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Coulomb interaction in the final state of electron impact ionization:
Effects on the triple differential cross section
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An approach to the calculation of the impulsive (e,2e) cross section, which extends the plane-

wave-impulse approximation to include the long-range tails of the Coulomb interaction in the final
state, is presented. The model divides the collision space into two regions: an inner sphere where

short-range forces are active and responsible for the impulsive character of the collision, and an
outer region where the tails of the Coulomb interactions act on the charged free particles, which can
be treated in a semiclassical way. An extensive comparison between the predictions of this model
and experimental data relative to atomic hydrogen and helium, as derived from the literature, is
presented. The model constitutes an improvement over previous impulsive models, mainly for the
angular distributions of (e,2e) events.

I. INTRODUCTION

The study of (e,2e) reactions has attracted growing in-
terest since the first experiments' on the reaction mech-
anism and the spectroscopical applications. By an (e,2e}
reaction we mean an ionization process of an outer or
inner shell of the target atom or molecule, induced by
electron collision. This is, in principle, a many-body
problem involving two free electrons plus a residual ion in
the final state. Several attempts to produce models which
fully describe these ionizing collisions have been made,
and theory has developed along two lines, depending on
the particular kinematics of the experiments.

For completely asymmetry canditions, where the final
electrans have very different energies and emerging an-
gles, first-Born-approximation theories were initially ap-
plied, with various modifications to include the residual
interaction with the ion field (Coulomb-projected Born
approximation), or electron correlation effects through the
use of close-coupling and correlated wave functions for
the target. 4 7 All of these models failed in predicting the
position of the maxima in the angular distribution of the
triple differential cross section and their intensity ratios,
the backward scattering intensity being definitely underes-
timated. A many-body approach pointed at the impor-
tance of carefully choosing the scattering potentials and
suggested that the shape of the angular distribution is sen-
sitive to correlation between the outgoing electrons.
Distorted-wave calculations have also been performed,
differences depending on the choice of the distorting po-
tentials. ' They generally achieved better agreement
with the experiments than first-Born-approximation re-
sults. Recognition of the importance of consistently re-
taining higher terms in the Born series has also been done.
A second Born treatment has shown the importance of
second-order contributions to the {e,2e) cross-section,
both in the asymmetric regime, mainly for what concerns
the backward lobe intensity, and in the symmetric one at

very large scattering angles. ' More recently the possibili-

ty to apply a first-order quantum-defect theory has also
been considered. '

The symmetric kinematics of the (e,2e} experiment in-
volves even sharing of energy between the two final elec-
trons. In the impulsive regime, when the incident energy
is much higher than the binding energy of the target elec-
tron, the many-body problem can be reduced to a quasi-
three-body scattering. A simple but effective approxima-
tian in this case has proved to be the plane-wave impulse
approximation {PWIA), which allows for the (e,2e) crass
section being factorized in twa terms: an electron-electron
collision term, and the squared Fourier transform of the
overlap between the initial atomic state and the final ionic
one. ' The good agreement with the experimental results
is limited, however, to very high energies (E=50 times
higher than the binding energy) and completely symmetric
ar nearly symmetric kinematics. Noticeable discrepancies
faund at lower energies and asymmetric conditions sug-
gested the introduction of more sophisticated models.
Formulations implying optical models for the free-
electron wave functions lead to the fully factorized
distorted-wave impulse approximation (DWIA). '0'~'6
Further approximation to the true optical potential intro-
duces a constant complex potential [averaged eikonal-
wave impulse approximation (EWIA)].'7's In this case
the distorted waves of the free electrons are modified
plane waves in the localized region relevant to the scatter-
ing event. Recently a completely different scheme to
correct the PWIA has been proposed. ' The ideas for this
approach stem from the assumption that the impulsive
ionizing process takes place within a small region of
space, whose radius ro is determined by the wave function
of the orbital involved in the reaction. This region is the
crucial one for the dynamics of the process and is respon-
sible for the short-range behavior of the scattering poten-
tials. Within this domain the. ( e,2e) amplitude can be cal-
culated and factorized as in PWIA. In the outer region

33 851 1986 The American Physical Society



AVALDI, CAMILLONI, POPOV, AND STEFANI 33

the mutual repulsion between the final electrons is taken

into account. The two electrons are treated as semiclassi-
cal particles moving in a Coulomb field, due to the in-

teraction with the residual ion and with each other . As a
result their trajectories are deflected and the change of
momentum suffered by the electrons will affect the dif-
ferential cross section. The purpose of this work is to cal-
culate, on the basis of this approach [plane-wave impulse
approximation plus semiclassical correction (PWIA-SC)],
the triple differential cross section for the ionization of H
and He.

General outlines of the theory are given in Sec. II and
atomic umts will be used throughout the paper. In Sec.
III the results of the calculation are compared with com-
pletely symmetric, energy-sharing, asymmetric experimen-
tal data and with previous calculations. Section IV is de-
voted to comments on the present results and to limits
and possible extensions of the model.

II. THEORY

Z(r;)
V;(r()=—,i=1,2 (2)

Z(r;)=N r; g c„—' J y„''(x';) q&„'(x';).

(3)
X is the nuclear charge and the summation is done over
the totality of filled-up spin orbitals p„"(x},whose occu-
pation number is c„~. This is a reasonable assumption
when both of the outgoing particles are fast enough and
the residual ion behaves like a spectator during the reac-
tion time. Finally, V~2 is the electron-electron interaction

1
V&2 (4)

The formal derivation of the wave function in (1)
should consider the explicit expansion

Under kinematic conditions which are characteristic of
"impulsive" ionization, i.e., large energy and momentum
transfer as compared to the binding energy and momen-
tum of the struck electron, the many-body problem of the
reaction

e +A~e) +e2 +A+

can be reduced to a three-body one.
If the vectors xi ——(r),cri) and x2 ——(r2, cr2) describe the

position and the spin state of the two outgoing electrons
in the field of the infinitely massive nucleus, we can write
the three-body time-independent Schrodinger equation as

Hip H20 Vi V2 V12)'xlx21~&=o

The free Hamiltonian is given by

8' a'810++20
Br) Br2

V„ i= 1,2, is the field seen by the free electron in presence
of the atomic system. The averaged Hartree-Pock field
will be assumed:

G12(E)=(E —Hi() —H2p —V)2+10)

G(1 2)(E)=(E—Hi() —H2() —Vi —V2+i 0)

I yo(& and
I P2(P0}& are single-Particle states, solutions of

the following Schrodinger equations:

«.'—Hio —Vi) Imo) & =0

(Eo H2o V2) Im2(p—o}&=0—'

e„~ and E0 are bound and continuum single-particle ener-
gies, pp is the initial momentum of the projectile. By us-

ing the well known relation G; V;=Got;, the set of equa-
tions (7) can be written in the following form:

I
4)2&=G0(E)t)2(E)

I A), 2) & i

10((,2) & =Gp(E}')2(E)
I 412&+ I 9 pig 2(po) &,

where Go(E) is the free Green's function

Gp(E) =(E —Hi() —Hp()+i 0)

and the new scattering operators are defined as

(10)

(xix2I ~& =~(rir214&&a)a'2 Ix&

where Ig& and IX& are, respectively, the orbital and
spin-wave functions, and ~ implies fully antisymmetriza-
tion. In the nonrelativistic approximation the interaction
of charged particles does not depend on their spin. The
Schrodinger equation (1) determines the orbital wave
function only, while leaving Ig& undetermined and fac-
torized out. To avoid redundancy the explicit spin depen-
dence of the wave functions will be omitted throughout
the derivation. The effect of the identity of the particles
will be finally taken into account in the derivation of the
cross section.

Equation (1) can be reduced to the proper Faddeev
equations for independent systems of two particles in an
external field. Let us put

I ~& =
I 4(2&+ I 4(),2) &

where
I f)2& is the wave function of two particles in-

teracting with each other through the potential V)2, while

If() 2)& is the wave function of the system of two light
particles in the field of a third infinitely massive nucleus
when V)2 ——0. These wave functions satisfy the following
set of coupled equations:

Hip H20)IP)2& V12I~&

Hio H20}IW(1,2)& (Vi+V2) I~&

E being the total energy of the system. They are ex-
pressed in terms of the total Green's function as

I P)2& G(2( E) V)124(1, )2& '

I 4(1 2) & G(1 2)(E)(Vl+ V2)
I P)2&+ I to)t2(po) &

with the usual definitions
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t)2(E)= V12+ Y126o(E)ti2(E} ~

(12)

&12(E}—(Vl+ V2}+(Vl+ V2)GO(E)r)2(E) '

It can be shown that r)2 has the following main feature:

l 1+Go~)2«) l I P)P2 & =
I )pl(P1)V 2(P2) & (13)

where

4(E)=1+T(E)Gp(E),

T(E)=t)2+t)2Gpr)2+r)2Got)2Gpr)2+

(15)

Let us stop the series to the first term, i.e., T(E)=r)2(E).
The following expression is obtained:

I
it) & =

I )po)t2(po) &+Go(1+&)2GO)t)2 I to)t2(po) &

or, in coordinate representation,

001(rl)g 2(r2 Po}

'&
&
'

&
+' &z 'z

1 3 r 3d p)dp
(2n ) P1 P2+l0

x (P1P21 ( I++)2GO)t12 I to)%2(PO) & ~

(18)

To get the value of the ionization cross section the limit

r), r2~ oo shauld be taken. Let us use Jacobian coordi-
nates in a six-dimensianal space sa as to have ri p cosa
aild r2 ~p sinu (a+0) with p-+ oo ~ In this case, by using
the stationary phase method, the asymptotic wave func-
tion is written

( 2)V E )
~ e—xp(imp)( rlr2 I 4&p~ m — Sl2 5y2 T'0(po, pl~p2),

(32m ) p

where

and acts on the plane waves as a distorting operator. The
formal solution of equations (7) can now be written in
serial form

1)t)& = 1412&+ I 4(1,2)& =
I (po)(P2(po}&

+Gp(E)@(E}t12I to)t2(po} &

which is the matrix element of the ionization process we
are looking for. It is the most complete expression of a
first-order approximation with respect to t,2 ~ Any less
crude approximation should include t ~ q at least twice or
more. The formula (19) can, indeed, be taken as the com-
mon starting point for most of those calculations which
consider the distortion effect due to the presence of an ion
field as the main feature to be accounted for. When the
ion field is completely neglected, plane waves are used for
both the incident and outgoing particle (PWIA}. In the
Coulomb-projected Barn approximation the slow electron
is described by a Coulamb wave and the scattering opera-
tor t)2 is replaced by the potential V)2. The EWIA intro-
duces distortion through an averaged optical potential
well, which modifies the plane waves by simply shifting
their wave numbers.

The main problem arising within this approach is for
the function (r)r21|( & in (18) to have the wrong asymp-
totic behavior; we lose information about the correlation
of electrons due to rescattering and are faced with the
divergencies of integrals as soon as we want to calculate
higher-order approximations. Furthermore, due to the
long-range tail of the Coulomb potential, there is a non-
central mutual interaction of the free electrons in the final
state, which should result in a non-negligible effect on the
cross section. Partial account of it has already been at-
tempted, '9' ' and the discrepancies observed between
first-Born-approximation calculations and (e,2e) experi-
ments on hydrogen were reduced. This result prompted
us to move further along this way and to develop the
quantum-mechanical treatment which is presented in the
following.

The basic idea can be found in the paper of
Presniakov and has been recently developed by Popova
and Popov and Mukhamedzhanov et al. It consists in
dividing the space into two regions: an inner one of ra, -

dius ro, where the system undergoes the quantum-
mechanical transition under the effect of short-range in-

teractions; an outer region where the system evolves
asymptotically in the presence of the long-range tail of the
Coulomb potentials. A suitable mathematical frame to
treat this problem can be found in the paper of Mer-
kuriev. 2 Let us write the full interaction responsible for
the (e,2e) impulsive reaction as a sum of two terms; the
first one responsible for the short-range character of the
forces, and the second one including the long-range part
of the Coulomb potentials. By means of the usual step
function

0~ fg Q f)

8(r; rj )=-
J 1, rJ &r;

Tp(poipl~p2) (P)P21 ( 1+r»GO }t)2 I Poly 2(po} &

(20)

the following potential terms can be defined:

V"=V;8(ro r; ), VJ"——VJ8(ro—r; )8(rp —
f& ), —

(22)

and p; =V E r; /p, i.e., (p) +p & )=E. By using the equa-
tion (13), the term To assumes the following expression:

To(P0 Pl P2) = (9 )(Pl)9 2(P2} I ti2 I mo)q2(po} &,

V,.'"'= V;8(r; ro), —V,"J"'=V,J8(r; ro)8(r~ —ro) . —

V is active in the inner region only, while V'"' is active
outside the sphere. Following this notation the Hamil-
tonian Ho can be defined as
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Ho =Hio+Hzo+ ~i"'+ ~z"'+ Viz' (23)

which coincides with the free Hamiltonian of two elec-
trons for ri, rz&ro. The Schrodinger equation (1) be-

comes

« —~o —I"1"—~1"2}&rirz
I 0& =0 (24)

By using the new Green's function G 0
——(E H—o+i 0)

instead of Go, all of the previously obtained results can be
reproduced. The following formula is equivalent to (14):

I
ir/& =

I eo(po) &+G o«)@'«)tlz I so(po) &

4'(E)=[1+T'(E}G"0(E)],

T'(E) =T12+t 12G0T'12+T~12Got 12G0T12+ ' ' '

(25)

(26)

and the two scattering operators Tiz and tiz are deter-
mined by the Lippmann-Schwinger equations analogous
to (12),

= V]2 + V]26{)t]2,

T12 ( I 1 + ~2 )+( I 1 + V2 )Go~12 '

V'"'s are now short-range potentials. The boundary con-
dition

I lpo(po) & is a solution of the following equation:

~lo H20 ~1 ~2 ~12~ )
I lpo(po) & =0 (28)

and only if we negiec«iz~ does
I q&o(PO) & =

I Poi9 2(PO) &

By limiting the series (26) to the first term T'=Tiz (first
order in t iz },it follows that

Under this ansatz the amplitude A and the eikonal func-
tion X satisfy differential equations

( VP )
2 E Poll 1 'yoll't yolll

div&(/I VP')=0.
(34)

(35)

1 being the unitary vector tangent to the curve p(t). The
Gauss theorem allows us to write

div& nA V= xnA m o, (37)

where X can be chosen as the surface of a small tube
parallel to the electron rays, delimited by squares do i,doz
of eikonal surfaces Xi ——const and Xz ——const. Then it is
nAzdcr =const, which is no more than the energy conser-
vation law, and

The relationship (34) corresponds to a set of characteristic
equations which determine the trajectories p(t) = Ir;(t) I of
the electrons in the outermost region. t is a parameter to
which the meaning of time can be attributed. If r;(0)=ro
is chosen, then r;(00) is the coordinate of ith electron at
the detector. The solution of Eq. (34), under validity of
the relations (32}, was done in Refs. 19 and 25. Classical
paths are derived and the effect of the residual Coulomb
interactions to the first order is shown to result in a de-

fiection 58, of the free electrons from the straight line.
The amplitude A(p) is obtained from Eq. (35). Let us
write

Vg=n (p)1, n (p) =(E—I/1"' —V~&' —I iz')'/

(36)

I 0& =
I lpo(po) &+Go(i+T12Go)tiz

I lpo(po) & (29) &z( } &2(0) n(0) der(0)
n (t} do(t)

(38)

Asymptotically, beyond the domain of short-range forces,
i.e., for ri, rz & ro, the equation (24) becomes

(E —a'0) Iy&=0

with the boundary condition

& ri rz
I |( & =

& ri rz I
Go(1+TI2GO}t 12 I O'0(po) &

(30)

&nX 1

E; Ej2r
«1, ~E;ro &&1 . (32)

E; is the kinetic energy of the outgoing electrons and E&z
is their relative energy. Under these conditions, the poten-
tials being weak and slowly varying over distances com-
parable to the wavelength }1,;=1/k;, the Schrodinger
equation in the outer region can be solved semiclassically
by making the approximations of geometrical optics. A
solution is sought for equation (30) in the form

2i E '"—
g ( )elx(P)P (32 )5/2 P (33)

r i, rz ro . (31)——
In the case of symmetric or nearly symmetric (e,2e) ex-
periments at incident energies Eo of hundreds of eV and
for outermost orbitals, the following relationships, on
which first-order approximations rely, are usually ful-
filled: ( 2i l/E )

/
T

— exp(iVE p)
5/2 To Polpl~pz 5/2(32~)

exp( il/ Ep)—
5/2

P
(39)

By matching the expression (39) with the eikonal one,
(33), it is found that

~ (0) 2
0 Po~pi~pzT( ' )

po [1+n (0)/n ( lxl )]
(40)

For spherical eikonal surfaces in a six-dimensional space,
it is da(0)/do(t) =polp'(t). /I (t) is evaluated along the
classical paths of electrons, i.e., if A (0)=A (81,8z) then
A 2( ~ )=32(8, +68„82+582).

As the last step, the amplitude A(0) is to be determined
and matched with the wave function (31). Let us first
neglect the effects of the Coulomb tails in (31) and assume
that for rather big energies the asymptotic expression (19)
is valid at r„rz ro. The presen——ce of the Coulomb tails
in the external region will produce a refiected spherical
wave. It will be
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where

( —2i.v E )'"
(32~)'"
Tp(pp, pi( ~ ),P2( a) ))F(ti (0)/ti ( oo ))

X
P

Xexp[i~Ep —ivln(2VE p)], (41)

tern. That means that the triple differential cross section

will be expanded in the following terms:

d cr ~ [ I Tp(P0 Pi( ao } P2( ao })
dE d caid ciP2

+ Tp(pp,'p2( ~ ),pi( m ) )
I

'

+3
I To(Po Pi( ap ) P2( 00 ))

F(x)=2~x/(1+x),
(42)

—Tp(pp', P2(00),pi(oo)) I'] .

1 1 1V= — +
P2

1

I I i
—I» I

Tp(pp'pi( oo ) p2( oo )) differs fromT0(pp'pi p2) in (19) be-

cause of the angular shifts b8; suffered by the free elec-
trons along their paths in the external region. It has to be
noted that the wave function in (41} now has the correct
asymptotic behavior.

The calculation of the cross section implies the us~}
average over the spin states of two identical particles sys-

I

d'a =4pip2f ( )
dtd idCd2dE pp

d a d o'(8i —68i,82 —682, qr)=C
deil idt02dE dcpidc02dE PWIA

where

(45)

If the plane-wave impulse approximation is adopted to
calculate the scattering amplitude Tp, then the scattering
cross section is finally written as

2m' 1 1

I
P'+P I' IP' —P

I

' IP'+P I'

1
2 (Pp+'q} P (Pl P2} ~2P' '

f, is the e-e factor' calculated on the basis of the t matrix. q is the recoil momentum defined by the relationship

pp+q=pi+p2, while g (q) is the squared Fourier transform of the overlap of the initial atomic state with the final ionic
one. The angles 8; and 82 are the angles formed by pi and p2 with the projection of pp in the plane of pi and p2. y is
then the azimuthal angle of pp. The analytical expression for the angular deflection is

58;= 1 p;cos(ap/2)[
I pi —p2 I +2pjsin(ap/2)]

(47)
Etrp 4

I pi —p2 I
»n(ap/2}[

I pi —p2 I +(s i+p2)sin(ap/2)]

while the coefficient C is given by

4a
(1+a2)2

a =1+2= 2

EOPO

1

4 sin(ap/2)
(48)

a0 81+82 '

III. RBSUI.'TS

The differential cross section calculated by the present
model (PWIA-SC) is compared with experimental data
relative to atomic hydrogen and helium as derived from
the literature. The results of various impulsive calcula-
tions are also presented. They are the simple PYTHIA, the
E%"IA, and, when data are available in the literature, the
fully distorted-wave DWIA.

Atomic hydrogen is the best target in order to test the

I

ionization reaction mechanism. Nevertheless, comparison
with helium is important because of the very large body
of experimental results available for this atom. Moreover,
He ( e, 2e) cross sections are known on an absolute scale in
the impulsive kinematic regime, which is of interest for
the present study.

It has to be pointed out that the radius ro is the only
free parameter of the theory. In the case of He its value
has been determined by fitting the completely symmetric
coplanar cross section as measured at 424.5 eV incident
energy. ' ' The best fit to the experimental data is
achieved for rp ——0.70ap, ap being the Bohr radius. It is
very close to the mean radius calculated from the
Hartree-Fock He(ls} orbital of Clementi and Roetti
( rp ——0.67ap). The derived value has been used
throughout the calculations to predict the (e,2e) cross sec-
tion for all of the kinematical conditions examined. They
are

(i) absolute determination of the cross section in a com-
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pletely symmetric geometry, at scattering angles close to
45' and variable incident energy;

(ii) angular distributions taken in a completely sym-
metric geometry for various incident energies;

(iii) energy-sharing experiments;
(iv) angular distributions taken in coplanar asymmetric

geometry fulfilling the condition of constant recoil
momentum.

The PWIA-SC predictions are first compared with the
absolute determination of the (e,2e) cross section at dif-
ferent energies [condition (i)]. Reliable absolute experi-
mental data exist for symmetric geometry at 45' scattering
angles and 200—2800 eV incident energy. s They are re-

ported in Fig. 1 together with the other available set of ex-
perimental data and with the calculations. The agree-
ment is noticeable all over the curve except for the point
at the lowest energy which is definitely overestimated by
the PWIA-SC. In the region of recoil momentum q=0
explored by these data, the E%IA, which uses the depth
of the distorting potential well as a free parameter, gives
better predictions in the lower energy range.

When angular distributions are measured for condition
(ii), the kinematical conditions are widely changed. At
200 eV incident energy, recoil momenta up to q=1.4ao '

are involved. In Fig. 2 two different determinations
of the angular distribution in coplanar symmetry reaction
are reported together with calculations. The relative ex-
perimental cross sections are brought to absolute scale by
scaling the value at 45' to the measured absolute value. '
Full agreement is achieved by the present theory for what
concerns the shape of the distribution, even at scattering

h
fh

AI Q

gflO
U

'a
0

10
10' 10'

I I I I ~ ~ I

E, (ev}

angles lower than 40'. The absolute value is, however,
overestimated by a factor 1.3. None of the other models
correctly account for the angular shape in this region,
where the correlation effects between the final electrons

FIG, 1. The He coplanar symmetric (e,2e) cross section at
45' scattering angle, plotted as a function of the incident energy.
Experimental data are those of van Wingerden et a/. , Ref. 28
(~), and of Stefani et al. , Ref. 29 (i). Solid curve is the
present PWIA-SC result, the dotted-dashed curve is the EWIA
(7=20 eV).

~
W

4

i

x.7S

..~x1.1 1

l

30
I
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81= 82

I
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/,
'deg
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FIG. 2. The He ( e, 2e) angular correlation measured at 200 eV incident energy and coplanar symmetric kinematics. The measured
cross sections of Camilloni et al. , Ref. 30 (~), and of Fuss et a/. , Ref. 31 (4), are compared with theoretical predictions of the
present PWIA-SC ( ), and EWIA ( V=20 eV) (—~ —). (—~ ~ —) is the DWIA, as calculated by Fuss et al. , Ref. 31. Normaliza-
tion of the relative experimental data has been done by scaling the value at 45 to the measured absolute cross section of van Winger-
den et aI.„Ref.28.
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1.2'.

~ of~1}„
o 4 $ a ~
4
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are expected to be relevant. The more sophisticated
DWIA (Ref. 31) lies below the experiment over the whole
angular range, underestimating the absolute value of the
cross section by a factor 1.4 at the larger scattering angles
(8)50') and by a factor of 2.8 at small angles (8=30').

FIG. 3. The ratio o ~,/ath, between the measured (e,2e)
cross section and the theoretical value, calculated in the present
PWIA-SC, is plotted vs the scattering angle 8=8~——82 for sym-

metric coplanar reactions at 200 {0),400 (I), 800 (0), 1600

(Q), and 2500 eV ( X ) incident energy. The experimental data
are those of Camilloni et a1., Ref. 30, and have been normalized

to the PWIA-SC value at 45'.

The agreement of PWIA-SC improves rapidly as the ener-

gy increases and at 400 eV even the absolute value is well

reproduced all over the distribution. The results of com-
parison for several different energies are summarized in
Fig. 3, where the ratio between experimental data and
theory is shown as a function of the scattering angle. The
experimental data have been normalized to the PWIA-SC
value at 45'. Normalization factors range from 0.75 to
1.1. Disregarding the extreme angular regions, where un-

certainties in the experimental data are large, the measure-
ments are always within + 15% with respect to the theory.

Recently, two experiments in energy-sharing (iii) condi-
tions have been reported. ' In these experiments the in-

cident energy and scattering angles are kept fixed, while
the final kinetic energy is unevenly shared between the
emerging electrons. In Table I the results of Stefani and

Camilloni are reported together with the predictions of
the PWIA-SC, PWIA, and EWIA. The asymmetric
kinematics explored by the experiment are still impulsive

and the presence of any correlation between the two free
electrons, should be evinced by the semiclassical correc-
tion, which in fact achieves better agreement with the
data than the other impulsive approximations at low rela-
tive scattering angles.

The most interesting situation in regard to checking the
predictions of the present model is represented by the co-
planar asymmetric geometry, in which the recoil momen-
tum q is kept almost constant [condition (iv)]. In these re-

TABLE I. The experimental and theoretical (e,2e) cross section on He, relative to coplanar energy-

sharing geometry and 8=8~——82 at 424.5 eV incident energy. Relative experimental data by Ref. 26 are
reported together with theoretical predictions of PWIA-SC, PWIA, and EWIA. Experimental uncer-
tainties are given in parentheses as one-standard-deviation error. Both the calculations and experiment
have been normalized to the completely symmetric value at 45', taken as 1.00.

35'

E)
(eV)

200
220
240
260
270
280
300

(eV')

200
180
160
140
130
120
100

Expt. '

0.50(0.07)
0.48(0.07)
0.35(0.05)
0.25(0.04)
0.20(0.04)
0.12(0.03)
0.14(0.03)

PWIA-SC

0.51
0.48
0.40
0.31
0.26
0.21
0.13

PWIA

0.85
0.80
0.66
0.49
0.40
0.32
0.19

EWIAb

0.57
0.55
0.47
0.37
0.31
0.26
0.17

45' 200
210
220
230
240
250
260
280
300

200
190
180
170
160
150
140
120
100

1.00(0.05)
0.91{0.11)
0.87(0.08)
0.68(0.07)
0.54(0.08)
0.40(0.05)
0.22(0.04)
0.12(0.02)
0.04{0.01)

1.00
0.96
0.86
0.72
0.56
0.40
0.30
0.14
0.06

1.00
0.96
0.87
0.73
0.58
0.43
0.31
0.15
0.06

1.00
0.94
0.88
0.74
0.60
0.48
0.35
0.17
0.08

50 200
230
260
280

200
170
140
120

0.46(0.03)
0.30(0.03)
0.09(0.01)
0.05(0.01)

0.48
0.34
0.13
0.06

0.39
0.28
0.12
0.06

0.46
0.33
0.16
0.07

'Stefani and Camilloni, Ref. 26.
Calculated for 7'=20 eV, Ref. 18.
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FIG. 4. The He (e,2e) cross section relative to the coplanar asymmetric geometry, where E& ——E2, 8&+82 and q=cost=1.0ao '.
The data of Camilloni et a/. , Ref. 33, are relative to 215 eV incident energy. The solid curve is the present PWIA-SC prediction.
The relative experimental data have been normalized to the theoretical value at the largest scattering angle.

actions' ' the condition Ei Ei is alw——ays maintained
while the angles 8i,8z are properly varied. In this situa-
tion the behavior of the cross section is expected to be
determined by the e-e factor, the form factor being con-
stant. Experiments were performed at 215, 409, and 790
eV incident energies and' the relative angle between the fi-
nal electrons was varied from 56' to 110'. In Fig. 4 com-
parison is explicitly presented for the experiment at the
lowest energy, while the global trend of the ratio of exper-
imental to theoretical values is shown in Fig. 5. The ex-
perimental data have been normalized in both figures to
the PWIA-SC value at the largest scattering angle. The
e-e factor, as calculated in the present model, is fairly
good even at energies as low as 215 eV and angles

8i+82&70'. This fact represents an improvement with
respect to the EWIA, which has already failed in fitting
the experimental data at 400 eV incident energy and
scattering angles smaller than 70'. ' At higher energies
the full body of experimental results agrees within +20%
with P%'IA-SC predictions.

As concerns hydrogen, the semiclassical correction has
been applied by choosing the value ro l. ao is used fo——r
the free parameter, as suggested by the result obtained for
He. The experimental data are from measurements by
Weigold et al. 'o in coplanar angular symmetry (Fig. 6)
and asymmetric (Fig. 7) conditions, at 413.6 eV incident
energy. The improvement achieved by the present model
over the simple PWIA and the DWIA is evident in

U

1.2

1.0

0.8 .

0.6-

0
~ ~ $.. Lg

L Qy ~ko $k ~ (( ~'~$ $L g ~ ~

60 70 80 90 100 110

FIG. 5. The ratio o. p$/cTpb between the measured (e,2e) cross section and the theoretical value calculated in the present PWIA-
SC is plotted vs the relative scattering angle 81+82, for coplanar asymmetric reactions where EI ——E2, 8&&8&, and q =cost = 1.Gao .
The incident energy is 215 eV (), data of Camilloni et al. , Ref. 33, and 406 (4) and 790 eV (4), data of Camilloni et al. , Ref. 18.
Each set of data has been normalized to the P%'IA-SC value at the largest scattering angle.
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predicting the shape of the angular distributions. The
asymmetric conditions confirm the accuracy of the
present model everywhere but at the smaller scattering an-

gle (8& ——30').

IV. CONCLUSIONS

30 40 50 60
8,=8, (4eg )

FIG. 6. The H {e, 2e) angular correlation measured in copla-
nar symmetric geometry at 413.6 eV incident energy. The rela-

tive experimental data of %eigold et al. , Ref. 10, are compared
with PWIA ( ———), EWIA (7=13 eV) ( ———~ ), and the

present P%'IA-SC ( ) results. The experimental data have
been normalized to best fit the PWIA-SC curve.

The pure plane-wave-impulse-approximation model has
been extended to include the long-range tails of the
Coulomb interaction in the final state of (e,2e) processes.
The basic idea for the PWIA-SC model is to subdivide the
interaction space in two regions. In the inner region the
collision is described by an impulsive model. In the outer
region a simple semiclassical model accounts for the
three-body effects due to mutual interaction of the two
emerging electrons between themselves and with the ion.
The parameter rc is the radius of the boundary sphere be-
tween the two spaces. For the sake of consistency the pa-
rameter has to be large enough to allow for the correct
asymptotic behavior of the scattered wave function with
respect to the short-range forces responsible for the im-
pulsive collision. Conversely, in order to fully account for
the Coulomb tails, ro should be as small as possible.
Comparison with experiments has suggested an ro value
close to the expectation value of the orbital radius in-
volved in the ionization process. This value is a reason-
able compromise for the above-mentioned requests, thus
allowing for a straightforward application of the model
whenever a valence orbital is ionized. For inner-shell ioni-

I

86'

FIG. 7. The H {e,2e) cross section, relative to coplanar geometry at 413.6 eV incident energy and E& ——E2, is plotted as a function

of 8~ and 82. The solid curve is the present P%'IA-SC result. The experimental data are those of %'eigold et al. , Ref. 10.
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zation much care must be taken in applying the PWIA-
SC. In this case the outer region should include the
charge density of the valence orbitals, so that further in-
teractions of the final electrons are to be taken into ac-
count in the semiclassical approximation.

This work has shown P%IA-SC to be a realistic model
provided the incident energy is larger than 200 eV and the
kinetic energies of the final electrons are comparable.
Under these conditions, the (e,2e) angular distribution

shapes are very well predicted, especially concerning the
smaller scattering angles. At lower incident energies and
momentum transfer, when the impulsive assumptions are
no more valid, the model should not be expected to work.

Anyway, the good agreement between PWIA-SC and
experiments achieved in the impulsive regime suggests
that the long-range e-e correlations in the final state are
relevant and should be introduced for a complete descrip-
tion of the ( e, 2e) reaction mechanism.

'Permanent address: Institute of Nuclear Physics, Moscow
State University, Moscow 117234, U.S.S.R.
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