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A dynamical description of spectral shifts and widths of positron planar-channeled radiation is

presented. The presence of we11-defined valence electron collective oscillations or plasmons as docu-

mented in electron-loss spectroscopy is proposed as one mechanism for experimentally observed neg-

ative shifts. Qualitative comparison with the experimental data at 55 MeV for diamond, silicon, and
LiF is indicated.

I. INTRODUCTION

Relativistic planar-channeled positrons in crystals may
occupy bound energy eigenstates in the transverse direc-
tion. Spontaneous transitions between these discrete states
yield intense, narrow-width, strongly forward-peaked x-
ray radiation. ' Channeling radiation from positrons of
approximately 55 MeV has been observed in silicon, dia-
mond, germanium, and LiF. According to the har-
monic potential model of Pantell and Alguard, a single
spectral envelope should be observed. This composite
structure results from a set of closely spaced spectral lines
arising from weak anharmonicity and the associated
natural line-broadening mechanisms. In most experi-
ments to date on positron channeling, such a structure
has indeed been observed but with a perceptible negative
shift. This paper examines these negative shifts, as well as
the accompanying spectral widths, from a dynamical ap-
proach by using a density-matrix treatment.

We have recently shown that in the case of high-energy
electron planar channeling, the presence of nondegenerate
transition frequencies can yield negatively shifted spectral
lines. Specifically, each bound eigenstate effectively re-
pels the adjacent level through intermediate or virtual
transitions by an amount significantly depending on the
bound electron energy level. In the case of positron chan-
neling, however, the transition frequencies are nearly
degenerate, and the effects of intermediate bound-bound
(b-b) transitions on spectral shifts nearly cancel. This
motivates our investigation here of the influence of inter-
mediate bound-free (b-f) transitions on spectral line
shifts.

In previous studies of electron planar channeling, the
electric field fluctuations associated with the thermal
motion of the ions, i.e., phonons, were emphasized be-
cause the channeled electrons are localized near the ionic
planes. ' For positron channeling, however, the relevant
electric field fluctuations are principally associated with
the valence electrons since the positrons are confined near
the ionic midplanes. ' Electron-loss spectroscopic
(ELS) studies have documented that the valence electrons
collectively behave in the form of relatively long-lived
plasmon excitations for the crystalline samples we shall

consider. These experimental results are of essential im-
portance in our identification of the electric field fluctua-
tions with coherent plasmon phenomena. Because the
samples are ordinarily around room temperature ( ~ eV)

or less and the valence plasmon energies are typically
greater than 15 eV, the valence electrons have only zero-
point collective motions with plasmon occupation number
zero. As the channeling positron traverses the crystal, vir-
tual processes result where plasmons are created and sub-
sequently annihilated. The effect of these virtual transi-
tions on the spectral characteristics of the channeling ra-
diation is to yield dynamical line shifts and widths. These
are understood most conveniently through a density-
matrix formulation which we employ here. " For the
three low-Z samples to which we apply this simple for-
malism, qualitative agreement with the experimentally ob-
served negative shifts and widths is found. In the case of
higher-Z elements such as germanium or tungsten (W)
(Ref. 12), the presence of more complicated band struc-
tures prevents us from reliably applying the theory as
presented here.

The paper is organized as follows. In Sec. II a density-
matrix equation of motion is obtained for the channeling
positrons interacting with the valence electrons of the
crystal. In Sec. III the line shifts and widths of the chan-
neling radiation are obtained from the ensemble-averaged
density-matrix equation of motion. Section IV uses a sim-
plified density fluctuation model for comparing our re-
sults with the experimental data at 55 MeV for diamond,
silicon, and LiF.

II. THE DENSITY-MATRIX EQUATION
OF MOTION

We consider a system of channeling positrons interact-
ing with the valence electrons of the crystal. The Hamil-
tonian for the channeling positrons may be written as

H =Ho+5V,
where Ho describes the channeling in the ensernble-
averaged planar potential:

Ho +%[cod+co(q)]a a(——q, t)a~(q, t) .
a,q
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Here a (q, t) [a (q, t}] is the creation (annihilation)
operator of the transverse state a in the x direction with
momentum q in the y-z plane, z is the main channeling
direction, and co and to(q) represent the directional posi-
tron energy. ' The perturbation term 5V represents the
interaction potential of the valence electron density oscil-
lations or plasmons and the positrons:

5 V= f dr fdr' V(
~

r —r'
~

)5n„(r')n, (r), (3)

RQ (k, t)= V ~ (k)5n&(t), (10)

V~~(k)=V(k)F(k) f dxe "g~(x)g~(x} .

In Eq. (10), 5nz is the density fluctuation operator for the
valence electrons given by

5ng(t}=nf, (t)—(ng(t) },

5n„(r)=n„(r)—(n„(r)}, (4)

where n„(r) and n, (r) are the density operators for
valence electrons and channeling positrons, respectively. '3

The fluctuating valence electron density operator Sn„(r} is
given by

where

n„(t)= g b~(t)b, +~(t) .
q

In addition,

Qt, (k, t)=Q .( —k, t), 5n„(t)=5n q(t), (12)

gz(r) = g e 'W(r —Rt ),
+0 I

(7)

where Eo is the number of lattice points, and W(r —Rt)
is the Wannier function localized around the lattice site
Rt. The Wannier function is related to the atomic wave
function and forms an orthonormal set. For the channel-
ing positron we use

%,(r)= ge'~'t'g (x)a (p, t),
a, p

(8)

where g (x} is the transverse wave function and p is the
projection of r onto the (y,z) plane. For a bound (free)
positron, g (x) is the one-dimensional harmonic oscillator
(plane) wave function. '6

In the y-z plane the wave function is a plane wave with
momentum p=(p„,p, ), and the crystal area in the y-z
plane as well as the crystal volume are taken as unity for
simplicity. Using the Fourier expansion,

V(
~

r —r'
~

) = g V(g)e'O"

substituting Eqs. (5), (6), and (8) in Eq. (3) and taking
k.—+ —k, the interaction potential 5V in the momentum
representation becomes

where angular brackets denote an ensemble average. %e
assume in Eq. (4} that (n„(r) )=(n„(r))~, where ( )z in-
dicates an ensemble and planar average, independent of
the low-current positron beam. '

Using the field operators 4'„(r) and %,(r}of the valence
and channeling particles, we may rewrite the density
operators in second quantized language:

n„(r)=%„(r)%„(r), n, (r)=%,(r)%,(r) . (5)

In the momentum representation %„(r}is given by

ql„(r) = g gq(r)bq(t),
q

where bq (bz) is the creation (anmhilation) operator for a
valence electron with momentum q. '3 The wave function

g~(r) is chosen as"

and F(k) is a form factor [ ~

F(k)
~

—1] given by

F(k)= f dr W'(r) W(r)e (13)

The density fluctuation operator 5nq represents the
creation and annihilation operators for plasmons with
momentum k and energy %co, where co~ =(4ne n, /
m, )' is the plasma frequency. The density n, is the
average valence electron density and m, and —e are the
mass and charge of the electron, respectively. Also, 5nq
can be explicitly represented as

5n„(t)=c„(t}+c „(t}, (14}

where cq (cq) is the creation (annihilation) operator of a
plasmon. Thus the valence electron plasmon free Hamil-
tonian Hz becomes

Hz g fico& [cq(——t)cz(t) + —,
'

] . (15)

[ag(p', t),ai (p, t)]+=5; i5p p,
[a;(p', t),aJ(p, t)]+—0,

and the Heisenberg equation of motion,

iA—p J(p', p, t) =[p J(p', p, t),H], (17)

together with the Hamiltonian [Eqs. (1), (2), and (9)], a ki-
netic equation for the channeling positrons is obtained:

pj(p', p, t) =—i [mj+m(p', p)]ptj (p', p, t}

+i g [Q«(k, t)p~j (p'+ ki, p, t)
k, a

—p; (p', p —k&, t}Qi (k, t}], (18)

The density matrix for the positrons is defined as"

p;, (p', p, t) =a; (p', t)a, (p, t) . (16)

Using the usual anticommutation relations for the posi-
trons

5V= g A'Q N(k, t)a (p+k, t)a (p, t),
p, k
a,a'

(9)
where

+(p,p) =$(p ) +(p), — (19)
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p', p, ki are all taken to be in the y-z plane

(ki ——k —k x).
In Sec. III we develop an equation of motion for the

ensemble-averaged density matrix and obtain expressions
for the channeling radiation line shifts and widths.

ci,(t)p~j(p'+ki, p, t)-ci, (t)p; (p', p —ki, t)
—i(co —k c)t i [cu(p', p)+co,"]tP z e gj

ck(t)pij(p kliPit} ct(t)pfj(p ip+kiit)
i(M~ —kzc)t i fcy{p,p)+gp,"]tp z

(23)

(24)

III. LINE SHI~S AND WIDTHS
OF CHANNELING RADIATION

Of primary interest is the time evolution of the quasi-
static portion p,

'.~(p', p, t) of the ensemble-averaged density
matrix, where

i [~,&+~(p', p)]t
P J(P' P t}=PJ(P' P t}e (20)

We need to find the oscillatory dependence of the opera-
tors in Eq. (18). For the plasmon operators ci,(t) and

ci,(t), the oscillatory behavior is obtained using the equa-
tion of motion [Eq. (17)] with the Hamiltonian Hz [Eq.
(15)] and the anticommutation relations to yield directly,
for k, )0,

—f'co t iCO t
ci,(t)-e ~, ci,(t)-e (21)

ci,(t)-e ~, ci,(t)-e
where

1, k, )0
k ~0.

(22)

The operators appearing in Eq. (18} are
Q(k, t)pij (p'+ ki, p, t) and Q(k, t)pj (p', p —k„t). From
Eqs. (10) and (14), we need in particular to find the oscil-
latory part of the operators:

ci,(t)pij(p'+ki, p, t), ci,(t}pij(p' —ki, p, t),
cz(t)ptj(p', P —ki, t), ci,(t)pi(p', P+ki, t) .

Using the equation of motion, Eq. (17},with the Hamil-

tonian Ho+Hz gives for k, &0 the following oscillatory
dependence:

l

For a collective mode of energy fico~, changing k~ —k
corresponds to to&~ —to& from a reality consideration of
the physical fields. ' Thus for all k we can write

ci,(t)pj(p'+ ki, p, t)-ci, (t)pi(p', p —k&, t)
—i~(ru —k c)t i[re(p', p)+op,. ]t-e e

cir(t)pij(p' —ki, p, t)-ci, (t)pi(p', p+ki, t)
i~(u —k c)t i[co(p', p)+co&&]t-e p ' e

(25)

For k, &0, the term (co& —k,c)(—) in Eq. (25) [Eq. (26)]
represents the annihilation (creation) of a plasmon and a
decrease (increase) of the channeling particle energy.

The equation for pit(p', p, t} is obtained by using Eq.
(20) in the left-hand side (lhs} of Eq. (18) and Eqs. (25)
and (26) in the right-hand side (rhs) of Eq (18):

Pij(P', P, t)

=i g [Qt;(k, t)ptj(p+ki, p, t)e
k, l

p;i(p', p—ki, t)Q i—(k, t)e "], (27)

where

&Qj(k, t) —= V~, (k)[ci,(t)e * +c~ &{t}e~"] (28)

and the oscillatory parts of ci,(t) and c i, (t} are given in

Eq. (22), Vij(k) is found froin Eq. (11),and

Q;,.( —k, t) =Q,;(k, t) .

where we used that for a highly relativistic positron
to(p)=pc and to(p+ki, p)=k,c. In Eq. (23) the exponent
—co& +k,c represents the annihilation of a virtual
plasmon Acoz and the gain in energy haik, c of the channel-
ing particle, while in Eq. (24) the exponent cd —k,c indi-
cates the generation of a virtual plasmon and the loss of
channeling particle energy. To extend Eqs. (23) and (24)
foi k &0, reality considerations give'

Integrating over time in Eq. (27) and taking k~ —k gives

p'i(p', p, t) =p'z(p', P,O)+i g f dt'[Q;~(k, t')ptj(p' —ki, p, t')e —pj(p', p+ki, t')Q ij(k, t')e " ] .
k, l

(29)

Upon iterating by using Eq. (29) in the rhs of Eq. (18), ensemble averaging, and dropping the angular brackets in p' we

obtain

t ~ ~—p'~(p', p, t)= —g dt'[(Qi;(k, t)Q0( kt'))p i(ip', pt')e
l, l', k

I

(Qi(k t)Qi —« t'}&pit(p'+ki, p+k„r')e'"'"'+'""

ice it+icoI.; t—(Q ~p(k, t')Qii(k, t) }pi i(p' —ki, p —ki, t')e

+(Qit(k, t')Q.t(k, t))pt (p', p, t')e j' " ], (30)
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where me use the approximation

(Q(k, t)Q t(k, t')p') =(Q(k, t}Q (k, t') ) (p') .

In obtaining Eq. (30) we have assumed that the plasmons are almost independent modes and the average

(Q(k, t)Q(k', t') ) differs from zero only for k =k' and depends on t t'—.
Changing the integration variable in Eq. (30) from t'~~=t t', w—e note that because of the oscillatory terms in Eq.

(30), the main contribution to the I integration occurs for I -0. Thus we can use that piJ(p', p, t —~)=p«J(p', p, t). In-

tegrating over r and time averaging over the fast oscillations give

t Pii(P «P«t) I [Nti+N(P «P)]Pii(P «P«t)

—y [Gli(k)+GlJj(k)]PIJ(p P t)+ y [GliiJ(k)+Glut J(k)]5m„,upyil'(P +k1«P+k1 I)
/, k I,I', k

(31)

where p'J(p', p, t} has been transformed back to p &(p', p, t)
by Eq. (20), 5„„,, is the Kronecker 5,
Q,J(k, t}=QJ., ( —k, t) is used,

Thus Q~~(k, t) [Eq. (28)] can be represented as

II1Q~ ~(k) =e5E» (k, t)X~ ~F(k), (38)

t
GIJ(k) = J dI (QIJ(k, t)Q,J(k, t ~))e—
Gtti J(k) = I dI.(Qti(k, t)Q tJ(k, t —I-))e

(32)

and

e5E, (k, t) =ik» V(k)5ni, (t) (39)

where 5E»(k, t) is the plasmon electric field in the x direc-
tion as seen by the channeling positrons,

and the subscript t denotes a time average over oscillator
terms.

Including in Eq. (31) only the terms proportional to

p~J
(p', p, t} for bound states i &j,pJ is found to obey

t
—P«J(P'«P«t)-I [e1IJ+~lJ+~0(p «P)]PIJ(P'«P«t)

5ni, (t) =ci,(t)e ' +ct i,(t)e

Inserting Eq. (38) in Eq. (32) then simply gives
'2

6, (Jk)= —
/XiJ i

[F(k) [

(40)

1

(2)
PIJ(P', P,t),

+ij
(34) X v E„,t E„,t —~ e (41)

where A'biJ and R/riJ(2) correspond to energy shifts and
widths, respectively, in the transition between states i and
j. Doppler correcting by a factor 2y for the emitted pho-
ton shifts J«AIJ and widths I,z, where Z,z

——2y 6;J and
I,J ——2y /r, J(2), we obtain

iZ; —I,J ——2y g [6;(k)+6J(k)], (35)
l, k

where 1;J. is the half-width at half maximum (HWHM).
The terms G,J for i=j represent momentum change
without transitions between transverse states. Thus to
eliminate nonradiative transitions from Eq. (35) we as-
sume in the following 6;;(k)=0.

To evaluate the term G,J(k) in Eq. (32}we approximate
Eq. (11) by expanding exp(ik„x)=1+ik„x for a bound
state a or a' with a&a'. This yields the following dipole
interaction approximation for V~ ~(k):

=Gi;(k)+ Gtt(k)
&il

(43)

represents the reciprocal decay time of p;; when a popula-
tlo11 1IIlbalallcc bctwccll states

I
I & and

I
I & occurs.

IV. RESULTS AND DISCUSSION

Upon using Eq. (41) in Eq. (35), the photon shifts and
widths are expressly given in terms of the plasmon corre-
lation function.

For i =j in Eq. (31) a rate equation for the population
p;;(p, p, t) in state

~

i ) is obtained:

a—p;;(p, p, t) = —g [p;;(p,p, t)
l,t

pit(p+ k,p+ k—, t) ]Is«I (k), (42)
where

V (k)=ik, X V(k)E(k),

~here X~ ~ is the dipole moment,

X~~= dx ~ x x ~ x

(36)

(37)

To calculate the channeling radiation line shifts and
widths from Eqs. (3S) and (41) we need to know the
plasmon correlation function (5E,(k, t)5E„(k,t I.) ) or-
[by using Eqs. (39) and (40)] (5ni, (t)5ni, (t I ) ), where—

(5ni, (t)5n i,(t —v)) =([ci,(t)e ' +c i,(t)e ' ] [ci,(t r)e ' +c —i,(t —~)e ' ]) .

The explicit oscillatory dependence of Eq. (44) can be obtained by using Eq. (22). A decay term can be introduced from
electron-loss spectroscopic experiments, which phenomenologically represents the various plasmon interactions in the



33 VALENCE-BAND PLASMON Ej.'SECTS ON LINE SHIFTS AND. . . S43

crystal. For silicon, LiF, and diamond, well-defined plasmons with frequency co& due to four valence electrons per atom
are documented in these experiments. The plasmon lifetime rz is found to be comparatively long so that (co ~z } &&1 up
to some plasmon momentum k, with k & k, . With these remarks, Eq. (44) becomes

i~(m kz—zNt r) — i~(su&+kzc)(t —~)] )

The plasmon operators ci,(0},ci,(0) are related to the oc-
cupation number ni, of plasmons with momentum k by

2 8me 2

b,ij ———2y

(ci,(0)ci,(0))=ni, +I, (c i,(0)c i,(0))=n

and satisfy

( ci, (0)c(,(0) ) =0, (c (, (0)c i, (0) ) =0 .

(46)
ui (k, n)

[ui;(k, n)] +
7p

The crystals normally considered are around room tem-
perature ( ~ eV) or less and the valence-band plasmon en-

ergies are typically greater than 15 eV. Thus the valence
electrons have only zero-point collective motions with
plasmon occupation number zero. Thus, from Eqs. (45)
and (46}with ni, ——0 we obtain

8me 2

I'(j ——2y
(ri(0~

iE(k)
i g e(k, )

1k, ~P

uij(k, n)
'2

[uij(k, n)] +
Tp

J

(50)

Using Eqs. (39}and (47) in Eq. (41},we find

(47)
[u,,(k,n)]'+

Gij(k)= — JX(; [~JF(k) f'
+

I X(j I

' '2

[ui, (k, n }]'+
Tp

I [$(j+Q(kzc —zz )]1—1/1
X re

0

where

and

uij(k~n} cdij +kzc —rlncop (52)

(48) +1, n =1

Gij(k) =— 8m.e

1i [co; +rh(kzc —co&)]-
Tp

(49)

Inserting Eq. (49) in Eq. (35) and taking k,~—k, for
k, &0 yields, for the line shifts and widths,

Since (coze&} «1, the fluctuation dissipation theorem
may be straightforwardly applied to give
(

~
5Ez(0)

~
)/8n'=Re@&/2. Using this in Eq. (48) and in-

tegrating over r finally gives

1, kg~0
0, k, &0.

(53)

From Eqs. (50) and (51) one explicitly sees how the line
shifts and widths depend on the transverse energies ro;j,
the dipole moment X(j which can be obtained from the
thermally averaged potential, and on the plasmon energy
Ace~ and lifetime ~~.

The photon line shifts in Eq. (50) are obtained by sum-
ming over transverse intermediate bound and free states

~
I ). It can be shown that for nearly degenerate transition

frequencies, as in positron chaiineling,
~
Xi+i i ~

is pro-
portional to the quantum number I and the bound transi-
tion contributions to the line shifts nearly cancel. The
bound-free contribution is obtained by summing in Eq.
(50} over all transverse free momentum states q, where

~
I)=

~ q) are taken as plane-wave states. We use the
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Fourier transform of the harmonic oscillator eigenfunc-
tions to obtain the dipole moments, '

[&i+1~;+i(q)+~i~, i(q)]',
gill 6)0

(54)

where I hllj. (q) } form a complete set of orthonormal func-
tions. Upon transforming the sum over k in Eq. (50) to
an integral over the degrees of freedom by

gi, ~N„/(2m)' I dk for k & k, where X„ is the number

of atoms per unit cell, the relative photon shifts

ZJ+i ~/coj+~ J due to virtual bound-free transitions are
obtained:
-bf
~J+i 1

Here

E=—p, gin (M —j—rl„j ) +5

2 2 2
e kcmp a 0p=

2m'cm /coo 2& No
2

(56)

coo is the oscillator frequency, a=e /itic = », is the fine-

structure constant, coo ——co&/v y=8(coo), N„=2, and the
maximum allowed collective plasmon wave number k, is
chosen as'

k, =(4nn, e /%co~)'

Also

(57)

K =ck, /coo, j& ——co&/coo, 5=1/cooTp, (58}

where 5 «jz, ~

F(k)
~

is taken as unity, j is a integer la-
bel for the quantum bound state, M is a maximum quan-
tum number corresponding to the absolute depth of the
channeling potential and IC »j~,M. For a given channel
half-width d, M is roughly estimated as 2nn, e d /R. coo

In addition, eigenstates near the top of the well will have
relatively short lifetimes due to wave-function overlap
with the thermally vibrating atomic planes. Such states
are not expected to significantly contribute to the sharp
line spectrum. An estimate of the critical quantum num-
ber j, below which the states are effectively long-lived in-
volves the Thomas-Fermi screening length ciTF through
the expression j, 2nn, e -(d —aTF) /iricoo.

' For 55 MeV-
channeled positrons in (110) silicon, LiF, and diamond, j,
(M) equals 6 (10), 3 (9), and 3 (8), with volume plasmon
spectral peaks fico& (Refs. 9 and 20) situated near 16.5,
25.3, and 34.0 eV, respectively. Inserting these values in
Eq. (55), one finds that the corresponding j,~j,—1 tran-
sitions are maximally shifted by the amount: —2.3%,
—3.5%, and —3.6%. As these transitions represent the
most intense spectral lines, it is presumed that the maxi-
ma of the spectral envelopes are correlated with the posi-
tion of these dominant lines. To compare these dynamic
shifts with experiment, it is necessary to only superimpose
them on the previously found static shifts due to anhar-
monicity. ' For silicon, LiF, and diamond, the agree-
ment between theory and experiment is qualitatively im-
proved.

In the following, we determine the plasmon contribu-
tion to the spectral widths of the photon spectrum. The
plasmon excitations defined by the regime k &k, are

reasonably long-lived as documented in ELS. For exam-

ple, in silicon, LiF, and diamond, volume plasmon spec-
tral widths are observed with full width at half maximum
(FWHM) 3.6, 4.7, sett i4 eV, respectively. This corre-
sponds to a plasmon lifetime rz of about 10co~' for sil-

icon, 13co~' for LiF, and 5co~' for diamond.
The spectral widths (HWHM) from the b-f and the b b-

virtual transitions are obtained from Eq. (51). Noting
that in Eq. (51) terms with

~ j—j'~ &2 are negligibly
small, we find for the relative widths:

I J~+izlcoj+i/ —4p(j +1)In+tan '[(jz —M+j)/5]
—tan '[(j~+M —j)/5]},

(59)

I f~+i ~/co~+i ~-4p(j +1)m,

where tan '[(X+M —j~)/5]=m/2, and I sf-I bb. For
the b-f and b bcases-, maximal widths are associated with
the highest allowed transition. For 55-MeV channeled
positrons in the (110) direction the corresponding b-f
(b-b) widths for silicon, LiF, and diamond are 7.0 (7.5),
5.5 (6.0), and 6.0 (6.5} percent. Thus the total linewidths
are 14.5%, 11.5%, and 12.5%. For lower-level transi-
tions, both types of width are considerably reduced. In
the case of LiF, these dynamic widths are masked by
strong anharmonic effects, but in diamond the 3~2 tran-
sition could significantly contribute to the composite spec-
tral width.

V. CONCLUSIONS

In summary, the system of valence electrons behaves
collectively to produce a zero-point level of electric field
fiuctuations effectively near the channeling midplane.
The dynamical effect of these fiuctuations on the positron
static channeling potential may be sufficiently large to in-
duce observable shifts associated with the composite spec-
tra. For silicon, LiF, and diamond the agreement between
theory and experiment on shifts is qualitatively improved.
The dynamic widths for diamond may be particularly im-
portant since minimal anhannonicity occurs.

Although a plasmon feature has been proposed to par-
tially explain the anomalous spectral shifts, additional re-
finement may require consideration of phonons and exci-
tons for example. In the case of LiF, sharp excitonic
structure is seen in ELS studies, thereby possibly obscur-
ing the interpretation of the broad central peak as a sole
volume plasmon feature. '
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