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For a bare Coulomb potential energy —Ze /r, it is shown that the total electron density p(r) for

an arbitrary number of closed shells is given by p(r)=(2Z/ao) p, (r)dr where p, is the s-state

contribution to p(r). This yields Katos theorem [Bp{r)/t}r]„0——( 2Z/—ao}p{r=0) as a limiting

case. That Bp/Br is always negative follows, for all distances r. For the nth closed shell, with den-

sity p„{r},it is further shown that R„o{r}= [(—ao/2Z}Bp„/Br]'r', with R„o the s-state radial wave

function. This result can be used to construct an explicit differential equation for p„(r).

I. INTRODUCTION

(Bp/Br), o=( 2Z/a )p(r =—0), ao=l /nie

as a special case, and a spatially dependent generalization
of Kato's theorem is thereby established for the Coulomb
field. A further result that follows from this generaliza-
tion is that Bp/Br &0, proving that p(r) is a monotonical-

ly decreasing function of r for any arbitrary number of
closed shells in the Coulomb-field case.

Section III is then concerned with an individual closed
shell. An explicit relation is written for the radial wave
function R«(r) for s states in terms of p„(r) and it is
pointed out that this can be used to derive a differential
equation satisfied by p„(r). In the Appendix, the generali-
zation of Kato's theorem established in the present paper
for a Coulomb field is discussed in relation to approxi-
mate density-functional theories.

II. GENERALIZATION OF KATO'S THEOREM
FOR COULOMB FIELD

Blinder's work leads to the result

p„(r)=P„' —P„P„", (2.1)

In a recent study, ' the bound-state Slater sum for elec-
trons moving in a bare Coulomb potential energy
V(r) = —Ze /r has been related to that for s states, for
arbitrary temperature. In the present paper, we consider
the purely quantum-mechanical case of an arbitrary num-

ber of closed electronic shells in the bare Coulomb field
defined above. The focal point is the total electron densi-

ty p(r), built by summing the density p„(r) of the nth
closed shell over n.

The outline of the paper is as follows. In Sec. II we uti-
lize a result of Blinder that constitutes a generalization of
Unsold's theorem. This allows the density p„(r) to be
written in terms of the s state ra-dial wave function
R«(r).3 This result is used here to relate the total density
p(r) directly to that part, p, (r), contributed by the s states
alone. This relation is shown to contain Kato's theorem '

where P„=rR„, with R„, the s-state radial wave function
for the principal quantum number n P„. satisfies the
Schrodinger equation

I'„"+ e„+2@i Z8 P„=O, (2.2)

with e„denoting the usual hydrogenlike levels. However,
we shall proceed to eliminate these by dividing both sides
of Eq. (2.2) by P„and then differentiating with respect to
r. We thereby obtain

Pl 8p p lrt pt p lt p2
7l (2.3)

Now the left-hand side of Eq. (2.3) is readily shown from
Eq. (2.1) to equal —t)p„/Br, which yields

Bp„

Br
2Z

Pno ~

ao
(2.4)

where p«(r) denotes the s-state density R« =P„/r .
One can sum Eq. (2.4) over an arbitrary number of

closed shells to relate the total density p(r) thereby ob-
tained to the s-state contribution to this density, p, (r), by

Bp(r) 2Z
p, (r) . (2.5)

"dr ao

Since p„(r) tends to zero as r tends to infinity, Eq. (2.5)
can be integrated to obtain

2Zp(r)= I p, (r)dr .
Qo

(2.6)

Equation (2.5), or its integral (2.6), constitutes the desired
generalization of Kato's theorem (1.1). Evidently, at
r =0, the p, d, etc. , states give zero contribution to
p(r =0) which is therefore simply equal to p, (r =0), and
obviously Eq. (2.5) then reduces to Eq. {1.1) as r ~0.

A further interesting consequence of Eq. (2.5) is that,
since p, (r)) 0, t)p(r)/t)r &0, showing that the total elec-
tron density p(r) decreases monotonically from the origin.
The writer knows of no exception to this result for real
atomic densities, although, of course, the present rigorous
proof is restricted to the unscreened Coulomb field.
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t 1/2
ao t)p„(r)
2Z Br

(3.1)

where we have utilized the fact that Bp„{r)/dr(0, the
equality sign obviously corresponding to the nodes of
R~(r). This relation (3.1) is of interest in relation to
density-functional theory. In particular, such a functional
relation between R~ and the electron density p„{r}could
be made the basis for the use of the variational principle
to determine p„(r). However, the resulting Euler equation
for p„(r) can only be equivalent to that obtained by substi-
tuting P„=rR, with R as in Eq. (3.1), into the
Schrodinger equation (2.2). Using

HI. RADIAL s-STATE %BLAUE FUNCTION
FOR nTH CLOSED SHELL RELATED

TO ELECTRON DENSITY p„(r)

Returning to Eq. (2.4), we can write, since the radial
wave functions are real quantities,

APPENDIX: DIFFERENTIAL EQUATION
FOR CLOSED-SHELL DENSITY p„(r)

AND GENERALIZED KATO'S 'THEOREM
RELATED TO DENSITY-FUNCTIONAL THEORY

We first record the differential equation satisfied by the
electron density p„(r) of the nth closed shell. This is
found by direct substitution of Eq. {3.1) for R~ =P„/r
into Eq. (2.2). Then one can express the result in terms of
p„(r) and its derivatives, plus the s-shell density p~(r)
given by P„/r =p~(r). The final step is then to use Eq.
(2.4} to eliminate p (r) Th. e third-order nonlinear dif-
ferential equation for the closed-shell density p„(r}is

II
Ps 2Z T PN

rpn +2pg» — r ', + 4Z —
z =0,

2 p, +2 ao ~0

which is readily verified, for instance, to be satisfied by
the X-shell density

P„=—(ao/2Z)r pw (3.2) pi(r) =(Z /trao)exp( —2Zr/ao) .

it is a straightforward matter to obtain a third-order non-
linear differential equation satisfied by p„(r). Since one
would, of course, work with the linear equation (2.2) for
P„, we merely record this third-order equation in the Ap-
pendix.

IV.. SUMMARY AND CONCLUSION

The main results of the present work are embodied in
Eqs. (2.5) and (2.6) which constitute the desired generali-
zation of Kato's theorem (1.1). These Eqs. , valid for all r,
yield the bonus that they establish that c}p/dr &0, which
in turn means that p(r) for the bare Coulomb field de-
creases monotonically with increasing r. %e have noted
that, to date, no exception is known to this inequality ap-
plied to real atomic densities, though, of course, this latter
result is not proved by the present argument.

In addition, Eq. (3.1) demonstrates explicitly that the
s-state radial wave function can be written in terms of the
closed-shell electron density p„(r}. This means that p„(r},
if desired, can be determined from an explicit third-order,
but nonlinear, differential equation. We have not, so far,
found how to generalize this equation (Al) to apply to the
total density p(r) for an arbitrary number of closed shells.
However, because the results of the model problem solved
in this present work have interest for density-functional
theory, we have thought it worthwhile in the Appendix to
relate Eqs. (2.5} and (2.6) to the simplest form of density-
functional theory, namely the Thomas-Fermi method.

' 3/2

pT"(r) = (2tti) ~
p, +

r
(A2}

where p, is the chemical potential of the electron cloud.
One can write the derivative appearing in Eq. (2.5) as

r

t)p "(r) 2sr i~ Zei Ze2

dr h r r
2ttt p+ (A3}

Next, one can obtain the s-state density by solving the
one-dimensional Schrodinger equation (2.2} by a one-
dimensional phase-space argument to obtain

' 1/2

p+' (A4)i TF 2(2tti)'+
rp, r=

Substituting for (p, +Ze /r)'~ from Eq. (A4) into Eq.
(A3), one does indeed find a relation of the form of the
generalization (2.5} of Kato's theorem, apart from the
presence of a factor of order unity, from this simple ap-
proximate density-functional theory.

Naturally by using Eq. (2.4) one could write an equivalent
second-order differential equation for the s-state density

p (r).
In the second part of this Appendix, we shall consider

briefly the relation of the generalization of Kato's
theorem embodied in Eq. (2.5) to the simplest density-
functional theory, namely the Thomas-Fermi method.
Again for the Coulomb field, the Thomas-Fermi approxi-
mation to the total density p(r) is
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