moving with velocity v much less than the Fermi
velocity vF. They were interested in seeing if the intrinsic
lifetime of a muon (with v «vF) is comparable to the
time required for it to slow to rest in the medium. By ar-

guing that due to the exclusion principle only electrans
within a small range v just under the Fermi surface will

participate in the lass process, they found the energy loss
of a muon per unit distance traversed in the medium to be
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the stopping power of an electronic system for the
charged particle given by

dW =Z2P l
2vN2

'
2

dR U Q)p

For high-velocity ions, U ~&UF, an oscillatory wake' trails
the ion. These oscillations constitute an important mode
of energy loss for swift protons and are related to many
interesting phenomena. ' However, we shall restrict our
attention here to the case of slow ions. At low velocities
(u «uF) an improvement over the Fermi-Teller formula
can be obtained using, in Eq. (2), the full random-phase
approximation (RPA} for e. ' An expression was ob-

tained by Ritchie' using an approximation to the RPA
dielectric function valid for small co and k & kr, where k~
is the Fermi momentum. This is equivalent to assuming
that the potential around an ion is exponentially screened

by density fiuctuations in the electron gas. The result is
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The results for (I/u)(dW/dR) in linear-response theory
using the RPA dielectric function together with the re-
sults of Fermi and Teller [Eq. (1}]and Ritchie [Eq. (5)]
are shown in Fig. 1. Figure 2 shows the linear-response
calculation for the variation of d W/dR for a proton with
velocity u in an electron gas of a density equal to that of
aluminum. The total is computed from Eq. (2} using the
RPA dielectric function. ' The contribution of the
plasmons, which give rise to the wake for u~&uz, is
shown separately in the figure. Experimental data are
shown as dots in this figure and were taken from the work
of Young. " Ferrell and Ritchie calculated the stopping
power of an electron gas for slow, singly ionized He atoms
in linear-response theory using a wave function for the
bound electron determined self-consistently in the electron
gas. The stopping power is then

FIG. 2. The stopping power of an electron gas with r, =2.07
(corresponding to aluminum) for a proton of speed v. The con-
tribution of plasmon excitation to the energy loss per unit path
length of the proton is also shown. The dots show experimental
data from Ref. 15.
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with F(k ) given by
2
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~

A hydrogenic wave function U(r) =(a In. )'~ e "is em-
ployed, with the parameter a determined variationally by
minimizing the total energy of the ion plus a bound elec-
tron in the electron gas.

An improvement over the linear-theory result can be
achieved using Feynman-diagram methods. Including the
effect of the Pauli principle by restricting electron states
to those outside the occupied Fermi sphere only in the last
transition, one finds ' for the stopping power

O
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where cr„ is the usual transport cross section. In terms of
the scattering cross section o, O.„is given by
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FIG. 1. Comparison of calculations of stopping power of an
electron gas for a slow proton in the form (1/v)(d8'/dR}
versus the one-electron radius r, .

z g (I+1)sin (5i 5i+i), —4m

kF I =0

where 8 is a scattering angle in the proton's frame and 5i
is the phase shift of the Ith partial wave for scattering of
electrons at the Fermi surface from the screened potential
of the proton. A similar analysis was used by Josephson
and Lekner' to study the scattering of ions by He quasi-
particles.
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DENSITY-FUNCTIONAL CALCULATION

For low ion velocities the physics of the ion —electron-
gas interaction occurs via scattering at the Fermi surface
and can be codified in phase shifts at the Fermi energy
leading to scattering cross sections and energy loss. Elec-
trons at the Fermi surface are viewed as being scattered by
the screened potential of the ion. The stopping power for
a slow ion can then be written ' as

dW 3u
3 g (1+1)sin [51(&z)—51+&(&F)]

kFrs 1=0

where 51(EF} are the phase shifts at the Fermi energy for
scattering of an electron off a spherically symmetric, self-
consistent potential. Since the ion is moving slowly com-
pared with the electrons at the Fermi surface, we can use
the results of a static calculation for such a potential.

Ferrell and Ritchie used Eq. (11) to calculate the stop-
ping power assuming a linear-response, Yukawa-type po-
tential for the ion-electron interaction potential

—KP

V(r}=Zi
T

(12)

with a =3alr, ' Work by A. lmbladh et al. and others
shows that the results of nonlinear density-functional cal-
culations for the density fluctuations and induced poten-
tials of a static proton in an electron gas differ substan-
tially from the ones obtained from linear-response theory.

The ratios of the induced electron density calculated in
the nonlinear theory to the results obtained in the linear
theory using the random-phase approximation' vary over
the range of metallic densities from 1.93 for r, =1 to 33.7

EFFECTIVE CHARGE

Brandt' was able to condense a great amount of data
by introducing the concept of effective charge. An ion of
charge Z~ will move in a medium accompanied by a
cloud of bound electrons consisting of Xi(u„) electrons
extending over a radius A(u, ), where u, is the ion-electron
relative speed. In Brandt's approach, electrons in the
medium at impact parameter larger than A encounter the
ion as a point charge Qi(u, }=Zi—N, (u, ) in distant col-
lisions, but a larger ionic charge than Qi for smaller im-

pact parameters. On averaging over all impact parame-
ters, the effective charge Zi (u, ) of the ion of given Qi
that is appropriate for the stopping power of the medium
is therefore always larger than Q&(u, ). This method has
provided much physical insight, and has allowed the con-
densing of a great amount of otherwise dispersed experi-
mental data. In this paper we shall be working within a
nonlinear framework in which the bound states of the ion
will appear in a natural way, making it unnecessary to re-
late the effective charge to the mean ionic charge. In fact,
the mean ionic charge is sometimes zero because all bound
states are occupied. Thus we take another definition for
the effective charge, defining it in an operational manner
as

for r, =6. This last number is within 10% of the ones
which will be obtained from the ls atomic orbital, show-
ing as they should the atomic nature of the bound state in
a dilute electron gas. These results prove that, for low ion
velocities, linear response docs not describe adequately the
scattering process and one has to go beyond it to calculate
correctly the stopping power.

We have used the density-functional formulation of
Hohenberg and Kohn, and Kohn and Sham to calculate
the self-consistent potential due to a static charge sub-
merged in an electron gas at metallic densities. In the
density-functional method one writes for the one-electron
Schrodinger equation

r

2
+ V(r)+u"'(r) 4;(r)=E;4;(r), (13)

which yields the electron density

p(r)= g ~
+;(r) ~'. (14)

The potential V is that seen by an electron as a result of
the nonlinear screening of the ion by the electron gas.
The screening charge is composed of two parts, a bound-
state component and a contribution from scattering states.
The exchange and correlation potential u"'(r) is a local
potential depending on the total density p(r). The sum in
Eq. (14) is over electron states in the gas. We have only
dealt with spin-compensated systems in our calculations,
although the results could be easily extended in a straight-
forward manner to magnetic systems. The local-density
approximation for exchange and correlation has been used
with the parametrization given by Gunnarsson and
Lundqvist.

Equations (13) and (14) are solved self-consistently to
get the charge density and the phase shifts for the conduc-
tion band as a function of the energy. The scattering
phase shifts at the Fermi energy due to the complete
screening of the nuclear charge will satisfy the Friedel
sum rule

Z, =—g (21 + 1)51(EP) .
2

lT
(15)

The calculated phase shifts satisfy the Friedel sum rule
for all energies to a good accuracy, usually within 0.02
electrons.

RESULTS

Hydrogen and helium projectiles

In their brief report Echenique, Nieminen, and Ritchie
compared the results for H and He with the ones obtained
by linear-response theory and by the method of Ferrell
and Ritchie. For completeness we reproduce those re-
sults together with a detailed comparison with experimen-
tal data ' and predictions of stopping powers for pro-
tons and a particles in solids for which no reliable experi-
mental data are available.

In Fig. 3 we show the comparison of the density-
functional results with the ones obtained by linear theory
and the method of Ferrell and Ritchie. Curve A was cal-
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energy loss scales as the square of the ionic charge and
can be easily understood in terms of the atomic character
of the scattering process in a very dilute electron gas.
This shows very clearly if we calculate the effective
charge as a function of r, for a He nucleus. In Fig. 4 we
show the results of such a calculation. The effective
charge, Eq. (10), varies from Z; =2 for r, ~0 to 0.46 for
r, =6. It becomes less than 1 for r, & 2.7.

We show for protons the comparison between the
density-functional results and the ones obtained with the
commonly used Lindhard and Winther (LW) equation.
In the latter approach, which does not go beyond linear
response, the low-velocity stopping power is given by

1+2X /3
ln

377 X2

X (1—X'/3) -' (16)

10 I I I

4 5 6

FIG. 3. Stopping powers as functions of r, . Curve A is cal-
culated in linear-response theory, Eq. (5), for Z~ ——1; curve 8
from Eq. (5) with Z& ——2. Curve C is the result from Ref. 4 for
a slow, singly ionized He atom. Curves D and E are the
density-functional results for a proton and a helium nucleus,

respectively. In all cases v &g UF.

culated in linear-response theory, from Eq. (5) for Z& ——1,
while curve B was computed from the same equation for
Z& ——2. We show in curve C the results of the calculation
by Ferrell and Ritchie of the stopping power for a slow,

singly ionized He atom calculated from linear-response
theory using a wave function for the bound electron deter-
mined self-consistently in the electron gas. Curves D and
E were computed from the density-functional approach
for a proton and a He nucleus, respectively. At metallic
densities a doubly occupied bound state exists below the
bottom of the conduction band. As r, decreases toward
values much less than 1, our results tend toward agree-
ment with linear theory, that is, all stopping powers tend
to be proportional to Z~. This is easily visualized when
one considers that for large electron-gas densities the
screening of the ion is so strong that bound states cannot
exist; thus the electrons are scattered essentially by an ex-
ponentially screened potential with screening length ap-
proaching zero as r, goes to zero. It is interesting to note
that for r, & 1.2, curve E, computed for a He nucleus, ac-
tually lies above curve B, computed from Eq. (5) taking
Z] —2e

As r, increases, the energy loss for both H and He de-
creases more rapidly than predicted by linear theory due
to the fact that bound states of atomic character develop,
thereby tending to screen out interactions with the elec-
tron gas. The energy loss of a He nucleus at large r, is
smaller than that of a proton at the same velocity. This is
qualitatively different from any hnear theory in which the

1 dW
UF dR

1 dR'
U dR Lw

as a function of v/uF, where UF is the Fermi velocity.

I I I I
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FIG. 4. Effective charge, Eq. (10), for a He nucleus as a
function of r, calculated using the density-functional approach.

where X =0.166r, . This form is a very good approxima-
tion to the values predicted numerically by using the exact
RPA dielectric response function for an electron gas in
Eq. (2). The dramatic increase of the nonlinear, density-
functional results over those of the linear-response theory
is clearly shown in Fig. 5 for Z& ——1. For many solids
used in experiments (1.5 & r, &2.5) the density-functional
results show increases of -65% over the Lindhard-
Winther predictions.

A comparison of experimental data with the density-
functional predictions for protons using the results of
Echenique, Nieminen, and Ritchie (ENR) was made by
Mann and Brandt. They collected data on targets cover-
ing a wide range of atomic numbers and plotted reduced
stopping powers
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FIG. 5. Comparison of the stopping power for a proton cal-
culated using the density-functional approach to the Lindhard-
Winther predictions of Eq. (16).
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The values of r, were taken from Isaacson's tables. '
Their comparisons are shown in Fig. 6 with the density-
functional results given by the curve labeled ENR and the
Lindhard-Winther prediction labeled LW. The curve la-
beled FR is the theoretical prediction by Ferrell and
Ritchie as described above. As a guide to the comparison
of data with theory, short-dashed lines are included giving
a +15'f/o variation around the line ENR. The generic data
shown in the figure, described in detail in Ref. 22,
represent values for 20 different elemental solids in the

range 4 &Zt & 83. Mann and Brandt conclude from these
comparisons that within the uncertainties of the data (1)
the density-functional predictions give good agreement
with the data, and (2) the linear dependence on velocity
holds up to v=vF.

Additianal comparisons of theory and experiment may
be made using results compiled by Andersen and
Ziegler in a book on stopping powers. They collected
experimental data for a wide range of energies and em-
ployed simple analytic farms to obtain a "best-fit" for
several elemental solids. For energies below 10 keV, a
simple, velocity-praportional expression for stopping
power is given. These data-based fits are compared with
the density-functional results as stopping-power ratios.
The ratios are shawn as solid circles in Fig. 7 for 16 ele-
mental solids specified by their atomic number Zz. With
the exception af Pb (Z2 ——82) the agreement is similar to
that of Fig. 6. Andersen and Ziegler used an interpolation
scheme (described in Ref. 26) to predict stopping powers
of materials for which no data were available. Compar-
isons for several solids are shown as x's in Fig. 7. Sub-
stantial variations about the density-functional predictions
are seen for these less-reliable estimates.

Ions with Zi &2

We have extended our work to ions with Z~ &2 using
the density-functional appraach. For most charges and
electron densities, self-consistency was achieved. In Fig. 8
we show the effective charge defined by Eq. (10) for
several incident bare ions and for three electron-gas densi-
ties. For r, =4, self-consistency in the calculations was
not obtained for Zi ——15 and 16. This gap is indicated by
the light, dashed line in Fig. 8. The Zi oscillations ap-
pear naturally since they are related to the appearance of
new bound states which are taken into account in a natur-
al way in our self-consistent calculation. A qualitative
understanding of the main features of the oscillation can
easily be achieved in terms of scattering theory and reso-
nance levels in solids, since the problem is analogous to
the residual resistivity due to nonmagnetic impurities in

I.o

0.8

0.6

0.4

0.2

ly

/

/ /
/ /

/
////

THEORIES

LW 1964
FR 1977
ENR 'l9&1

1.2

afar

0.8

Q.e

x~ y x x0
x X

X

X

0
0

I I I I I I I I I

0.2 0.4 0.6 0.8 1.0 1.2

v+F O4 X

FIG. 6. Comparisons of theoretical stopping powers for pro-
tons with experimental data. The curve LW is the Lindhard-
Winter prediction (Ref. 24) calculated from Eq. (16); FR is the
Ferrell-Ritchie prediction from Ref. 4; ENR is the density-
functional result from Ref. 5. The short-dashed Hnes give a
+15% variation about the line ENR. Reference 22 gives the
identity of, and sources for, the generic data shown as solid cir-
cles in the figure.
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FIG. 7. Ratios of stopping powers for low-velocity protons
from Anderson and Ziegler (AZ) (Ref. 26), (de/dR)Az, to the
density-functional predictions of Ref. 5, (dN /dR}qNR. The
solid circles represent experimental data for 16 elemental solids,
while the crosses are interpolations to materials for which no ex-
perimental data are available.
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FIG. 9. Stopping po~er of carbon as a function of Z~. The
density of carbon is taken to be 2 gcm '. The chained curve
gives the theoretical predictions for r, =1.59. The sources of
the experimental data are 0, Ref. 27; k, Ref. 28; $, Ref. 29.

FIG. 8. Effective charge Z &, defined by Eq. (10},as a func-
tion of Z~ for r, =1.5, 2, and 4.

n(Zi —4)

6
(17)

solids. For small charge, doubly occupied bound states
are found in the density-functional calculation. For
Z& ——5—8 the 2p electrons form an unbound, resonant
state in the conduction band. That this will produce a
maximum in the scattering cross section can be easily un-
derstood by taking into account the resonant phase shifts,
approximating them from the Friedel sum rule as

was explained in the analysis of the He versus H results.
Comparisons of experimental data with the theoretical
predictions for stopping power of carbon and aluminum
are shown in Figs. 9 and 10 for 1 &Z, &20. For carbon
we assume a density p=2 gem and four electrons per
carbon atom to produce an electron gas with r, =1.59.
The theoretical predictions for (I/v)(dW/dR), in atomic
units, are shown in Fig. 9 as a function of Z~ with line
segments between the points as a visual guide. The exper-
imental data are from Ref. 27 for v =0.411, solid dots,
Ref. 28 for v =0.826, triangles, and Ref. 29 for v =0.25,
diamonds. The data and theory show the same overall
trends with good quantitative agreement for Z, &7. For
aluminum targets, Fig. 10, the overall trends of theory
and experiment are similar but with substantial disagree-

This will predict a maximum in the stopping power when

5~
——n /2 thus at Z& ——7. Similar arguments explain quali-

tatively the oscillating structure of the curves as maxima
due to 3p, 31, and 4p resonances, while minima are relat-
ed to the formation of closed shells. For a dilute electron
gas the screening cloud approaches the free-atom electron
structure, and the minima appear at the formation of
closed atomic shells as the screening increases due to in-
creasing electronic density. This minimum shifts to
higher ionic charges since a stronger ionic potential is
necessary to compensate the electronic screening and so
have the strength to bind an extra electron. This is clearly
shown in the graph as displacement of the minimum from
the atomic value (Z~ ——10) as the electron density in-
creases (r, decreases). For very small r, no bound states
are formed and linear-response theory should be valid,
and Z; approaches Z&. For the values of Z& shown in
Fig. 8, the ratio of maximum to minimum values in the
stopping power decreases from 25 for r, =4 to 2.6 for
r, = 1.5. The slope of the effective charge as a function of
Z~ changes sign at r, —3 for Z, & 3 as r, increases. This
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FIG. 10. Stopping power of aluminum as a function of Z&.
The chained curve gives the theoretical predictions for r, =2.07.
The sources of the experimental data are 0, Ref. 27; 4, Ref. 28.
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FIG. 11. Stopping power for "well-channeled" ions in the
(110) axial channel of silicon as a function of Zi. The chained
curved gives the theoretical predictions for r, =2.38. The ex-

perimental points are from Ref. 30.
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FIG. 12. Stopping power for "well-channeled" ions in the
(111)axial channel of silicon as a function of Z~. The chained
curve gives the theoretical predictions for r, =2.08. The experi-
mental points are from Ref. 31.

ment in magnitude, particularly around the minimum at
Zi ——11. The experimental data for aluminum are from
Ref. 27 for v=0.411, salid dots, and Ref. 28 for
v =0.826, triangles.

Additional comparisons can be made with Eisen's
data3o's' on the energy loss of "best-channeled" ions in the
(110) and (111)axial channels in Si. The electron den-
sity in a channel increases from a small value along the
axis to values an order of magnitude larger near the
strings of atoms defining the channel. This density varia-
tion is well characterized for the (110) axial channel in
Si.i2 Since a range of electron densities (or impact param-
eters) is sampled in the energy-loss process, we will make
our comparisons with the data using an average electron-
gas density determined by making theoretical and experi-
mental values equal at Zi ——5. These comparisons are
shown in Figs. 11 and 12. For the (110) channel we have
r, =2.38 and for the (111)channel, r, =2.08. As expect-
ed, these values correspond to lower densities than the
average valence-electron density (corresponding to
r, =2.0). In both figures the overall trends in the data are
closely reproduced by the theoretical calculatians.

CONCLUSIONS

We have reviewed earlier linear theory and presented
new results for the energy loss of slow ions in an electron
gas. Variatians of stopping power with incident ion
charge, the Zi oscillations, arise in a natural way in the
nonlinear theory, while such oscillations are not expected
to arise from Brandt's effective-charge theory. ' The
comparisons of these new results with experimental data
emphasize the need to employ a nonlinear theory in stud-
ies of slow-ion interactions with solids.
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