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%e propose an algebraic-eikonal approach to electron-molecule scattering. In this approach the
coupling to both rotational and vibrational molecular states is taken into account simultaneously and
to all orders in the coupling strength. %'e present closed analytic expressions for the transition ma-
trix elements for the two dynamical symmetries of the vibron model for diatomic molecules, the
U(3) and O(4) limits. It is shown that the large-N limit of the O(4) result corresponds to the rigid-
rotor case. The extension to triatomic and polyatomic molecules is straightforward.

I. INTRODUCTION II. EIKONAL APPROXIMATION

The many molecular degrees of freedom complicate the
theory of electron-molecule scattering. A close-coupling
calculation, even for a diatomic molecule, is a very large
undertaking, and the calculation quickly gets out of hand
for a more complex molecule. ' It is also clear that for
high-energy electrons, the full power of close coupling is
not required by the physics. However, except for the
rigid-rotor model of a diatomic molecule, a suitable adia-
batic approximation is not available.

In this pa r we combine recent work on an algebraic
description ' of molecular motion (the vibron model)
with the Glauber or eikonal approximation to scattering
using the adiabatic approximation. We show that for a
diatomic molecule treated in this way, the close-coupling
calculation can be done essentially in closed form, treating
both elastic scattering and inelastic scattering to rotational
and vibrational states. The method makes contact with
adiabatic eikonal calculations for the rigid rotor, but goes
considerably beyond them.

Since our method is quite simple, it is easily generalized
to more complicated molecules. The spectra of triatomic
molecules have already been treated in the vibron
model. ' Our method can also be applied to other probes
and to more sophisticated interactions. In this paper,
however, we outline the first steps. We consider high-
energy electron scattering from a diatomic molecule and
take only dipole coupling. We first review the adiabatic
eikonal approximation applied to this problem (Sec. II)
and then (Sec. III} review the algebraic or vibron model.
In Sec. IV we show how these two approaches are com-
bined to give simple closed-form expressions for the
scattering amplitudes with particular emphasis on the two
algebraic subgroup chains O(4) and U(3). In Sec. V we
present some simple calculations for 5-eV electron scatter-
ing from a strongly polar diatomic molecule with a dipole
moment of 10 D (e.g., CsC1). We consider elastic scatter-
ing, excitation from the ground state to the first rotational
state, and excitation of the first 0+ and first 1 vibration-
al states. We see that the effects of channel coupling on
all of these cross sections are very significant. We also see
that the vibrational coupling cross sections are very sensi-
tive to the molecular dynamics. In Sec. VI we conclude
with a discussion of the results and possible extensions.

The Hamiltonian for electrons scattering from a mole-
cule is

H =T+H,i+ V(r}, (2.1)

r=b+zk . (2.2)

If the projectile energy is much larger than the strength
of the electron-molecule interaction and is also sufficient-
ly large that the projectile wavelength is small compared
with the range of potential variation, one may use the
eikonal (or Glauber) approximation to describe the scatter-
ing. If, in addition, the interaction time of the projectile
with the molecule is short compared with the time for
molecular excitations, or equivalently the projectile energy
is large compared with the molecular excitation energies,
one may neglect the excitation energy of the molecule
with respect to the projectile energy (adiabatic approxima-
tion). This is equivalent to neglecting H, i in Eq. (2.1).
Under these two approximations the scattering amplitude
for scattering of an electron from a molecule with initial
state

~

i ) to a final state
~
f) can be written as

(2.3)

where q is the momentum transfer

q=k' —k, (2.4)

k =
~
k

~

and X(b) is the phase that the electron acquires
as it traverses the molecule

X(b}=— ' J dzV(r), (2.5)

where tn, is the electron mass. In Ref. 7 Ashihara et al.

where T is the kinetic energy of the incoming electron,
H, i describes the molecule and V(r) represents the in-
teraction between the projectile and the molecule. The
projectile coordinate r is measured from the center of
mass of the molecule. The initial and final momenta of
the projectile are k and k', respectively. The z axis is
chosen along the direction of the momentum of the in-
coming electron, k, and impact parameter b is perpendic-
ular to this direction,
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V(r)=a(r)r T, (2.6)

where I is a dipole operator exciting rotational and vibra-
tional states in the molecule. For this interaction the
eikonal phase is

X(b) =g(b)b T,
with

(2.7)

have shown that the small-angle (8&50'} scattering of
electrons of a few eV energy from a diatomic nonhomopo-
1ar molecule can be approximated by a pure dipole in-
teraction

component of the dipole operator T, and the inverse rota-
tion about ( —b) =(0,—~/2, —()))

e' ' '=R(b)e 'R( —b) (2.9)

(INI INf )f ~ (If ) ~ ((,. )

Illf Nl 2 IIII Ill

Using the properties of the Wigner rotation matrices and
writing the molecular states in terms of the internal quan-
tum numbers a, the total angular momentum I and its z-
component m, the matrix elements in Eq. (2.3) reduce to

(af lf mf ~e' ' ' —1 ~a;,1;,m;)

Nlg co b
g (b) = — I dza(r) —,

Ak T

(b2+z2)1/2
(2.8) X(af, lf, m ~e

' —1 ~a;,1;,m) .

In Sec. V we will discuss the function a(r) in more detail.
The transition operator exp[i+(b}] can be simplified by
rewriting it as a product of a rotation about an angle

(b) =($,8=m/2, /=0} to the z axis, a simpler form of the
transition operator involving only the z (or m conserving)

I

(2.10)

Finally combimng Eqs. (2.10) and (2.3) and writing the P
integral in terms of a Bessel function, the scattering am-
plitude can be expressed in terms of a one-dimensional in-
tegral over the impact parameter b,

Af((q)=&k& f ' I bdb J)~ . )(qb) (2.11)

The differential cross section for scattering from elec-
tron momentum k to k' is given in terms of Af;(q) of Eq.
(2.11) by

do(a;, I;,m; ~af, lf, mf,.q) 2k z
/ Af;(q)

/

(2.12)

(af, lf, m (e *~a;,1;,m) (2.14)

we will use the vibron model, ' which is an algebraic ap-
proach for describing molecular excitations. In the next
section we will review the main properties of the vibron
model for diatomic molecules and in Sec. IV we will show
that the transition matrix elements of Eq. (2.12) can be de-
rived in the framework of the vibron modeI exactly to all
orders in the coupling strength g (b). This is equivalent to
doing a complete close-coupling calculation in the adia-
batic approximation.

III. VIBRON MODEL

Traditionally, rotation-vibration spectra in molecules
have been studied in terms of a Born-Oppenheimer poten-
tial approach, in which one has to solve the Schrodinger

where the factor of 2 comes from summing over final
electron spin states (here assumed unobserved). In the
adiabatic approximation k'=k. If no molecular spin sub-
states are known, Eq. (2.13}then becomes

do (a;,I(-+af, lf,'q)
i Af;(q) i

z . (2.13)
I + I, NNI

This is the formula we will use to calculate cross sections.
For the calculation of the transition matrix element

equation to obtain the energy spectrum. For diatomic
molecules it has been shown that a simple Morse potential
is a valid approximation to the interaction potential and
provides a good description of the experimental spectra.
More recently, an algebraic approach ' called the vibron
model has been proposed as an alternative method for
describing the properties of rotation-vibration states in di-
atomic molecules. Such an algebraic approach becomes
particularly useful in the treatment of the following two
problems. Firstly, the vibron model can easily be general-
ized to triatomic and polyatomic molecules. In Refs. 5
and 6 this extended version has been applied to the
rotation-vibration spectra of both linear and nonlinear tri-
atomic molecules as well as to linear tetraatomic mole-
cules. Secondly, in processes such as electron-molecule
scattering one has to calculate transition probabilities,
which in general involve a complicated sum over inter-
mediate states. Using the algebraic properties of the vib-
ron model and the adiabatic approximation these quanti-
ties can be derived exactly to all orders in the coupling
strength. This last property will be used extensively in
Secs. IV and V to treat electron scattering from diatomic
molecules.

In the remainder of this section we will outline some
basic properties of the vibron model as it was proposed
originally for nonhomopolar diatomic molecules. '

Rotation-vibration spectra in diatomic molecules arise
from the n=3 dipole degrees of freedom, which can be
chosen as the interatomic distance, r, and two angles, 8
and ((), characterizing the orientation of the molecule. In
the vibron model the energy spectra of the bound states
are generated by a dynamic algebra of the unitary group
in n+ 1=4 dimensions, U(4}. The algebra is realized in
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terms of four boson, or vibron, creation (annihilation)
operators, divided into a scalar boson with L =0+, s
(s), and the three components of a vector boson with
L =1,p„(p„),p = —1,0, 1. The generators of the U(4)
algebra are the 4 =16 possible bilinear products of a vib-
ron creation operator (s,p»} and a vibron annihilation
(s,p„}operator. The most general Hamiltonian which is
invariant under the dynamical group U(4} can be written
in terms of an expansion in these generators. Keeping
only terms which are at most quadratic in the generators
and imposing spherical symmetry and parity invariance,
the vibron Hamiltonian is given by

T„"'=d iD»+d2(AD+ D n~ )„'"

+d3 (L D +D L )„'"+d4(QD +D Q )„' '+

(3.7)

where the ellipsis represent higher-order terms and Q is a
quadrupole operator

g- (2)Q»=(p p)» (3.8)

%e discuss the dipole operator in more detail in the next
section.

H =Hp+a&nz+a2nznz+a3L L+a4D D, (3.1)

where

np p'——p = v3—(p'p)'",
(i)

D» =(s p+p s)»

(3 2)

with p„=(—1}»p „. In the above equations (3.1) and

(3.2) nz is the number operator for p vibrons, L is the an-

gular momentum operator, and D is a dipole operator. By
construction, the Hamiltonian of Eq. (3.1} conserves the
total number of vibrons,

[H, N]=0,
where N is the number operator

(3.3)

A A.

Hp =a p +a pN +a p'X (3.5)

Given N and H the energy spectrum can be obtained by
diagonalizing H in an appropriate basis. It is interesting
to note that the vibron model Hamiltonian has two
dynamical symmetries, which are related to two different
chains of subgroups of U(4),

U(4) &U(3)&O(3)~O(2),

U(4) &O(4) DO(3) zO(2) .

(3.6a)

(3.6b}

In a dynamical symmetry the Hamiltonian is written in
terms of only invariants of the subgroups appeu~ng in the
corresponding group chains and as such represents a spe-
cial case of the more general Hamiltonian of Eq. (3.1}.
The advantage of these dynamical symmetries is that it is
possible to derive analytic expressions for the energy spec-
tra, transition probabilities, etc., which can be used easily
to analyze the experimental data.

To calculate electromagnetic transition rates for dipole
(El) radiation one has to express the El operator in terms
of vibron operators. In Ref. 3 the following form of the
E1 operator was suggested,

N =n, +n& ——sts +ptp (3.4)

Therefore, all eigenstates of H can be labeled by [N], the
symmetric representations of U(4). The first tenn in Eq.
(3.1}contains all terms that only contribute to the binding
energy and not the excitation energies. It can therefore

only depend on the number operator N:

T„'"=dD» ——d(s p+p s)„"'. (4.1)

Since the dipole operator in Eq. (4.1) is linear in the gen-
erators of U(4), the transition operator of Eq. (2.14),

U(e) =e

e=e(b) =dg (b),
(4.2)

can be regarded as a U(4} transformation and the transi-
tion matrix element

Uf; ——(f
~

U(e) (i ), (4.3)

as a U(4) representation matrix. The representation ma-
trix for many bosons (vibrons} can be derived from a
transformation of the single bosons,

U(e)s U( e)=s +if[—Do,s ]

+—,(i~)'[Do, [Do.s'1]+

=(cosa)s +i(sine)po,

U(e)p OU( e) =i (sin—e)s + ( cosa)p 0,
U(e)p„U( —e)=p„, p&0 .

(4 4)

In general the transition rn.atrix element can be ex-
pressed in terms of a three-dimensional integration. '

However, using the symmetry properties of the transition
operator of Eq. (4.2) we show in the Appendix that in this
case the general expression for the transition matrix ele-
ment can be simplified to a single integral. If the Hamil-
tonian has a dynamical symmetry, it is possible to derive
closed analytic expressions for the transition matrix ele-
ments. In the next two parts of this section we will
present the results for the U(3) and the O(4) chains of
(3.6a) and (3.6b), respectively.

IV. TRANSITION MATRIX ELEMENTS
IN THE VIBRON MODEL

The transition matrix elements, Eq. (2.14) can be
evaluated in the context of the vibron model by using ex-
plicitly its algebraic properties. For the excitation of
low-lying states in diatomic molecules, it is a reasonably
good approximation to keep only the first term in the di-

pole operator, ' Eq. (3.7),
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A. U(3) limit 1.0—

The U(3} limit arises if we take a4 =0 in the Hamiltoni-
an Eq. (3.1). The ground state then contains only s bo-
sons while the excited states are labeled by the number of
p bosons, n,

n =0, 1, . . . ,X. (4.5)

For a given value of n there is a multiplet of states with
different values of the angular momentum, 1, 0.5

1=n, n —2, . . . , 1, or 0,
and its third component, m,

m = —I, —1+1, . . . , l .

(4.6)

(4.7)

The eigenstates in the U(3) limit are monomials of rank
N nin t-he s bosons and of rank n in the p bosons,

~
[N],n, l, m ) =A„&(st) "(pt pt)' '" '

~
[l],l, l, m ),

(4.8)

0

where A„~ is a normalization constant
~'

(21 +1)!!
(N n)!(n—+i+ I )!!(n—I)!!

' 1/2

(4.9)

FIG. 1. Probability, I'„(e), of exciting a state belonging to the
vibrational multiplet, n, in the U(3) limit as a function of the
strength parameter e. The number of bosons is N= 5.

/
[l],l, l, m ) = „8'1~(p )

/
0)

' 1/2
2l + 1 v'(I +m }!(i—rn)!

4m I!2'+) (p )=

and
~
[l],l, l, m ) is proportional to a solid harmonic in p

' 1/2

P„(E)= y ~
U„/ p(e)

~

1

(cos e) "(sin e)", (4.13)

X( t )k( t
) I k m)( t) 2(l k+ )

(4.10)

U„g (e')=([N],n, l, m
[
U(e) [ [N],n'=i'=in'=0)

N!(21+ 1}
(N —n)!(n +1+1)!!(n—1)!!

1/2

X(cosa) "(isine)" . (4.12)

For the present we assume that the molecule is excited
from its ground state, n =1=m =0. The action of the
transition operator on the ground state is

U(e)
~
[N],n =i =m =0)

[(cosa)st+i(sine}pp]
~
0) . (4.11)

N!

Taking the overlap with an arbitrary final state the transi-
tion matrix element in the U(3) limit is

as a function of e. For @=0 of course only the ground
state (n=0) can be excited. With increasing e all excited
states will be populated until for e=n/2 only the states
belonging to the highest vibrational multiplet (n =N) can
be excited. In Fig. 1 we only show P„(e) for the interval
0&e&nl2. Since P„(e) is symmetric around e=nl2 and
is a periodic function with period m,

P„(e)=P„(n +@), (4.14)

implying that for e=rr all strength again is concentrated
in the ground state. This behavior is an artifact of the
finiteness of the model space of the vibron model. How-
ever, if e is sufficiently small with respect to m, it is still a
good approximation to use the vibron model and the final
result will not be influenced by the finite number of states.
In the next section, where we will discuss some applica-
tions of this approach, we will come back to this point.

For large N the energy spectrum of the U(3) limit of
the vibron model corresponds to that of a three-
dimensional harmonic oscillator '" and the transition ma-
trix elements become even simpler functions of e. In tak-
ing this limit we have to take into account the fact that
the strength of the dipole operator, d, Eq. (4.1), scales
with the reduced matrix element of the dipole operator,

In Fig. 1 we show the probability, P„(e), that a state be-
longing to a vibrational multiplet characterized by the
quantum number n can be excited,

(4.15)
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Similarly, we introduce a reduced e by e=el''3N with

e=dg(b) . (4.16)

For N large, e becomes small while e remains finite. As-

suming further that nlN «1, the large-N limit of the
transition matrix element in the U(3) limit is

' 1/2

lim U„„(e)=i" 21+1
(n +1+1)!!(n—1)!!

As before, the state
~
[l],l, l, m) is proportional to the

solid harmonics in p, Eq. (4.10). In Eqs. (4.20) and (4.22}
we have introduced the operator

(4.24)

Since I commutes with all generators of O(4), including

the dipole operator D& of Eq. (4.1),

[D~,I ]=0, (4.25)

p'2/6 (4.17)
it is invariant under the action of the transition operator
U(e):

for e«V'3N and n «N. U(e)I U( e)=—I (4.26)

0=%,E —2, . . . , 1 or 0. (4.18)

For a given value of o the allowed values of the angular
momentum 1 are

B. O(4) limit

The Hamiltonian, Eq. (3.1), has O(4) symmetry if we
take a!——o2 ——0. The energy spectrum in the O(4) limit is
characterized by a series of bands that are labeled by the
quantum number 0,

Again, we assume that the molecule is excited from its
ground state o =N, l =m =0. Since the dipole operator is
a generator of O(4), it cannot connect different representa-
tions of O(4). Therefore, only states belonging to the
ground-state band, o =N, can be excited. The action of
the transition operator on the ground state is

U(e)
~
[N],o=N1 =m =O)

[W/2]

g F»(N, O)[(cose)s +i(sine}po] "(I )"
~
0) .

1=0,1, . . . , o . (4.19} (4.27}

The eigenstates in the O(4} limit are

~ [N],o, l, m ) =8~(sist —pt pt)' ' ~'
~
[o],o, l, m ),

(4.20)

Taking the overlap of Eq. (4.27) with an arbitrary final
state we obtain, after some algebra, the following expres-
sion for the transition matrix element

U~I~(e) = ( [N],cT, l, m
(
U(e)

( [N],o'=N, l'=m'=O)
where 8 is a normalization constant

' 1/2
(2o+2)!!

(N+o+2)!!(N—o )!!
(4.21)

2 ¹!(21+1)
(N +1)(21+1)!!

' 1/2

(i sine)'

and the state with N =o can be written I i/2[X —I)]
X g F»(N l)(cose)

k=0
(4.28)

This expression can be rewritten in terms of ultraspherical
(Gegenbauer) polynomials'~

t &/2(~-I) j
~
[o],o, l, m ) = g F»(o, l)(st) I 2 (stst pt pt)»—

k=o

with

X
~
[l],l, l, m)

1/2

(4.22) ' 1/2
(21 +1}(N—1}!

o(e)= (i sine)'1!2I

F»(o, 1)= 2 (!r—1}!(21+1)!!
cr!(cr+I + 1)!

XCiII i (cose) & (4.29)

(
i )» (o —k)!

(o—1 —2k)!k!
(4.23)

or equivalently in terms of hypergeometric functions'2

&in =o«}=N

' 1/2

(i sine) 1!2,2F!(——,(N —1),—,(N +1+2);1+—,;sin e) .
N+1 N —1! 21+1! (4.30)

=o«}I' ~ (4.31)

As an illustration, we show in Fig. 2 the probability,
Pi(e) that a state with angular momentum 1 belonging to
the ground-state band a =X, can be excited,

I

Again we see that with increasing e all states in the
ground-state band are successively populated until for
e=ml2 the state with maximum angular momentum
I =X has the highest probability. The probability func-
tion, Pi(e), Eq. (4.31},has the same symmetry properties
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0.5

described in Refs. 2 and 3 in terms of the O(4} limit of the
vibron model with N=29. In the following we have
chosen %=20. We note that the results for elastic
scattering (ground state to ground state) and for the exci-
tation of the low-lying rotational (1«N) and vibrational
(n «N) states do not depend on N [see Eqs. (4.17) and
(4.33)]. Next we have to specify the form of a(r) of Eq.
(2.6). A pure dipole form a(r)=1/r makes no sense
physically since the actual atomic and molecular structure
will remove the singularity at small r. We therefore take

a(r) = e

T +Rp
(5.1)

For 5-eV electrons and a dipole moment of 10 D, there is
little sensitivity to Ro so long as it is in the range
0.2 A &Rp &0.75 A. For the present schematic calcula-
tions we take Ro ——0.50 A. With this choice for a(r} the
coefficient e of Eq. (4.2}becomes

FIG. 2. Probability, I'I(e), of exciting a state with angular
momentum, /, belonging to the ground-state band o =X of the
O(4) limit, as a function of e. The number of bosons is E=5.

Rp

m, ed m, ed

+kRo i}1'kRo & 1 i I ID I
10+i &

f( )
x

1
(1+x )'/ +1

( 1+x2)1/2 ( 1+x2)1/2

(5.2a)

(5.2b)

(5.2c)

as P„(e) in the U(3) limit, Eq. (4.14).
For large N the energy spectrum of the O(4) limit of

the vibron model corresponds to that of a Morse oscilla-
tor. '" In taking this limit again we introduce the re-
duced t. by

v'N(N+2)
(4.32)

& [N],N, 1
~
~8

~ ~
[N],N, O&

Assuming that for large N, e remains finite and 1/N « 1,
the transition matrix element can be expressed in terms of
a spherical Bessel function

lim Uz~o(e) =i'v'21+ ljt(e} (4.33)

for e «N and 1 «N. We note that the scattering ampli-
tude Eq. (2.11) for the large-N limit of the O(4) case is
identical to that in the classical "rotor" calculation of
Ashihara et al.

V. APPLICATIONS

In this section we will discuss some schematic calcula-
tions in the algebraic-eikonal approach to electron scatter-
ing from a diatomic molecule. These calculations are
meant primarily to be exploratory and to illustrate the
method. To be concrete we choose as an example the
scattering of 5-eV electrons from a strongly polar diatom-
ic molecule with a dipole moment of d=10 0=2.08 e A
(e.g., CsCl has d=10.42 D). We will present the results
for three different cases: (a) the U(3) limit (three-
dimensional harmonic oscillator), (b) the O(4) limit (Morse
oscillator), and (c) a mixed case. The total number of bo-
sons, N, can be determined by the number of vibrational
bands. 2' For example, the spectrutn of Hz ('Xe+) was

For the molecular Hamiltonian we take

H', ]
——a&n&+a4D D, (5.3}

with ai &0, a4 ——0 in the U(3) limit and ai ——0, a4&0 in
the O(4) limit. For the mixed case, ai &0 and a4 &0. In
Table I we show the value of the parameters ai and a4,
the corresponding value of eo, Eq. (5.2b) and the excita-
tion energies of the 1, , Oz, and iz states. We note that
for this realistic choice of the parameters the effect of the
band cutoff on the differential cross sections is negligible.

After having specified all parameters we now study
elastic scattering (0+, ~0+i), the excitation of the first ro-
tational state (Oi ~1~ ) and the excitation of the first vi-
brational states (0+i~Os+, 1z ). In contrast with the classi-
cal rigid-motor model, in the algebraic approach the cou-
pling to vibrational states is taken into account autornati-
cally when ai&0. The calculation of the scattering am-
plitude, Eq. (2.11) is numerically sensitive because of the
long range of the dipole interaction. To improve the con-
vergence we first subtract the terms up to fourth order in
the coupling parameter e [Eqs. (5.2) and (4.2)] from the
integrand of Eq. (2.11) and later add the contributions of
these terms to the scattering amplitude.

In Fig. 3 we show the calculation of the cross section
for elastic scattering (0+i —+0+i) and for the excitation of
the first 0+ vibrational state (0+i —+02+) for the U(3) case.
Also shown is the lowest-order contribution for the elastic
scattering. Since in our model there is no diagonal
electron-molecule coupling, the lowest-order contribution
is of second order (quadratic} in the coupling strength e of
Eq. (5.2). The significant difference between this lowest-
order contribution and the full calculation shows the im-
portance of the multiple scattering or equivalently of the
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TABLE I. Values of the parameters in H', ~, Eq. (5.3). The corresponding value of eo and the excita-
tion energies of the li, Oq, and 12 states in units of A;, i=1,2,3. The results for the cross sections are
independent of A;. The number of bosons is %=20.

E,„/A;
a4

U(3)
O(4)

Mixed

A)
0

76A3

0
—A2
—A3

0.887
0.327
0.571

1

2
31.7

2
80
82.0

3
82

130.4

channel coupling.
In Fig. 4 we show the 0+i~0+i cross section in the O(4}

limit. In this limit the dipole operator can only excite
states belonging to the ground-state rotational band. The
excitation of vibrational states, e.g., Oi ~02 is forbidden
in this case. The lowest-order contribution to the cross
section is the same as for the U(3) case since it only de-

pends on the dipole moment d. Again the full result
differs very significantly from the lowest-order contribu-
tion showing the importance of channel coupling. The

)0-11

cross section for elastic scattering is very similar in the
U(3) and O(4) limits, indicating that it is controlled al-
most entirely by the value of the dipole moment.

Fig. 5 shows the mixed case for elastic scattering and
for the 0+i~02 transition. The lowest-order contribution
to the elastic cross section is, by construction, the same as
in the two previous cases (see Figs. 3 and 4). The cross
section for the excitation of the first 0+ vibrational state
is very different, since it depends on the details of the
mixing.

In Fig. 6 we show the cross sections for excitation of
the first and second excited 1 states in the U(3} limit.
Also shown is the Born approximation for the first excit-
ed 1 state. In this case the Born amplitude is of first or-
der in the coupling parameter e, and the first-order eikon-
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FIG. 3. Differential cross section for elastic scattering
(Oi ~0~ ) and the excitation of the first vibrational 0+ state
(0~ ~02) in the U(3) limit [a, &0, a4 ——0 in Eq. (5.3)]. The
dashed curve shows the lowest-order (-e ) contribution to the
differential cross section for elastic scattering. The parameters
used in the calculation are discussed in the text and Table I.
The number of bosons is %=20.
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the caption of Fig. 3.
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([N],cr, l, m
I
U(e)

I [N],o', 1',m'& can be evaluated using three properties of coherent states'

=5 5 ([cr),cr, l, m
I
U(e) I [cr],cr, l', m & .

I [al at. &= (A3)

The matrix elements on the right-hand side of Eq. (A2)
I

Firstly, O(4) basis states with N =o can be projected out
from the coherent state

1/2

I [o],cr, l, m &=—, ' ' f,d cos8 f dye Yt~(8,p) I [cr],a„(&=0,8,p) & .1 (cr+1+ I)!(cr—1)! 2e
(A4)

with

a&(X,8,y) = e'"D„"p'(cp,8,0) . (A5)

Secondly, the action of U(e) on the coherent state is

U(e)
I
[cr],a„&=e'~

I [cr],a„'&,

and thirdly the overlap of (A3) with an O(4) basis state is given by [cf. Eq. (4.22)]

(,[o],cr, l,m
I
[cr],a &=~a! g Eg, (cr, l)(1—Ia I

)'/' ' "'(1—Ia I
—a a)

' 1/2

9't' (a) .

(A6)

(A7}

Combining Eqs. (Al) and (A4)—(A7) we obtain the following expression for the matrix element of Eq. (A2):

([cr],cr, l, m
I
U(e)

I
[cr],cr, l', m &

2 (a+1'+1)!(cr—1')!
= 2'

(cr+1+ 1)!(cr—1)!

1e' d(cos8)Y~~(8, y=O)(1 —Ia'I )' ' "9'~~(a'),—1

a'=a'(X=0, 8,y=O, e) . (AS)

By expanding the eigenstates of the most general one- and two-body vibron Hamiltonian, Eq. (3.1) in the O(4) basis as

I [N],v, l, m & = pa" (1)
I [N],o, l, m &, (A9}

the matrix elements of U(e) between eigenstates of H are given by

' 1/2

([N],v, l, m
I
U(e) I [N],v', 1',m'& =2n5 ~ ga" (l)a" (1')

(cr+1+ I )!(cr—1)!

1

x f d(cos8)Yt~(8, y=O)(1 —Ia'I')'/'e —"+& (a')

a'=a'(7=0, 8,p=O, e) . (A10)

Furthermore, the integral over cos8 can be replaced by a (N+ 1)-point Gaussian summation due to the fact that the
eigenstates of the vibron Hamiltonian are polynomials in the boson operators of order N. In the numerical calculations
presented in Sec. V we have used (A10) to evaluate the transition matrix elements.
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