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Different electric polarizabilities of Ne are calculated by using the complete fourth-order many-

body perturbation-theory (MBPT) method and a partly optimized set of Gaussian-type orbital and

contracted Gaussian-type orbital basis functions. The results obtained by the MBPT method (dipole
polarizabihty a=2.712 a.u. , dipole hyperpolarizability y=104.6 a.u. , quadrupole polarizability
C =3.85 a.u. , dipole-quadrupole polarizability B = —17.75 a.u. ) are considered as the best currently
available theoretical estimates. The importance of the electron-correlation contribution is demon-

strated by the comparison with the corresponding self-consistent-field Hartree-Fock results
(a=2.374 a.u. , y=63.9 a.u. , C =3.20 a.u. , B = —12.75 a.u.).

I. INTRODUCTION

During the past decade the problem of the electron-
correlation contribution to electric properties of many-
electron systems has been clearly recognized. ' Howev-
er, the corresponding numerical studies have been pri-
marily carried out for the first- and second-order proper-
ties related to the perturbation by a homogeneous static
electric field. Accurate data for the electron correlation
contribution to either higher-order ' ' or higher-
multipole ' electric properties of atoms and molecules
are relatively rare. On the other hand those quantities
enter into a variety of models for describing different
atomic and molecular phenomena and processes" ' and
their reliable theoretical values are of particular interest.

A systematic study of the different polarizabilities of
Ne has recently been carried out by Maroulis and
Bishop. ' However, these authors have focused their at-
tention on the accuracy of the calculated polarizabilities
within the self-consistent-field Hartree-Fock (SCF-HF)
approximation while completely neglecting the electron-
correlation contribution. Certainly, for finite-basis-set
SCF-HF calculations the basis-set choice is one of the ma-
jor factors affecting the calculated results. ' ' ' ' How-
ever, the accurate evaluation of the electron-correlation
contribution is at least equally important. '

Our recent studies of different atomic and molecular
properties ' indicate that the many-body perturbation-
theory (MBPT} approach ' ' carried out through the
fourth order with respect to the electron-correlation per-
turbation provides quite rehable estimates of the corre-
sponding correlation contributions. In the present paper
this method is applied to the calculation of accurate data
for different polarizabilities of the Ne atom. Both the di-
pole polarizability (a} and the quadrupole polarizability
(C) (Refs. 11 and 19) have been accurately computed in
different previous studies' ' ' ' ' and our present results

are included merely for the sake of completeness of this
report. To our knowledge accurate data for the dipole hy-
perpolarizability (y) and mixed dipole-quadrupole polari-
zability (8) (Refs. 11 and 19), including the electron-
correlation contribution to these properties are not yet
available.

Several computational aspects of the present study
which are necessary for qualifying the accuracy and relia-
bility of our results and a brief survey of the theory under-
lying the present calculations are given in Sec. II. Dif-
ferent MBPT correlation contributions to the polarizabili-
ties of Ne are presented in Sec. III and followed by esti-
mates of the corresponding correlation corrections. The
discussion of our final results and the evaluation of their
reliability are given in Sec. IV.

II. THEORY AND COMPUTATIONAL DETAILS

A. The MBPT series for correlation corrections to properties

The MBPT expansion for properties of many-electron
systems has been thoroughly discussed in several recent
papers ' ' and only some basic concepts and defini-
tions mill be presented in this section. A more detailed ac-
count of the theory can be found in Refs. 3 and 4. Our
notation closely follows that of Ref. 4.

The kth-order property Q is defined" as a quantity
proportional to the kth-order derivative of the total
perturbation-dependent energy E(p) with respect to the
perturbation strength p:

a"E(l )
k

p, =O

The generalization of this definition to more than one
external perturbing field is quite obvious. " On express-
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ing ' the total energy as a sum of the SCF-HF value

E F(l4) and the correlation correction E (l4),
and

gSD-MBPT(4) gD+gD+gS +gD (10)

E(P)=E""(P)+E „(l4),
one obtains an analogous formulation for the electron
correlation contributions to Q:

Q=Q +Qcorr ~

gSD-MBPT(4) gHF+gSD-MBPT(4)

Neglecting only the contribution due to triply substituted
intermediate states ' gives the so-called SDQ approxima-
tion to g"'„"(4):

where in general Q
" corresponds to the value obtained

by using the so-called coupled Hartree-Fock (CHF) per-
turbation theory. ' 2

The MBPT expansion of the correlation energy E„(l4)
(Refs. 4, 17, and 18}

gSDQ-MBPT(4) gSD-MBPT(4)+QP +gD

and the corresponding approximation to Q,

g SDQ-MBPT(4) g HF +QSDQ-MBPT
( 4)

(12)

Ei(p}=E2 (p, },
Ei(p) =E3 (p, ),

(4)

E4(l4) =E4d(P)+E4d(P )+E4d(I4)+EL(l4)

+E4,(p),
and according to (1) gives formally the same expansion
fOr Qcorr'

Q- =Q2+Qi+Q4d+Q4d+Q4d+QK+Q4. +
(7)

The superscripts correspond to the type of intermediate
states arising from single (S), double (D), triple (T), and
quadruple (Q) orbital substitutions in the reference HF
single determinant while the subscripts refer to the order
of the correlation perturbation expansion and the type of
contribution [direct (d) or renormalization (r) terms]. '
A more detailed description of symbols employed in the
present paper is given in Ref. 4.

In atomic and molecular calculations the MBPT-
correlation perturbation series is usually truncated at some
finite order n and this leads to the nth-order approxima-
tion to Q„„:

gMBPT( ) y g
l =2

and the total Q value

QMBPT(n) QHF+QMBPT(n)

where the superscript MHPT is used to indicate that all
components of (7} through the nth order are rigorously in-
cluded. Several approximate methods based on the trun-
cation of the reduced resolvent expansion' have also re-
ceived some attention. ' On neglecting in the energy
expansion (3) the contribution of higher then doubly sub-
stituted states and all renormalization terms one obtains
what is known as the SD-MBPT approximation to Qco~.
Through the fourth order in the electron-correlation per-
turbation one has then

E«(l4) =Ei(l4)+Ei(l4)+E4(l4)+

can be further split into contributions due to different in-
termediate states which appear in the reduced resolvent
operator, i.e.,

gsD RSPT(4-) gsD MBPT(4-)+gD (14)

which differs from Eq. (10) by the fourth-order renormal-
ization term. This term involves unlinked diagram-
matic contributions' ' ' which are canceled out by the

Qg term in the MBPT expansion. Since Eq. (14) can be
considered as the fourth-order perturbation approxima-
tion to the configuration-interaction scheme based on sin-

gle and double substitutions (SD-CI} in the reference HF
determinant, the Q4, term gives an estiinate of the in-
correctness of the SD-CI result for the correlation contri-
bution to Q (Ref. 27).

A more detailed discussion of different approximations
to the correlation perturbation series for Q and the
evaluation of their accuracy can be found in our previous
papers. ' ' A useful comparison of different MBPT and
coupled-cluster techniques for the evaluation of electric
properties has recently been given by Kucharski et al. 2s

The calculation of different terms in the expansion (7)
follows from the definition (1) and in principle can be car-
ried out analytically ' ' through the evaluation of
separated diagrammatic contributions. However, even for
relatively low orders of the MBPT expansion the number
of different diagrams becomes prohibitively large. For
this reason in most MBPT studies of correlation contribu-
tions to Q the derivatives of the perturbation-dependent
energy are evaluated numerically. In the numerical
finite-field approach the problem of the calculation of a
very large number of different diagrammatic contribu-
tions to Q is replaced by the problem of the numerical ac-
curacy which will be discussed in Sec. IIC. Obviously,
each of the two approaches offers some advantages and
disadvantages and the choice depends mostly on the avail-
able computational environment.

The major problem of most calculations of atomic and
molecular properties is, however, concerned with the use
of what is called the algebraic approximation ' for single-
particle states which are approximated by an expansion
into some finite set of basis functions. ' The quality of
the basis set is the major factor affecting the accuracy of
both the SCF-HF and MBPT results' for properties.
With the aim of a high accuracy of calculated properties

To complete this survey of formulas and definitions let
us mention the fourth-order SD approximation to the
Rayleigh-Schrodinger perturbation series (RSPT} for

corr '
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the problem of the basis-set choice should be given partic-
ular attention and will be discussed in the next section.

S. The basis set choice and optimization

In the algebraic approximation the accuracy of the cal-
culated atomic and molecular properties is determined to
a large extent by the basis set flexibility and the amount of
the electron-correlation effects which are accounted for by
the given computational method. ' The first factor is

already quite important at the SCF-HF level of approxi-
mation' and in recent years several standardized solutions
to the problem of the appropriate selection of the basis set
functions have been given by different au-
thors. ' ""6'~z i The calculated correlation corrections
depend on the basis set choice as well, ' ' and both the
basis set size and flexibility require a careful considera-
tion '0'6

In the SCF-HF approximation the basis set choice
problem is not particularly difficult. Apart from the ex-
istence of several standardized recipes concerning both the
type of atomic functions and their orbital ex-
ponents, ' ' ' there is a possibihty of their optimization
according to different variation criteria for the calculated

properties
10, 1$,35

A formal differentiation of the perturbation-dependent
MBPT contributions to E(p, ) shows that the calculation
of correlation corrections to the SCF-HF value of the
kth-order energy requires the knowledge of the perturbed
single-particle states through the kth order. 'o '6

Hence,
the perturbed single-particle states optimized at the CHF
level of approximation should be suitable for the evalua-
tion of correlation corrections to the given property. This
strategy of the basis set optimization' '6 is followed in
the present paper. Obviously, in addition to functions
which provide near-HF values of properties in the SCF
approximation the basis set must also comprise those
functions which are responsible for recovering the major
part of the correlation energy. Both these criteria are usu-
ally simultaneously satisfied by the recently devised
method for the construction of the so-called polarized
basis sets. '6

The initial (s,p) basis set for Ne is the (13.8) set of
Gaussian-type orbitals (GTO's) taken from the tabulation
by van Duijneveldt, contracted to 8 s-type and 5 p-type
contracted Gaussian-type orbitals (CGTO's) and then ex-
tended by one diffuse s-type GTO and one set of diffuse
p-type GTO's, leading to the [14.9/9.6] (s,p) CGTO sub-
set. The orbital exponents of the diffuse functions have
been selected by assuming that they are members of a
geometric progression within each subset.

The set of 7 six-component d-type GTO's contracted to
the corresponding 4 CGTO's has been obtained by the
method of Ref. 16. Finally, 5 ten-component f-type
GTO's contracted to 2 f-type CGTO's with the orbital ex-
ponents and contraction coefficients determined in a simi-
lar way as for the d subset' have been added, resulting in
the [14.9.7.5/9. 6.4.2] CGTO set of 71 functions. By the
method of its determination' this basis set should be at
least suitable for calculating the CHF values of a and C.
Their values calculated with the present CGTO basis set

This work
[14.9.7.5/9. 6.4.2]
[14.9.7.6/9. 6.5.3]
[14.9.7.6/9. 6.5.3]~

2.322 (2.322)
2.374 (2.374)
2.375 (2.374)

3.109 (3.109)
3.173 (3.174)
3.196 (3.196)

Reference values' 2.377 3.211

'The present results follow from the numerical differentiation of
either induced moments or (values in parentheses) field/field-
gradient-dependent energies. See Sec. II C for details.
bResults with the f subset optimized with respect to C.
'Accurate CHF results of McEachran et al. (Ref. 37).

are shown in Table I and compared with the presumably
most accurate SCF-HF results of McEachran et al.
Taking into account that the method' used to produce
the polarized CGTO basis set does not involve any optim-
ization of orbital exponents, the corresponding results for
a and C are quite satisfactory. However, for computing
the MBPT-correlation corrections to polarizabilities one
needs at least high-quality first-order perturbed orbitals
and reasonably good higher-order single-particle func-
tions. For this reason the d subset was partly decontract-
ed and the f subset extended by one more set of ten dif-
fuse functions with the orbital exponent selected accord-
ingly to the method of Ref. 16. The dipole polarizability
value obtained with the extended [14.9.7.6/9. 6.5.3]
GTO/CGTO basis set comprising 87 functions is in per-
fect agreement (Table I) with the corresponding reference
value. The quadrupole polarizability C is, however, still a
little too low, indicating that the quality of our basis set is
not good enough for the accurate representation of the
perturbation due to the external field gradient. In order to
remedy this deficiency of the basis set we have carried out
a straightforward optimization of orbital exponents in the
f subset by using a common scaling factor. It follows
from the symmetry of the perturbation operator' '" that
the choice of orbital exponents in the f subset is mainly
responsible for variations in the calculated value of C. On
the other hand, the changes made in the f subset have a
negligible effect on the SCF-HF dipole polarizability.

As shown by the data of Table I the optimized
[14.9.7.5/9.6.5.3] GTO/CGTO set, which corresponds to
multiplying all exponents of the initial f subset by 0.5,
gives an excellent agreement with the reference value of
the quadrupole polarizability C. This final basis set is
given in Table II and was used in our MBPT calculations
reported in Sec. III.

The technique employed in this paper for the derivation
of a suitable basis set for the calculation of the relevant
correlation contributions represents a combination of two
approaches developed in our previous studies of atomic
and molecular properties. ' ' The method of construc-
tion of the initial GTO/CGTO basis set has been shown'
to be appropriate for the description of the homogeneous
electric field perturbation. An extension of the same

TABLE I. The GTO/CGTO basis set optimization with
respect to the SCF-HF values of the dipole and quadrupole po-
larizabihties {in a.u.).

SCF-HF polarizabilities
EX C
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TABLE II. Partly optimized [14.9.7.6/9. 6.5.3] GTO/CGTO basis set employed in MBPT calcula-

tions of polarizabilities of the Ne atom.

CGTO GTO expansion gc;Xo (a;)

s subset

0.000047 {166 165.08)+0.000401 (23 107.524)
+ 0.002 193 (5060.1S39)+0.009 588 (1384.6123)
+ 0.035074 {436.512 58)

0.104652 (153.471 48)+0.237 716 (59.389087)
1.0 (24.861 967)
1.0 (11.01S704)
1.0 (4.965 175)
1.0 (1.936 503)
1.0 (0.765 728)
1.0 (0.295 538)
1.0 (0.114065)

p subset
I 0.001 575 (234.94500)+0.012496 (55.077 385)

+ 0.056650 (17.389 549)
0.166455 (6.389 537)+0.306 363 (2.542082)
1.0 (1.033 764)
1.0 (0.418 788)
1.0 (0.164627)
1.0 (0.064715)

d subset
1 0.001 684 (55,077 385)+0.013 585 (17.389 549)

+ 0.065 851 (6.389537)
1.0 (2.542082)
1.0 {1.033 764)
1.0 (0.418 788)
1.0 (0.164627)

f subset
1 0.026050 (3.194769)+0.120 520 (1.271 041)

+ 0.353 520 {0.516882)
0.696 840 {0.209 394)+0.535 590 (0.082 314)
1.0 (0.032 358)

method to perturbations by the field gradient would result
in elliptic Gaussian functions' and require nonstandard
integral packages. We found in our previous studies'
that the orbital optimization is numerically more con-
venient though perhaps slightly less efficient.

Extensive SCF-HF calculations of polarizabilities of Ne
have recently been carried out by Maroulis and Bishop. '

Their best result for a is comparable with our value while
our quadrupole polarizability is much closer to the result
of McEachran et al. 3 We conclude therefore that our
perturbed SCF-HF orbitals are closer to the corresponding
exact singe-particle states and should be more appropriate
for the calculation of both the SCF-HF and correlated
values of polarizabilities.

The four polarizabilities of Ne considered in our paper
have been calculated recently in the SCF-HF approxima-
tion by Fopvler and Buckingham. However, the
GTO/CGTO basis set employed by these authors is of
much poorer qua&ity than those utilized in this paper.

C. Numerical finite-field calculations of polarizabilities

The major advantage of the numerical finite-field ap-
proach is that different properties can be obtained by us-
ing standard programs for calculations of energies and
average values of different operators. The major disad-
vantage follows from the possible instabilities and inaccu-
racies of the numerical differentiation. This problem is
particularly acute if the given method does not satisfy the
Hellmann-Feynman theorem. Then, the only legitimate
way of calculating the kth-order property is by taking the
kth-order derivative of the perturbation-dependent energy.
The corresponding analytic expressions are usually quite
difficult to handle for k &2. On the other hand, calcu-
lating the energy derivatives numerically for k &2 may
represent a formidable task because of accuracy require-
ments.

Under certain circumstances the order of the numerical
differentiation can be lowered by using the (k —1)th
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—4CV —. (15)

derivatives of perturbation-dependent average values of
operators corresponding to the appropriate first-order
properties. This is the case of the SCF-HF method with
perturbation independent basis sets. '"' In this case the
kth-order polarizabilities can be calculated either as the
kth-order energy derivatives or the (k —1)th-order deriva-
tives of induced moments. For the MBPT method one
has to use the energy-differentiation scheme. ' ' How-
ever, the accuracy of these results can be checked to some
extent by comparing the property values calculated in two
different ways in the SCF-HF approximation. This check
on the numerical accuracy of calculated polarizabilities is
performed in the present paper. '

According to Buckingham" a spherically symmetric
system embedded in the external electric field along the z
direction with the strength equal to F=F, and the field
gradient V= V = —2V = —2V„~ will have the energy
given by

E (F, V) =E (0,0)——,
' aF —„yF , B—F V——

The induced dipole and quadrupole moments are

p =aF+ —,
' yF3+ —,

' BFV+- (16)

8——BF +CV+1

2

respectively. Assuming that the higher-order terms in
Eqs. (15}—(17}can be neglected one can obtain the corre-
sponding finite-difference approximations to a, y, 8, and
C. This is usually a good approximation for E(F,O),
since then the next term is of the order of F and for
well-confined electron densities its contribution should be
indeed small. However, in the ease of E(0,V) the contri-
butions of the order V3 and V are not negligible. The
same problem appears in the case of 6(0, V).

In the case of SCF-HF calculations there are two ways
of computing a and y, i.e., the numerical differentiation
of either E(F,O) or p, (F,O). In the present paper the fol-
lowing finite difference expressions have been used.
Dipole polarizability:

8 E(F,O)

F2

Bp(F,O)

dF F=0

Dipole hyperpolarizability:

F i [E(F2,0)—E(0,0)J —Fi[E(Fi,0)—E(0,0)]

, F=O FiF2 —F~F2
2 4 4 2

F i p, (Fi,O) —F2@(Fi, 0)
3FiF2 —FiF23

(18a)

(18b)

8 E(F,O)

F4

8'p(F, O)

F3

Fi[E(Fi,0)—E(0,0)]—F i [E(Fi,O) —E(0,0)]
2 4 4 2

F=0 FF FF
F2p(F i,0)—Fip(F2, 0)

6 3 3
o F)F2 —F)F2

(19a)

(19b)

where Fi and F2 are two values of the external electric field strength selected in such a way that in the SCF-HF approxi-
mation the two schemes give nearly the same results for a and y, respectively. The corresponding values of the field
strength appropriate for a are found to be Fi ——0.002 a.u. and F2 ——0.005 a.u. Those values, however, are too small to
produce meaningful energy changes in higher orders in F. The values of the electric field strength suitable for the calcu-
lation of the SCF-HF value of y have been determined to be Fi ——0.01 a.u. and F2 ——0.02 a.u.

The SCF-HF quadrupole polarizability values can be obtained either from the energy differences

8 E(O, V)
V2

I Vi [E(0,Vi )+E(0,—Vi ) —2E(0 0)]—V2[E(0, Vp }+E(0,—Vi }—2E(0,0)] jV2 V'2 ( V2 V2 )
(20a)

86(0, V) 1 [6(0,Vi) —6(0, —Vi)] . (20b)

Because of the above-mentioned contamination of E(0, V) and 6(O„V) it is necessary to use higher-order expansions of
both these quantities. The two values of V in Eqs. (20} suitable for the calculation of C in the SCF-HF approximation
have been found to be Vi ——0.002 a.u. and V2 ——0.005 a.u.

Three distinct numerical approximations can be used to obtain the SCF-HF results for the dipole-quadrupole polariza-
bility 8, i.e.,
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tr) E(F,V) 2 [E(F,V) E—{F, V—)—E(0, V)+E(0, —V)],
BFBV Fv o FV (21a)

8 =2 ' = [p(F V) p(—F, —V)],
"r) p(F, V) 1

t)FBV F v~o FV
(21b)

and

t) e(F,O) 2
"dF F c Fi (21c)

They give nearly the same values of 8 for F=0.002 a.u.
and V=0.005 a.u.

The values of F and V determined at the SCF-HF level
of approximation have been used then in calculations of
different diagrammatic components of the perturbation-
dependent MBPT energies. The resulting MBPT-
correlation corrections to a, y, C, and 8 have been ob-
tained according to Eqs. (18a), (19a), (20a), and (21a),
respectively.

In the present paper the perturbation parameters F and
V are assumed to have some direct numerical values and
the calcultaed quantities at least are not contaminated by
contributions involving higher gradients of the external
field. Such additional contamination effects will occur in
principle if the perturbation is due to an inhomogeneous
external field which can be produced by external charges.
This form of the finite-field perturbation technique has
been introduced long ago by McLean and Yoshimine"'
and recently revived by Maroulis and Bishop. ' Because
of the mentioned additional contaminations in compar-
ison with our technique, the point-charge perturbation
scheme may require more calculations of perturbed ener-
gies. The contamination effects are not likely to be im-
portant for spherically symmetric systems. However, we
feel that for systems of lower symmetry the finite-field
perturbation scheme pursued in our MBPT studies of
electric properties ' '0 is computationally more efficient
and credible.

III. MSPT CORRELATION CORRECTIONS
TO THE POLARIZABILITIES OF Ne

Different electron-correlation corrections to the SCF-
HF polarizabilities of Ne which occur in their MBPT ex-
pansions through the fourth-order with respect to the
correlation perturbation, are listed in Table III. The un-
perturbed correlation energy values are also included,
though they are of little interest for the present study.
The reported results have been obtained with the partly
optimized [14.9.7.6/9.6.5.3] GTO/CGTO basis set shown
in Table H and by using the numerical scheme of Sec.
II C. In all MBPT calculations the ls electron pair has
been left uncorrelated. This certainly affects the calculat-
ed correlation energy contributions. However, freezing
the core electron pair in Ne has practically no effect on
the calculated polarizabilities.

The correlation contributions to a and C which occur
in the SD approximation to the fourth-order MBPT treat-
ment have been calculated in our previous studies9'4~ with
slightly less flexible basis sets. However, for both a and C
the contributions Qi, Qs, Q~+Q4d and Q4, obtained in
this paper are close to our previous results. '

For all polarizabilities studied in this paper the major
part of the electron-correlation contribution is accounted
for by the second-order term Qi. However, the higher-
order contributions are not negligible. Their importance
increases with the order of polarizability and indicates a

TABLE III. Correlation contributions to the energy and polarizabilities of Ne. All values in a.u.

Contribution'

QD

Q~
Q~
QRr+ Q4.

D
4r

Q4r, cj

—0.266 277
0.001 034

—0.001 695
—0.002407
—0.005 962

0.001 851
0.009 438
0.004 635

0.343
—0.112

0.047
0.025
0.044

—0.008
—0.059

0.020

Propertyb

y

31.9
—15.3

9.8
4.3

11.2
—1.3
—7.5
128.3

0.63
—0.23

0.10
0.05
0.13

—0.02
—0.12

0.04

—4.54
1.74

—0.91
—0.41
—1.02

0.14
0.87
0.34

'For definitions of symbols see Sec. IIA.
The polarizabilities are defined according to the conventions used by Buckingham {Ref. 11).

'The conjoint diagrammatic contribution to the fourth-order renormalization term (Refs. 4 and 23).
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rather slow convergence of the MBPT series for higher-
order electric properties. Of particular interest are the

Qg and the different renormalization contributions. 23 z

Although the sum Qg+Q4, is small compared to other
fourth-order terms, its components may have very large
values. The data of Table III confirm our previous sug-
gestions that the conjoint part of the fourth-order renor-
malization term ' should be completely neglected in the
approximate MBPT schemes involving soley singly and
doubly substituted intermediate states. Although the
Qq„,~ term does not violate the linked cluster theorem'T
its presence has to be balanced by contributions from Qg.
Finally, let us also mention the relatively large magnitude
of the Q~ and Q~ contributions to the polarizabili-
t)es 4, 10

Different approximations to the total correlation contri-
bution to both the energy and polarizabilities are given in
Table IV together with estimates of the corresponding to-
tal values of Q. As already observed in our earlier atomic
and molecular calculations the second-order MBPT
scheme gives results for a and C which are very close to
those obtained in the complete fourth-order treatment.
The same pattern is observed also for the higher-order po-
larizabilities 8 and y. The third-order results are, howev-
er, systematically lower than both Q (2) and

Q (4). Approximate MBPT approaches based on SD
and SDQ approximations give results relatively close to
the complete fourth-order MBPT values of properties.
On the other hand, the SD-RSPT approach understimates
the magnitude of the correlation correction. "0 This
feature of the fourth-order SD-RSPT approximation indi-
cates that the SD-CI results for properties should be af-
fect~ in a similar way. '

The general pattern of the present results for electric

properties follows closely that observed and discussed in
previous calculations. ' ' From the formal point of
view the complete fourth-order MBPT results should be
considered as the most credible predictions. However, it
follows from the slow convergence of the correlation
corrections that the fourth-order approach still may not
be sufficient. Performing complete higher than the
fourth-order calculations with basis sets satisfying all re-
quirements mentioned in Sec. IIB is not feasible at the
moment. The methods which are based on incomplete
higher-order treatments and partial summations of certain
classes of diagrams' ' ' are known ' to destroy the
subtle balance between different contributions and their
credibility cannot be a priori qualified. From this point
of view the highly systematic character of complete
order-by-order MBPT calculations makes them certainly
advantageous in comparison with other methods.

The only possible way of confirming the expected high
accuracy of the complete fourth-order MBPT results is by
a reference to experimental data. Unfortunately, the re-
sults for other than the dipole polarizabilities are very
scarce and usually unreliable. Some comparisons, which
are discussed in Sec. IV, seem to confirm the high quality
and predictive value of our complete fourth-order MBPT
results.

IV. SUMMARY AND DISCUSSION

The SCF-HF and fourth-order MBPT results for the
polarizabilities of Ne calculated in the this paper are com-
pared in Table V with the best available SCF-HF data of
other authors and a few correlated values for a and C.
The known experimental values of a and y are also in-
cluded. The value of a has been determined with very

TABLE IV. Approximations for correlation contributions and total correlated values of different
properties of Ne. All data in a.u.

Approximation'

Correlation corrections
gMBFT(2)
gMBPT(3)
gMBPT(4)
gSD-MBPT(4)

gSDQ-MBPT(4)

gSD-RSPT(4)

—0.266277
—0.265 243
—0.273 456
—0.269 345
—0.267494
—0.251 907

0.343
0.230
0.338
0.302
0.294
0.243

Propertyb

r

31.9
16.6
40.7
30.8
29.5
23.3

0.63
0.40
0.66
0.55
0.53
0.43

—4.54
—2.80
—5.00
—4.12
—3.98
—3.25

Total
gSCF-HF

gMBPT(2)
gMBPT(3)
gMBPT(4)
gSD-MBFI'(4)

gSDQ-MBPT(4)

gSD-RSPT(4)

—128.546 540
—128.812 817
—128.811 783
—128.819996
—128.815 885
—128.814034
—128.798 447

2.374
2.717
2.605
2.712
2.674
2.668
2.617

63.9
95.8
80.5

104.6
94.6
93.4
87.2

3.20
3.82
3.59
3.85
3.74
3.72
3.63

—12.75
—17.29
—15.55
—17.75
—16.87
—16.73
—16.00

'For definitions of symbols see Sec. II A.
"All definitions of polarizabilities follow those of Ref. 11.
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TABLE V. Comparison of theoretical and experimental data for polarizabilities of Ne. All values in

a.u.

Property

Theoretical
This %'ork Reference results Experimental

CO

SCF-HF:

MBPT(4):

SCF-HF:

MBPT(4):

SCF-HF:

MBPT(4):

SCF-HF:
MBPT(4):

2.374

2.712

63.9

104.6

3.20

3.85

—12.75
—17.75

2 374' 2 377' 2 377'
2.37,'
MBPT: 2.603, '2.672,
2.678

CEPA: 2.676"
7y10' '70 '78 '
14.2"

3.211,~ 3.229, q 3.26, '
3.232'3. 19 '3 06
MBPT: 3.208,'3.74"
CEPA: 3.86, '
—13.6, —6.5964"

2.663'
2.66%

101+8'
118+3
95+16"

'Seminumerical SCF result of Ref. 33.
bReference 37.
'Reference 46.
dReference 14.
'Reference 47. See also comments in Refs. 9 and 42.
Reference 48.

~SD-MBPT value of Ref. 42.
"Reference 1.
'Reference 49.
'Reference 50.
"Reference 38.

fer
Reference 52.

"Reference 53.
'C is half of the value of the quadrupole polarizability o.~ usually considered in atomic physics.

~Reference 37.
qReference 54.
'Reference 55.
'Reference 7.
'Reference 9.
"SD-MBPT result of Ref. 9.

high accuracy ' and can be used for checking the quali-

ty of the theoretical data. The experimental value of y is
definitely less certain.

As already mentioned the dipole and quadrupole polari-
zabilities of Ne have been accurately calculated by a num-

ber of different authors in both the SCF-HF and several
other approximations which take into account the correla-
tion effects. The present SCF-HF results for a are in ex-
cellent agreement with the corresponding data obtained
from numerical SCF calculations. Hence, one can
conclude that the GTO/CGTO basis set employed in this
paper is at least capable of providing sufficiently accurate
first-order perturbed orbitals for the homogeneous electric
field perturbation.

A similar comparison of our SCF-HF value of C with
the presumably most accurate value of McEachran indi-
cates only a very small discrepancy. Thus, the first-order

perturbed wave function for the field-gradient perturba-
tion should also be quite acceptable.

Not too much, however, can be said about the quality
of our higher-order perturbed orbitals which enter the for-
mal analytic expansions for correlation corrections con-
sidered in this paper. ' ' The second-order perturbed
single-particle states enter the SCF-HF expression for y
and their quality might have been estimated by comparing
our SCF-HF value with those of other authors. ' '

However, the numerical SCF-HF result of Voegel et al. ,
which in principle could be the HF limit for y, has a rath-
er low numerical accuracy. The results of Maroulis and
Bishop' are higher than our value in spite of the more
diffuse character of our basis set as compared to their
(13.9.4.2) GTO set. The further extension and optimiza-
tion of the d-subset which has been carried out by these
authors is based on the minimization of the total energy
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of the Ne atom in the presence of a remote point charge.
This may result in an artificially too diffuse basis set com-
pared to that which would follow from the perturbed en-

ergy minimization, and thus, in overestimated values of y.
Moreover, the presence of very diffuse functions should
be balanced by adding functions with very high orbital ex-

ponents. ' Let us recall that from the point of view of
the electric field perturbation our final basis set was de-
rived by the method which guarantees a proper descrip-
tion of perturbation effects. ' '

Our value of 8 is also a little lower than the SCF-HF
result of Maroulis and Bishop' although their value of C
is rather far from the most accurate SCF-HF result. 37

The analytic calculation of 8 in the single-particle ap-
proximation would involve the first-order perturbed SCF
orbitals for both the electric field and electric-field gra-
dient perturbations. Since the latter perturbed states are
better reproduced in our basis set, the value of 8 reported
in this paper should be closer to the HF limit than that
calculated by Maroulis and Bishop.

Some deviations from either estimated or expected HF
limits for electric polarizabilities of Ne seem, however, to
be rather immaterial because of the crucial role of correla-
tion effects in determining the final property values. Al-
though the SCF-HF results for a and C are not too far
from the corresponding correlated values, it appears to be
almost meaningless to substitute the exact values of
higher-order properties by their HF counterparts, the
correlation contribution to 8 amounts to about 30% while
for y nearly half of its value comes from the electron
correlation effect. The same has already been observed in
the case of the fluoride ion.

Obviously, the present calculations give only estimates
of the total correlation contribution to different proper-
ties. For a this estimate, which follows from the com-
plete fourth-order treatment, is a little too high and our
MBPT(4) value of a is 1—2% larger than the accurate ex-
perimental value. Since the convergence of the MBPT
series for y is much slower than for a, the present
MBPT(4) result for the dipole hyperpolarizability is
presumably less accurate. In addition, our basis set is cer-
tainly not as good for MBPT calculations of y as it is in
the case of a.

We claim that the MBPT polarizabilities of Ne calcu-
lated in this paper are the best theoretical estimates ob-
tained so far in calculations at the correlated level. This is

achieved by the proper selection and partial optimization
of the GTOlCGTO basis set' and a systematic study of
correlation effects. Obviously, a further extension and
more complete optimization of the basis set functions will

affect the results. In particular, the higher-order polariza-
bilities y and 8. Extending the MBPT treatment to
higher-orders would also affect the results for correlation
corrections. It must be clearly stated that due to incom-
plete basis sets and the limitation of the correlation-
perturbation expansion to relatively low order, one cannot
expect to compute the exact values of properties. If the
calculated data are equal to the exact (experimental)
values it means that either (i) there is a fortuituous cancel-
lation of different inaccuracies, or (ii) the neglected basis
set and correlation effects are negligibly small, or (iii) the
reference data are not accurate enough for legitimate com-
parisons. The first case may occur for one or a series of
closely related systems and is unlikely to have a general
character. According to the present experience the second
alternative is quite unlikely as well. The third alternative
may lead to a wrong evaluation of the quality of some ap-
proximate computational schemes.

According to the present discussion it is not surprising
that our value of a is not precisely equal to the experi-
mental result. In view of all approximations involved in
its calculation it simply cannot be expected. If it were, we
would have had to consider such an agreement as fortui-
tuous. This is indicated by the magnitude of the correla-
tion correction in the fourth-order treatment. Assuming,
for instance, that the correlation perturbation series has a
geometric character, the expected fifth-order correlation
contribution to a should be of the order of —0.040 a.u. ,
i.e., it will be at least non-negligible for achieving perfect
agreement with experiment. A similar analysis can be
carried out for other polarizabilities and makes one rather
skeptical as regards the quality of theoretical data.

The above skepticism, ho~ever, does not make the ap-
proximate theoretical data useless. The higher-order po-
larizabilities are either inaccessible from the experimental
data or difficult enough to measure that even approximate
theoretical information is quite desirable. The results of
the present paper show that in order to make this infor-
mation reliable one has to consider carefully the electron-
correlation contribution in the most complete and sys-
tematic way.
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