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The performance of approximations to the Hohenberg-Kohn-Sham density functionals is tested

by comparing with essentially exact results for light atoms (the He isoelectronic series, Be, and Ne).
The approximation schemes considered here are the effective gradient schemes due to Langreth and
Mehl (LM), and the "modified weighted-density" (M%D) approximation due to Gunnarsson and
Jones. Compared to the local density approximation the LM schemes give markedly better
exchange-correlation energies and a certain improvement in the density profiles, effective potentials,
and orbital eigenvalues. The MWVD scheme gives good improvements of the exchange-correlation

energies but improves the densities, potentials, and eigenvalues only for the He isoelectronic series.
The sensitivity of the MWD scheme vvith respect to the model pair correlation used, as well as some

additional approximations used in practical applications of the MWD scheme, are also analyzed.

I. INTRODUCTION

The density-functional (DF) theory as formulated by
Hohenberg, Kahn, and Sham'2 has, during the last 15
years, become one of the most widely used and successful
tools for obtaining the ground-state properties of complex
systems. The current interest in DF theory has resulted in
several recent reviews. In most applications the simplest
so-called local density (LD) approximation is employed,
which usually gives useful and rather accurate results.
For systems of high symmetry, such as elemental perfect
solids, the experimental and theoretical level is, however,
sometimes high enough to motivate improvements beyond
the LD approximation. The development of better ap-
proximations has proved to be a difficult task, and signifi-
cant progress has been made only rather recently. The
most promising development appears to be that due to
Langreth, Perdew, and Mehl, who focus on a descrip-
tion of exchange and correlation in reciprocal space. Im-
portant progress has also bimn made by Gunnarsson and
co-workers, who concentrated on a description of the
exchange-correlation hole in real space, and found impor-
tant sum rules. ' These studies enabled Gunnarsson
et al. s 9 and Alonso and Girifalco' to design new approx-
imations to the functionals which have been reported to
give improvements in a number of test cases. Besides giv-
ing improved schemes, the works by Gunnarsson and
Langreth and co-workers also shed light on the unexpect-
ed accuracy of the LD approximation.

The purpose of the present study is to test the perfor-
mance of these new approximations to DF theory by ap-
plying them to systems where accurate solutions to the
many-electron problem by other means are available. At
present, accurate correlated wave functions are available
only for a limited selection of light atoms" and, conse-
quently, we choose these systems as our test cases. The
aim of the present work is, however, to shed light on the
general usefulness of different approximations to the den-
sity functional and not to study exchange and correlation
in specific atoms. In recent years there has been a

renewed interest' in the energy eigenvalues of the DF or-
bital equations. Therefore, we compare not only
ground-state properties such as the particle density and
the total energy obtained using approximate density func-
tionals with the corresponding "exact" quantities, but we
also study approximations to the energy eigenvalues and
effective one-particle potential of DF theory. (Essentially
exact results for the latter quantities have been obtained
by Almbladh and Pedroza' and by von Barth and Car. '~)

In the present work we also study the accuracy of some
additional approximations used in practical a plica-
tions' ' of the schemes due to Gunnarsson et al. ' and
Alonso and Girofalco. 'o

II. NONLOCAL DENSITY FUNCTIONALS

A. Formulations in real space

%e here summarize approximations proposed by Gun-
narsson et al. and by Alonso and Girifalco. The basic
exchange-correlation functional E„,[n] of DF theory can
be written formally in terms of the exact pair-correlation
function, '

E„,[n]= —,
' f d rd r'n(r}n(r')[g(r, r') —l]u( ~r —r'

~
) .

Here, n(r) is the electron density and u(r}=1/r is the
electron-electron interaction (we use atomic units such
that e =fi=rn =1). The quantity g is defined in terms
of the pair-correlation function gi(r, r';n} corresponding
to a rescaled interaction A,u (r) and a fixed-density profile
n (r):

When studying approximations for g, Gunnarsson found
it essential to fulfill the sum rule that the exchange-
correlation hole around an electron should contain exactly
one electron. The exchange-correlation hole is described
by the quantity
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n„,(r, r') =n (r')[g(r, r') —1], (3) F.„[n]=—,
'

J drrdrr'n(r)n(r')[g( (r—r'(, n(r)) —(]
and the sum rule states

f n„,(r, r')d r'= —1 .

Xu(
~

r —r'
~
),

where n(r) is obtained from the sum rule

(9)

and

gi(r, n) = 1+(a +br) exp( cr )— (7)

Gunnarsson et al. proposed two different approximation
schemes which satisfy the sum rule in Eq. (4). We shall
confine ourselves here to the "weighted-density" (WD} ap-
proximation, which was independently suggested also by
Alonso and Girifalco. ]u In this scheme g(r, r'} in Eq. (1)
is approximated by its counterpart g]](r—r', n) for a
homogentxius system, where the effective density n = rT{r}
is chosen so as to fulfill the sum rule for the exchange-
correlation hole [Eq. (4)].

In its original form, the WD approximation gives sub-
stantial improvement of the exchange energy of atoms,
but the correlation energies are poor. To overcome this
failure Gunnarsson and Jones9 proposed a modified WD
(MWD) scheme where the correlation function gt, for the
homogeneous electron gas is replaced by a simple analytic
function g(r, n). This function is chosen to give the
correct sum rule and the correct exchange-correlation en-

ergy e„,(n) for a homogeneous system:

n grn —1 r= —1, (5)

—,n v r g rn —1 r=e„, n (6)

Gunnarsson and Jones chose

g(r, n) = 1+C I 1 —exp[{—A, /r) ] I

(where C and A, depend on the density n}, which repro-
duces the correct long-range behavior of the functional far
outside a metal surface. However, to model the correct
long-range behavior in other systems, one would need dif-
ferent analytic forms of g. In order to test the sensitivity
of the MWD scheme with respect to the choice of model
for g, we have studied a variety of other plausible analytic
forms. We found it is essential to fulfill the condition
that g(r, n} is non-negative everywhere for all densities in

order to obtain good results. We have chosen the follow-

ing two analytic forms for a more detailed study, namely

r'n r' g r—r', n r —1 = —1. (10)

Thus n is a function of r and a functional of the density.
The exchange-correlation potential u„,(r), which is de-
fined by

becomes, in this approximation,

u„,(r) =vi(r)+v2(r)+ui(r),

where

(12)

B. Approximations based on formulations
in reciprocal space

In the scheme due to Langreth, Perdew, and Mehl,
the exchange-correlation energy in Eq. (1}is rewritten as

dik
E„,[n]=f qE„,(k, n), (14)

(2m )

ui(r) = —,
' f d r'n(r')u(

~

r —r'
~
)[g(

~

r —r' ~,n(r)) —1],
v2(r) = —,

' f d r'n (r')v (
~

r —r'
~
)[g(

~

r —r' ~,n(r')) —1],
(13)

v&(r)= 2 f d r'der"n(r')n (r")v(
~

r' —r"
~

)

Bg( ~r' —r" ~,n) 5n(r')

5n (r'} 5n (r)

Here, 5n(r')/5n(r) can be obtained from Eq. (10). We no-
tice that vi(r) is different from u2(r). This is due to the
fact that the WD and MWD schemes violate the symme-
try property g(r, r') =g(r', r) of the exact pair-correlation
function. In practical applications using the MWD
scheme, ' ' vz(r) has been assumed to be equal u](r), and
ui(r) has either been neglected' or approximated by an
expression valid for an electron gas. '6 In Sec. IV we will
study the validity of these approximations for atoms.

gz(r, n) =1+(a +br) exp( cr), — (8)
w11ere

E„,(k, n)=u(k)S(k, n) . (15)
which model a localized exchange-correlation hole and
which properly tend to unity at far distances. The coeffi-
cients a, b, and c are functions of n chosen so as to fulfill
Eqs. (5}and (6). In order to define the parameters unique-
ly, we also specified the value of g at zero particle separa-
tion. By choosing g(O, n)=g/(1+yr, ) with (=0.57 and
y=0.47 for gi and )=1.0 and @=0.8 for g2, we ob-
tained non-negative correlation functions. The exact
g(r, r'} at zero particle separation can take values only be-
tween 0 and —,, a condition which is violated by g] for
very high densities [g ( ]nO)~0 5w7hen n~. ca].

As explained above, the M%'D scheme approximates
the exchange-correlation energy functional by

Here, v(k)=4m/k is the Coulomb potential in Fourier
space. The quantity S is given by

S(k}=1+—,
' f n (r)n (r')[g(r, r') —1]

Xexp[ik (r r')]d r—d r'. (16)

Instead of working with the pair-correlation function,
Langreth and Mehl (LM) write the wave-vector decom-
position E„,(k, n) of the exchange-correlation energy as

E„,(k,n)=E„", (k,n)+ d r K~z„,(KF,q;k)q
2n.k

(17}
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where

F =b
~

Vn (r)
~
[n (r)]

and where E„, is the LD energy functional. The values
of the constants a and b in atomic units are
a =n/[16(3n ) / ] and b =(9')'~ f. Since the second
term in Eq. (18) has been obtained using the RPA, it is
important that electron-gas data obtained from the RPA
are used also in the first terin E„", in order to have the er-
ror in the LD term cancelled out by the gradient term.
The potential U„, can be obtained by using Eqs. (11) and
(18) (for details, see Ref. 6).

For finite systems Langreth and Mehl suggested a
scheme which treats the exchange part exactly:

E„,[n]=E„+E, +a f d3r
~

Vn ~2n 4~3(2e ~+18f2) .

(19)

Here, E„was represented by a functional due to Talman
and Shadwick, ' which, at least for atoms, is extremely
close to the exact density functional for exchange effects
only. In this work we choose for E, the exact density
functional for exchange effects, and for U, (r) =5E,/5n(r)
the exact exchange potential, which was first obtained by
von Barth and Car' (the construction of the exact func-
tionals will be briefly explained in Sec. III). It should be
noted that the scheme in Eq. (19) does not follow from a
straightforward division of z„,(EF,q;k) in Eq. (17} in an
exchange and a correlation part, and that it is valid only
for finite systems.

III. NOTES ON THE DF EFFECTIVE-ORSITAI.
SCHEMES

As is well known, DF theory leads to simple Hartree-
like equations,

[——,
'

V +w(r)+ VH(r)+U„, (r}]P;(r)=e;P;(r},

whose solutions give the density according to
N

n(r)=g [p;{r))z.
1

(20)

which formally defines a function z„,{K~,q;k). Here,

E„ is the wave-vector decomposition of the LD energy
functional, K~ ——[3/ n(r)]'~ is the local Fermi wave vec-

tor, and q (r} is equal to
~
Vn (r)

~
/6n (r).

Guided by exact results for small k and using some
rather subtle arguments, LM arrived at the following ap-
proximations for the exchange (z, ) and correlation (z, )

part of z„,:

z„(Xp,q;k) ~~(KF,O;k),

z, (Ep,q;k)~,(EF,O; k)8(k —k, ),
where k, =6fq and where f is a parameter close to —,'.
The quantity z, (KF,O;k) was calculated in the random-
phase approximation (RPA) parametrized form. Using
these results together with Eqs. (14) and (17), LM found

E„,[n]=E„'P(n)+a f tj'r
~

Vn ~'n '"-(2e ' -', —),—

(18)

[In Eq. (20), w and Vtt are, respectively, the "external"
potential from the nuclei and the electrostatic potential
due to the electronic ground-state density n (r)]. The or-
bital eigenvalues ( e; J are, in general, just auxiliary
mathematical parameters, but are often, in practice, re-
garded as approximations to excitation energies.

Recently, a renewed interest in the physical interpreta-
tion of these eigenvalues has taken place, initiated mainly
by Williams and von Barth, ' which has resulted in a
number of new results. Thus, it has been shown that the
uppermost occupied eigenvalue en always gives the exact
ionization potential I of the system regardless of its size, '

e~ ———J . (22)

For metallic systems this result was obtained already in
the pioneering paper by Kohn and Sham. An excellent
demonstration may be found in the recent review by Kohn
and Vashista. z An earlier, approximate result by Perdew
et al. ' for finite systems gave

eN & —I+v„,(00),

with v„, &0. The quantity U„,(00) was estimated to be
small but nonzero by Perdew and Norman. (This paper
referred to the then forthcoming letter by Perdew et al. ')
The work by Almbladh and von Barth shows that both
inequalities above can actually be replaced by equalities.

Yet another somewhat unexpected recent result is that
the fundamental band gap in an insulator is not given by
the exact DF eigenvalues, despite the fact that it can be
related to differences in ground-state energies. Owing to
the current interest in the DF eigenvalues, here we will
compare the eigenvalues and the effective one-electron po-
teiltial

u„,(r) =5E„,[n]/5n(r)

corresponding to approximate functionals with their exact
counterparts.

The exact potential U„,(r) and the DF eigenvalues were
obtained by the following method used by Almbladh and
Pedroza" and by von Barth and Car. '" The uniqueness
theorem by Hohenberg and Kohn' implies that the effec-
tive potential of a set of one-electron orbital equations is
uniquely determined by the density it produces via Eq.
(21}. Thus, by finding the effective potential that pro-
duces the exact density profile of a given system, one ob-
tains the exact exchange-correlation potential v„, without
resorting to its definition as a variational derivative, and
the exact DF eigenvalues. The v„, (or U ) potential was
found by using a trial potential in Eq. (20), involving
some 25 parameters, which was varied until the density
computed from the orbitals agreed with the given corre-
lated (or Hartree-Fock} reference density to within a
prescribed accuracy (usually 0.01%%uo). Since one has access
to a reference density only in a finite (but large) region in
space, the fitting procedure only gives the DF potential
and eigenvalues to within a constant. This constant is
uniquely determined by the eigenvalue theorein in Eq. (22)
(or its counterpart in the DF theory for exchange), and
thus one finally obtains the potential and eigenvalues on
an absolute energy scale. For further details the reader is
referred to Refs. 13 and 14.
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TABLE I. Total energies as given by different schemes. The essentially exact correlated values are

also given. Energies in eV. The relative errors in percent are given within parentheses.

Atom

H
He
Li+
B'+
Be
Ne

MWD

80.98{2.5)
200.8{1.4)
374.84(0.8)
402.00(0.7)

3506,5(0.05)

LD

14.0(2.8)
77.15(2.4)

194.4( 1.9)
365.86(1.6)
393.13(1.5)

3489.4(0.5)

79.21(0.2)
197.8(0.2 }
371.77(0.2)
397.94(0.3)

3503.0(0.2)

14.6(1.4)
79.10(0.1)

197.8(0.2)
370.65(0.3)
398.95(0.04)

3507.9{0.01)

HF

13.3(7.6)
77.88{1.5)

196.9{0.6)
370.38(0.4)
396.56(0.6)

3498.1(0.3)

Exact

14.4'
79.02'

198.1'
371.85'
399 11'

3508.4

'See Ref. 25.
bReference 26.

IV, RESULTS

Here we compare self-consistent results obtained using
the nonlocal functionals discussed in Sec. II with essen-

tially exact results for a number of light atoms. For the
two-electron atoms H, He, Li+, and Be +, and for the
neutral Be atom, we have access to correlated densities, 24

whereas for the Ne atom we have access only to the
Hartree-Fock (HF) density.

Details concerning the correlated wave functions are

given in Ref. 25. Here we just mention that our correlated

wave functions give 98%%uo or more of the actual correlation

energy, corrected for relativistic and mass-polarization ef-

fects, and that they give a charge density at the nucleus

and low-order moments I r"p(r)dtr in good agreement

with the best available literature data.
There is a partial overlap between our results and those

by Langreth and Mehl. ~ %'e show them again, either be-

cause they have been obtained in a different manner (e.g.,
for different values of the parameter f) or because more
details are given.

In Table I we give total energies as calculated using the
different schemes. The LD approximation was evaluated
using electron-gas data by Ceperley and co-workers, and
the LM schemes were evaluated using f=0.17. By "ex-
act" we mean results obtained from the correlated wave
functions. From Table I we see that the LM nonlocal
schemes, "LMxc" for both exchange and correlation and
"LMc" for only the correlation effects, give much better
total energies than the HF and LD approximations. For
Li+ and Be + one could, in the LMc scheme, improve the

TABLE II. Exchange-correlation energies as given by dif-
ferent schemes compared with exact values. Energies in eV.
Relative errors in percent are given within parentheses.

TABLE III. Correlation energies as given by different
schemes compared with exact values. Energies in eV. Relative
errors in percent are given within parentheses.

Atom LD LMc Exact

results by choosing f =0.14, but since the functionals are
universal, one should not regard f as a system-dependent
parameter. The M%'D scheme also gives good results,
especially for atoms with valence shells.

ln Table II we show the exchange-correlation energies
for which we observe the same trends as in the preceding
table. The LMxc scheme gives results very close to the
exact values for all systems tested.

In Table III we give the correlation energies obtained
using the LMc scheme, which treats the exchange effects
exactly [cf. Eq. (19)]. For the He, Be, and Ne atoms this
scheme gives correlation energies accurate to 10% or
better. For systems with no valence electrons (Li+, Be +)
and for the somewhat special case of the H ion, the ac-
curacy of the LMc is not as good, but it is, anyhow, much
better than the accuracy of the LD approximation, which
usually overestimates the correlation energy by a factor of
2 or more. In the case of the Li+ and Be~+ ions we would
have obtained a better accuracy of the LMc scheme by in-

stead choosing the value f=0.14 of the parameter in Eq.
(11) (giving 0.041 a.u. for Li+ and 0.029 a.u. for Be +).
However, in general, f=0.17 gives better results and is
thus the preferred value.

The properties discussed so far mainly probe the accu-
racy of the exchange-correlation functional E„, rather
than its functional derivative, the exchange-correlation
potential U„,. %'e now turn to properties like density pro-
files and DF eigenvalues which more directly test the ac-
curacy of U„,. In Figs. 1—3 we show the relative charge-

Atom

He
Li+
Be+
Be
Ne

MWD

31.3(7.9)
49.0(6.3)
66.4(5. 1)
77.8( 3.2)

335.5(1.3)

'See Ref. 13.

LD

26.4(9.0)
41.6{9.8)
56.6{10.4)
68.6(9.0)

318.7(6.2)

LMxc

28.8(0.5)
45.4(1.5 }
62.0(1.9)
73.7{2.3)

332.8(2. 1)

Exact

29.0'
46.1'
63.2'
75.4'

339.9

H
He
Li+
Be'+
Be
Ne

1.91(75)'
3.05(168)
3.65(212)
4.08(240)
6.12(139)

20.1(90)

'Finite atom (see text).
Reference 13.

'See Ref. 26.

1.39(28)
1.25(9.7)
0.82(30)
0.27(78)
2.39(7)

10.3{3}

109
1.14b

1.17b

1.20
2.56

106
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FIG. 1. Relative charge-density differences +/p t for H
He, Li+, and Be + as given by different schemes. The variable
r/(r ) is used, where (r ) is given in the last column of Table
IV. The radial charge density 4npr (dotted hne) is also given.

t
neutral Se, as given by different schemes. The radial charge
density 4mpr (dotted line) is also given.

density differences between exact densities and densities
from the various approximations used. For comparison,
we also present the HF and LD differences already pub-
lished 2'

For the case of the H ion, which is unstable in the LD
approximation, 2s we obtained an LD density profile by
confining the system within a finite but large sphere as
described in Ref. 25. The reason why the LD approxima-
tion fails to describe H properly (and presumably other
negative ions as well) is due to the fact that the LD poten-
tial tends exponentially to zero, whereas the exact U„,
tends to —1/r far away from the system, ' and therefore
the LD potential is not attractive enough to give a solu-
tion with a negative eigenvalue for the H system. We
were also unable to obtain proper solutions for H using
the MWD and the LMxc schemes. We notice in Fig. 1

that whereas the LMc scheme properly describes H as a
bound system, it gives a somewhat poor density.

We see in Figs. 1 and 2 that within the ls shell the HF
approximation gives the most accurate densities, followed
by, in order of decreasing accuracy, the LMc, LMxc,
MWD, and LD approximations. The LMc densities are

69

0.08-
/

/ g r
/

/

0.06-
Ne LMc

- ——LHxc
——— LD
——M|tND

0.04-

-0.02 "

~ ~

~ ~ ~ ~ ~ ~

4 ~

~ ~

r (a.u.)

FIG. 3. Relative charge-density differences 4p/pH~ for the
neutral Ne, as given by different schemes. The radial charge
density 4vpr2 t'dotted line) is also given.
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TABLE IV. Orbital eigenvalues (e;), charge densities at the nucleus [n (0)], and expectation values of r ((r ) ), as given by dif-

ferent schemes, compared to exact results. Atomic units are used, except for energies, which are given in eV.

Atom

H
n (0)
(r)

M%'D LD

(0)
0.314

LMc

2.28
0.301
2.39

HF

1.36
0.309
2.50

Exact

0.76'
0.328b

2.71b

He —e[,
n (0)
(r)

15.81
3.72
0.929

15.51
3.56
0.959

15.78
3.62
0.939

26.12
3.53
0.927

26.12
3.60
0.927

24 59'
3.63
0 929

Li+
n{0}
(r)

60.08
13.88
0.573

59.59
13.44
0.585

60.41
13.69
0.577

77.01
13.52
0.574

75.92
13.67
0.572

75.65'
13 71
0.573b

Be2+ —e],
n {0)
(r)

131.3
34.65
0.414

130.9
35.43
0.421

132.0
34.38
0.417

155.1
34.07
0.415

154.3
34.36
0.414

153.9'
34 40
0.414b

Be

n (0)
(r)

110.36
5.53

35.59
1.572

105.04
5.71

34.86
1.522

105.85
5.99

35.39
1.505

113.20
9.52

35.12
1.513

128.71
8.44

35.39
1.532

115.10'
9 32'

35 37'
1 494

Ne —e],
—e2,
—e2

n(0)
(r)

837.4
35.8
13.7

615.70
0.810

824.8
35.9
13.6

614.52
0.802

827.2
36.5
13.6

617.80
0.798

838.7
48.4
24.8

617.84
0.787

891.7
52.5
23.1

619.92
0.789

838.7'
46 8'
23.1'

'Reference 13.
bReference 25.
'DF theory for exchange only.

almost as accurate as the HF ones within the ls shell.
Turning to the valence-electron region, we see that in the
Be 2s shell the LMc scheme gives the best density, fol-
lowed by, in order of decreasing accuracy, the LMxc, LD,
HF, and MWD approximations. Actually, the LD and
LMxc results are of comparable accuracies, the LD result
being better in the intershell region and the LMxc scheme
being better further out in the atom. In the case of the Be
atom, the correlation effects are unusually strong, as evi-
denced by the relatively large difference between the HF
and the "exact" density. This is not expected to be the
case of Ne discussed below. The MWD density for Be, fi-
nally, is quite accurate in the 1s shell but not as good in
the valence-electron region.

In case of the Ne atom we can only make a comparison
with the HF density which, however, is expected to be
rather close to the exact one (Fig. 3). We observe the
same trends as before. The LMc density is everywhere
very close to the HF one, followed by the LMxc and LD
densities. The MWD scheme is quite accurate in the 1s
shell but inferior to the LD approximation in the valence
shell. The lower accuracy of the MWD densities for the
multishell systems Be and Ne is probably due to an inac-
curate representation of the intershell correlation as point-
ed out by Gunnarsson et a/. To improve the perfor-
mance of the WD and MWD schemes, these workers have

TABLE V. The MWD approximation to the exchange-
correlation energy E„, evaluated using two different models for
the pair correlation [see Eqs. (7) and (8)]. Energies in eV. Rela-
tive errors in percent are given within parentheses.

Atom

H
He
Li+
Be'+
Be
Ne

'Reference 13.
DF

gl

12.60{9.6)
30.99{6.8)
48.82( 5.9}
66.40(5.0)
77.93(3.4)

337.1(0.8)

g2

12.35(7.8)
30.91{6.5)
49.04(6.4)
66.97{5.9)
74.78{0.8)

314.0(7.6}

Exact

11.51'
29.03'
46.11'
63.25'
75.36'
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proposed a somewhat ad hoc procedure of "shell parti-
tioning" where the WD scheme is used only for obtaining
the intrashell exchange-correlation energy and where the
remaining intershell part is estimated using the LD ap-
proximation. The corresponding potential has not yet
been worked out. We notice, however, that one would
need the variational derivatives Q;(r)/5n(r') of the DF
orbitals with respect to density variations. These deriva-
tives involve the Green's function of the orbital equation
and are quite difficult to compute.
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In Table IV we give n (0), the charge density at the nu-

cleus, and the moment

(r)=I rn(r)d r I n(r)d r .

%e notice that the M%V scheme gives very accurate
values of (r ) for the He isoelectronic series, and that the
LMxc scheme gives a density at the nucleus which is

slightly better than that obtained from the LMc scheme.
As far as eigenvalues are concerned (Table IV), only the

LMc scheme gives a substantial improvement compared
to the LD approximation. The accuracy of the LMc
eigenvalues is a consequence of the fact that U„ the major
part in U„„is treated exactly.

The results on charge-density differences can be under-

stood by looking at the exchange-correlation potentials in

Figs. 4 and 5 and the exact exchange potential for Ne in

Fig. 6. The LMxc potentials show some exact features,
like the large negative value for small r and the peaks at
the intershell regions, but they diverge faster than the ex-
act potentials for small r and are inaccurate for very low
densities far out. The MWD potentials are close to those
in the LMxc scheme, but it does not reproduce the struc-
ture in the intershell region. The LMxc and MWD

1-

lO

0

Be I

Exact
——LHxc
———)vlWD

I

3
r (au)

schemes give a reasonable representation of v„, for the
two-electron systems, but are unable to reproduce the
finer details. In Figs. 7 and 8 we show the difference be-

tween approximate and exact exchange-correlation poten-
tials. We see that in the LMxc scheme this difference is
more constant than in LD scheme, which explains the
better accuracies of the LMxc density profiles.

In Fig. 9 we compare the exact correlation potential
v, =u„,—U with the correlation potential in the LMc
scheme. For the two-electron systems the LMc correla-
tion correction to the effective potential does not bring it
closer to the exact potential, despite the fact that the LMc
correlation correction to the energy is remarkably accu-
rate. For neutral Be, Fig. 10, we notice that the LMc
correlation potential (except for small r) is in reasonable
agreement with the exact one, particularly in the 2s-shell
region. As a consequence the LMc scheme significantly
improves the charge density compared to HF theory in
this case.

In summary, the properties which directly probe the
quality of the exchange-correlation potential give a partly
different picture of the performance of the approximate
functionals than does the total energy. Thus, whereas the
MWD scheme gives energies which are much better than
the LD energies, it does not, in general, give correspond-

FIG. 5. Approximate and exact results for exchange-

correlation potential U„,(r) for the case of neutral Be. Units are

a.u.

3

Exact
LMxc
HWD

——LHxc—-- NtV/0

FIG. 4. Approximations to the exchange-correlation poten-
tial v„,(r) compared to exact results for He, I.i+, and Be2+. The
variable rl(r ) is used aud the potentials are given in atomic
(Hartree) units.

r (au)

FIG. 6. Approximate exchange-correlation potentials u„,(r)
as compared to the exact exchange-only potential (DFx) for Ne.
Units are a.u.



33 NONLOCAL DENS& Y FUNCTIONALS: COMPARISON %'ITH. . .

He

LHxc

M%0 results are more sensitive to the model pair correla-
tion used. This may be due to an inaccurate representa-
tion of intershell exchange and correlation effects. A
second aspect is illustrated by Figs. 11, 12, and 13, where
the potentials ui(r), u2(r), and ui(r), defined by Eq. (13),
are shown. We notice that the lack of syinmetry in the
pair-correlation function with respect to r and r' produces
a term uz(r) different from u, (r), contrary to the exact re-

LHxc
----LD

I

02'
0.1 t

2+e Exact-- LMc

LHxc

FIG. 7. Differences 4u„,=u„, '" "'—u„, for He, Li+, and
Be2+. Units are a.u.

0.3 ;
I
I

02+

—01-'
\

0

-0.1-

He

Exact-- LMc

ing improvements of densities and potentials. Also, the
LMxc scheme gives very good energies, but they give po-
tentials and densities which are usually only moderately
better than their LD counterparts. As remarked by Wil-
liams and von Barth, ' the functional differentiation used
to constructed u„, probes fine details in the functional
E„,[n], which seems to enhance inaccuracies inherent in
approximate schemes.

Finally, in the rest of this section we will discuss some
aspects related to the MWD scheme. We show in Table V
the MWD approximation to exchange-correlation energy
E„, as calculated with gi and gq [Eqs. (7) and (8), respec-
tively] and the HF density profile. For the He isoelect-
ronic series the results from gi and from gq agree within
l%%uo or less, except for H, where the difference is about
2%. For the multishell systems Be and Ne, however, the

0.3 ~

0.2 -I
'I

I

0.1 - I

0

-0.1 .

-0.2-

I

I

0.3 ~

0.2-',
I
I

O.l -1

Exact--- LMc

o

LHxc
—--- LD

-01

-0.2-

Exact-- LMc

I

4

r (a.u.)

FIG. 8. Differences faux, ——uzi
'" ' —u„c for neutral Be.

Units are a.u.

r/& r&

FIG. 9. Exact correlation potential u, {solid line) and the cor-
responding potential as given by the LMc scheme for the He
isoelectronic series. Units are a.u.
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0
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Be I

Exact
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CL

2- Be I

I

3

r (a.u)

---- V2——V3

I I

0 1 2 3 4 5

r (a u. )

FIG. 10. Exact correlation potential U, (solid line} and the
corresponding potential as given by the LMc scheme for the
neutral Be. Units are a.u.

FIG. 12. Different parts (see text) of the exchange-correlation
potential v„,(r) in the MWD scheme for neutral Be. Units are
a.u.

suit. A third aspect, also evident in Figs. 11—13, is the
size of Ui(r) compared with ui(r). It is clear that U&(r is
appreciable, although it has shorter range than ui r .
Thus, at least for atoms, it is not justified to neglect this
term. This is also inappropriate in the homogeneous im-

it, as pointed out by von Barthi and others. Thus, the ap-
proximation used by Kerker' to neglect U& appears to be
questionable. The approximation' ' to replace Ui+U2 by
2ui seems less severe, judging from the results in Figs.
11—13.

V. CONCLUSIONS

fQ 1

C

CLl

V

2-

V1

----
Y2——
V3

V1

---- V2

——
V3

B
2 +

In this work we have compared results obtained using
the approximate LD, LM, and MWD density functionals
with essentially exact results for light atoms. We have
found that the LM schemes give results which are
markedly better than those obtained using the LD approx-
imation. The "LMc" scheme, which treats the exchange
potential exactly, was found to give particularly good re-
sults.

In a recent work the LMc scheme has been applied to
molecules and has been found to give a substantial im-
provement over the LD approximation also in that case.
Also, the MWD scheme was found to give significant im-
provements beyond the LD approximation for total ener-
gies, but gave improvement for the effective potential
(u„, ) or the energy eigenvalues only for the case of two-
electron systems. In fact, a general finding is that approx-
imate functionals usually give better results for total ener-
g1CSies than they do for effective potentials, eigenvalues, and
density profiles.

2 Ne

JQ—-2
tg

C3
CL

FIG. 11. Different parts [see text, Eq. (13)] of the exchange-
correlation potential U„,(r) in the MWD scheme for He, Li+,
and Be2+. Units are a.u.

r ta.u. )

FIG. 13. Different parts (see text) of the exchange-correlation
potential v (r) in the MWD scheme for neutral Ne. Units are
a.u.
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We have also tested the sensitivity of the MWD ap-
proximation to the model pair correlation used. %e have
found it essential to fulfill the requirement that the pair
correlation should be non-negative. The M%D results
were then found to be unsensitive to the model pair corre-
lation for atoms with one single shell but more sensitive
for multishell atoms. Finally, we have tested some addi-
tional approximations used in applications of the MWD
scheme. We have found it essential to keep that term in

u„, which arises from the functional derivative of the
pair-correlation function.
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