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Binding energy of the lowest state of negative beryllium
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Accurate eigenvalues of Schrodinger's nonrelativistic equation for Be (1s 2s2p)'P and Be
(1s 2s2@ ) P have been calculated yielding a corresponding electron affinity A of 276.1+6.5 meV.
The absolute term va1ue of Be (relative to the Be ground state) obtained as the difference between

the experimental term value of Be 3P and A is 2.4492+0.0065 eV, in agreement with a recent mea-

surement of 2.53+0.11 eV.

I. INTRODUCTION

Although the first beam of Be was produced by
Bethge, Heinicke, and Baumann more than ten years ago, '

the first experimental characterization of negative berylli-
um came only in 1984, as Bae and Peterson reported ob-
serving the metastable (ls 2s2p ) P state of Be and es-
timated its decay rate. Very recently, Kvale et al. i suc-
ceeded in measuring the energy level of this state by
studying the energy spectra of electrons autoejected from
a Be ion beam.

Theoretical predictions of the existence of several states
of Be, however, have been known for some time. By
means of moderate-size configuration-interaction (CI) cal-
culations, Weiss predicted that Be (ls 2s2p ) P is meta-
stable and has a binding energy of 240+100 meV. Weiss's
calculations also showed that Be (ls 2s 3s) S is not
stable, as confirmed later by Jordan and Simons using
second-order Rayleigh-Schrodinger perturbation-theory
calculations. More recently, Bunge predicted the ex-
istence of another state, the ( ls 2p3) S', which should de-

cay to the ( ls 2s2p ) P by emitting uv radiation. On the
basis of eleatron correlation calculations, Beck et a!. then
characterized the bound states of Be corresponding to
the two configurations (ls 2s2p2) P and (ls 2p ) S' and
predicted the existence of a core-excited sextet:
(ls2s2p ) S'. A systematic search for excited states of
negative ions by Bunge et a!. yielded quantitative electron
affinities for the two valence-excited states of Be on the
basis of nonrelativistic fixed-core valence-shell CI calcula-
tions. In recent work by Beck et a!. the electron affmities
of the two lowest bound states of the Be ion were ob-
tained by means of many-body calculations.

Because of the importance and novelty of negative ions
of small systems, much experimental effort is being devot-
ed to the obtaining and characterization of their bound
states and possible transitions between them. Since
theoretical calculations with uncertainties of a few meV
are, although difficult, within the realm of present capa-
bilities, we have performed such calculations for the
(ls 2s2p ) P state of Be and for the (ls 2s2p) P' state
of Be (Fig. 1) in order to obtain a precise value for the
electron affinity of the latter and to compare a calculated
absolute term value for the lowest bound state of Be

The nonrelativistic energies E were calculated varia-
tionally by means of CI wave functions,

(1)
EC,p

where the 4I's are successively orthogonalized projected
Slater determinants Dx made up of orthonormal spin or-
bitals,

j:
C'I'=o«' S') g Dx bZ'

One- through four-electron excitations are considered.
Degenerate configurations K, with degeneracies gx, are
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FIG. 1. Energy-level diagram for the Be ion and relevant
levels of BeI.

with the one just measured at Oak Ridge National Labo-
ratory.

II. CALCULATION
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projected in a way that takes advantage of the minimum
Hartree-Pock interacting space. ' '"

We write the electron affinity A as

where

~nr+~RRMP s (3)

A =E (Be)—E„(Be ) (4)

is the difference between the nonrelativistic energies of the
neutral and the negative species, and

~RRMP =EaRMP(Be) —ERRMp(Be (5)

includes relativistic, radiative, and mass-polarization
corrections. ARRMp contributions to electron affinities
have been discussed before. ' The bulk of the ARRMp
term is believed to be given by its relativistic part which
does not exceed 1 meV until Z=7 in atomic nitrogen.
We have then assigned ARRMp—-+1 meV-=+0. 000037
a.u. for the Be ion, yielding

AESTo(I) = g hei(I)+5,
l

(12)

where 5 is the energy difference between the L-shell and
intershell wave functions calculated with the complete
and the shorter STO basis, respectively.

Our largest truncation energy error, by far, is the K-
shell correction &FSTo(E). Since no STO's are oPtimized
specifically for the K shell, it is not surprising that the EC

shell should not be very well represented in our final wave

function. However, we can calculate with the final STO
basis the Be++(ls )'S energy E(ls ) and compare it with

the exact value of Pekeris

be insignificant at the present level of accuracy.
The final STO sets are given in Table I together with

truncation energy errors. &&STo(L) is calculated as a
sum of saturation remainders &&i(L) computed at each
step of the STO optimization for each I value (Table I}.
&&STo(I) is the sum of saturation remainders b,eI(I) for
the optimized intersheB STO basis plus a correction 5:

The absolute term value T of Be (ls 2s2p2) C with
respect to the ground state of BeI is calculated as

E(Pekeris)= —13.655566 a.u. ( Be) .

&RsTo(E) is then obtained as

b, ESTo(E)=E(Pekeris) —E( ls ) .

(13)

(14)

T=&&(2s'~2s2p 'P) —A, (7)

where &&(2s ~2s2p P) is the experimental' term value
of Be(1 s~2s2p)' P;

dE(2s ~2s2p 3P)=2.7253 eV .

T could also be obtained directly as

Tnr +TRRMP

This way of calculating &&STo(E) has been tested careful-

ly in this work by verifying that additional STO's give the
same energy contribution for a Be++ wave function as for
either a Be or a Be E-shell wave function.

Finally, natural orbitals (NO's) from a single and dou-
ble CI wave function were obtained in order to approxi-
mate the full CI expansion in our final STO basis. In this
basis of NO's, an exhaustive search was performed over
single, double, triple, and unhnked quadruple excitations.

We find that only single excitations of the type
with

T =E [Be (ls 2s2p )]—E„,[Be(ls 2s )] (10)
2$~d ~

1s~2s,
if TRRMP were known.

rrr. a.ssvr. Ts

Accurate wave functions were obtained for
Be (ls 2s2p ) P and Be(ls 2s2p) P'. In both cases we
started from analytical self-consistent wave functions of
near Hartree-Pock accuracy. Energy-optimized Slater-
type orbitals (STO's} were calculated separately for L-
shell and intersheii wave functions for the purpose of es-
timating converged pair energies. A shorter STO basis in-
cluding all L-shell STO's and newly optimized intershell
STO's was finally adopted to approximate the full CI ex-
pansion. Although several STO's obtained in this way are
effective to account for E-shell correlations, no specific
energy optimizations for IC-shell STO's were carried out.

The error h&sT due to truncations in the STO basis is
calculated as a sum of three terms:

~EsTo =~+sTo(L)+ ~+sTo(1)+++sTG )

corresponding to the I.-shell, intershell, and E-shell ex-
pansions, respectively. STO truncation errors due to tri-
ple and higher-excited intershell excitations' are found to

are important, both for Be and Be . The main configura-
tions for Be are double excitations of the type

(2p )2 p2 d2

2$2p ~sp,pd,
( ls } ~p,s,pp', ss',

1s2p~pd .

Except for the (2p) excitations, the same configurations
are dominant in neutral Be. The f, g„and h angular
correlation functions contribute 1277 microhartrees for
Be and 1066 microhartrees for BeI, mainly through ex-
citations of the type

(2p )'~f',g', h ',
(ls)2~f2 g2 hi

2s2p-df, fg,gh,
ls2p~df, fg,gh ,

1s2s ~f,gi, h 2 .



ANNIK VIVIER BUNGE 33

O O

ctjj

Ct)

O

~ ~

C&

rt.

00

OO
O
+~+I

} W tx}

b b b

I I I

~00OO
00 ~ ~ tX}

QO

+~+I ~

II

b b b

Qg4q
I I I

OO
OO

O
OO ~ g ~ASS

~ ~

Ch W Q 00

00
OO

O O
~OO 00

MON
fr}

OOOce

Ch

~ ~ ~ ~

OO



33 BINDING ENERGY OF THE LO%T.ST STATE OF NEGATIVE. . .

TABLE II. %'ave function and energy for the ( 1s 2s2p ) I' state of Be in a.u. : 1 a.u. (9Be)=27.2099 eV.

Type of wave function Energy

Self-consistent-field wave function (5s,4p)
183 L-shell CI (6s, 6p, 3d, 2f, 2g, lh)
227 intershell CI (7s, 6p, 4d, 3f,2g, lh)
501 E, I., and intershell CI with selected singles and doubles {9s,10p, 7d)

Contribution from f excitations

g excitations
h excitations
triple excitations
quadruple excitations

669 E, I., and intershell CI with selected
singles, doubles, triples, and quadruples (9s, 10p, 7d, 4f, 2g, 2h)

~sTo
~&ei

Estimated nonrelativistic energy E„,

—14.508 996
—14.529 335
—14.513903
—14.571 810
—0.001 121
—0.000 123
—0.000034
—0.000636
—0.000977

—14.574 450
—0.002 217(132)
—0.000 251(50)

—14.576 918(182)

Other types of configurations involving f, g, and h orbi-
tals were found to contribute, as a whole, less than 10 mi-
crohartrees for each one of these states.

The L-shell triple excitations of Be contribute almost
400 microhartrees, which is more than 60% of the total
triple contribution. The most important triple excitations
are

2s(2p ) ~sp, spp', sd, sdd', p d,pp'd, d, d2d'

and

(ls) 2s-+pid .

In BeI, only the ( ls)22s excitations of the type

(ls) 2s~p d, s d,ss'd

contribute significantly to the energy (about 260 mi-
crohartrees).

Only those quadruple excitations obtained as unlinked
pairs' were considered. They account for almost 1000
microhartrees in Be but only 69 microhartrees in BeI.
This large difference is due, in part, to a better choice of
natural orbitals in the second case, which gives a faster

convergence. In the lsi2s2p state of BeI, no doubly excit-
ed configuration has an appreciable coefficient in the CI
expansion. In Be, on the other hand, the leading coeffi-
cient ci is 0.9819, and configuration ls 2s(p') has a coef-
ficient cz ———0.1193. Thus, quadruple excitations involv-

ing the double excitation (2p) ~(p') contribute signifi-
cantly Wa. ve functions and energies are presented in
Tables II and III.

The error &&ci due to the truncation of the CI expan-
sion is calculated as a sum of variational energy differ-
ences between trial 4's and corresponding truncated wave
functions, the latter being obtained by discarding expan-
sion terms 4J on the basis of their partial energy contribu-
tions:

b, Ei cj (E HJJ
——)I( I —c—j ) .

Our best wave function for each state contains all terms
with partial energy contributions larger or equal than 0.5
microhartree.

The nonrelativistic electron affinity A „, of
Be(ls 2s2p)'P' is obtained as the difference between the
corresponding E values given in Tables II and III:

TABLE III. %ave function and energy for the ( 1s 2s2p )'P' states of BeI in a.u. : 1 a.u. ( Be)=27.2099 eV.

Type of wave function

Self-consistent-field wave function {6s,5p )
49 I.-shell CI (6s,6p, 2d, 2f, lg)
256 intershell CI (7s,6p, 4d, 3f,2g, lh)
498 E, I, and intersbell CI with selected singles and doubles (8s,9p, 6d)

Contribution from f excitations

g excitations
h excitations
triple excitations
quadruple excitations

452 E, I, and intershell CI with selected
singles, doubles, triples, and quadruples (Ss,9p, 6d, 5f,3g, 2h)

~EsTo
Ee

Estimated nonrelativistic energy E

Energy

—14.511488
—14.518659
—14.516392
—14.563 015
—0.000896
—0.000091
—0.000019
—0.000 305
—0.000069

—14.564 296
—0.002 376(63)
—0.000099(30)

—14.566 771(93)
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A „,= ( —14.576 918+0.(X)0 182) TABLE V. Comparison of values for the absolute term ener-

gy of Be (1s 2s2p ) P.—( —14.566 771+0.000093 )

=0.010 147+0.000204 a.u. =276.1+S.5 meV .

Using Eq. (6), we get the following for the total electron
affinity A:

A =276.1+6.5 meV .

Term value {eV}

2.56+0.057
2.53+0.11
2.4492+0.0065

Reference

Beck et al. , Ref. 9
Kvale et a/. , Ref. 3
This work

In Table IV this result is compared with those obtained in
previous calculations and the recent experiment in Kvale
et al.

The absolute term value for Be (ls 2s2P~) P is calcu-
lated from Eq. (7) as

T=2.7253 —(0.2761+0.0065)=2.4492+0.0065 eV .

If Eq. (10) is used instead, we get

T„,= ( —14.576 918+0.000 182)

—( —14.667 328+0.000025 )

=0.090410+0.000 184 a.u.

=2.4600+0.0050 eV .

Since TRRMp is not known precisely but is expected to be
negative and of the order of a few meV, both results are in

good agreement. A comparison between term values T
obtained theoretically and experimentally is presented in
Table V.

The correlation energy E, of Be can also be estimated
from our data. If we consider as a reference the numeri-
cal Hartree-Fock result reported by Beck et ttl. , and use
our estimate of the total nonrelativistic energy E,we ob-
tain

E = —14.509028 —( —14.576918)=0.067 890 a.u.

=1.8473 eV,

IV. CONCLUSIONS

In a recent calculation on He, ' we obtained the elec-
tron affinity of He( ls2s) 5 with an accuracy of 0.04 meV.
Obviously, this achievement cannot be repeated with a
reasonable amount of effort for a five-electron system
such as Be, and our electron affinity for Be(ls 2s2p) P'
has an uncertainty 150 times larger than the one for

EA (meV) Reference

TABLE IV. Comparison of values for the electron affinity
(EA) of Be{ls22s2p )3P'.

He(ls2s) S. Yet, this result is an order of magnitude
more precise than the best available theoretical one and al-
most 20 times more precise than the experimental one.

On the other hand, in a previous paper we used a much
simpler type of wave function to predict the existence of
excited states of negative ions up to Z=30. Following
the pioneering work of Weiss4 and the systematic ap-
proach of Sasaki and Yoshiinine, '9 the electron affinity
was written as a sum of two terms,

A =AHF+A, ,

and the correlation term A, was, in turn, split into
separate contributions, A, i, corresponding to the outer-
most electron shell, A, i, corresponding to the next shell,
including intershell correlations with the outermost shell,
and so on:

A, =A, )+A,2+A, 3+
It was found that, for A, -=A, i, the electron affinity of
Be(ls 2s2P) P' is 285 meV, as compared with our more
precise value of 276.1+6.5 meV. Introducing only part of
A, z, as Beck et al., gives a significantly lower result for
A (A =217.7 meV). Since the E shells of both states in-
volved are essentially the same, differences in the correla-
tion effects which contribute to A, z are mainly due to the
intershell excitations and to the effects of the triple and
quadruple excitations. The latter, in particular, are large
( =977 microhartrees) in the case of Be and much small-
er (-=60 microhartrees) in the BeI parent state. So, it
mould seem that, unless A, 2 is computed accurately, in-
cluding triple and quadruple excitations, one might as
well stop at the A, i level.

Similar work is in progress for the states ( ls 2p') S' of
Be and (Is 2p ) P of BeI. An uncertainty of 6 meV in
the transition energy between the two lowest states of Be
will enable us to obtain the wavelength of the expected
photons with a 3-A accuracy. This number is still too
large for experimental identification, and we plan to refine
our calculations somewhat more in order to decrease the
uncertainty in k to about 1 A, which means calculating
the nonrelativistic energies to within less than 70 mi-
crohartrees.

240+100
) 122
285
217.7+57.1

190+110
276.1+6.5

gneiss, Ref. 4
Beck et al. , Ref. 7
Bunge et a/. , Ref. 8
Beck and Nicolaides, Ref. 9
Kvale et al. , Ref. 3
This work
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