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Exact solution of collective spontaneous emission from an assembly of N atoms
in the case of single-atom excitation
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An exact solution for the collective spontaneous emission from an assembly of N identical two-level

atoms, placed into a resonant damped cavity and excited to a symmetrical Dicke state ~ith only one atom
in the excited state, is derived.

The recent experimental observations' of spontaneous
emission on Rydberg atoms in cavities make the testing of
simple quantum-mechanical models of radiation-matter in-
teraction possible. In this paper we treat an exact soluble
case of collective spontaneous emission which has not
drawn enough attention in the literature, but whose experi-
mental realization could be possible. The model consists of
a system of N identical two-level atoms being initially in a
symmetrical Dicke state' with only one atom excited. This
case arises if the atoms in a cavity are excited by only one
photon, but the excitation is distributed symmetrically
among all the atoms, so that it is not possible to determine
which atom was excited. Then, from Dicke's calculations, '
it follows that the radiation rate of the atomic system is N
times the single-atom rate.

In the present paper we solve this model exactly for the
case of N atoms placed into a resonant damped cavity.
Since this model is a generalization of the single-atom spon-
taneous emission in a resonant cavity, which was experi-
mentally observed, ' its exact solution could be very signifi-
cant.

In contrast to Dicke's calculations, ' which are obtained in
the ftrst-order perturbation theory and therefore have a very
limited applicability, we solve the problem exactly by using a
new technique. '

The Liouvillian for N atoms interacting with a resonant
single-mode radiation field in a cavity in the rotating-wave
approximation reads as

The radiation field R is initially in a vacuum state:

pa(o& - Io& (oI ~

and systems A and R are initially decoupled:

p(0) =p&(0) 8 ptt(0) (9)

The statistical density operator for the total system A + R
takes the following form:

p(t) = exp( —itLo)exp[ —it (Lqtt + i Att ) ]p(0), (10)

~here we used the commutation relations

[HoiHAR ] 0i LOAR ( ' ' ) AR Lo(

As a consequence of the special initial condition (7)-(9)
and special form of the Liouvillian [cf. Eqs. (1)-(6)], the
time evolution of the statistical density operator p(t) is re-
stricted to the subspace spanned by the state vectors:

ll& = Ir, —r+1& 8 10&. I2& = Ir, —r& 8 ll&

is the atom-field coupling constant, rI is the position vector
of the I th atom, and ~ is the cavity damping factor.

At the initial time t =0 the system A of N atoms is excit-
ed to a symmetrical Dicke state2 with only one atom excited:

pz (0) =
I r = N/2, m = —N/2+ 1&(r = N/2, m = —N/2+ 1 I.

Lo= [Ho, ], L.R = [H», (2)
I3&=lr, —r) 8 I0&, r= —,N (12)

with corresponding Hamiltonians (tt= 1)

Ho = Hg + HR = to (R '+ a a )

H&R ——g(a 8 R++a 8 R )
N Ã

R +-= X Rt +—e ', R*= $ Rf
l=1 t=1

(3)

(4)

(5)

and it hokls that

p(t) = $ Ii& (i'Ip, (t)

p, , (t) = &tip(t) li''&

Trp(t) = p»(t ) + p»(t) + p33(t) —1

(13)

(14)

and the field-damping Liouvillian

AR( ) KI[a( ' ' ' ),a ]+[a, ( ' ' )a ll

where Rl'„R~ — are the population inversion and dipole-
moment operators of the I th atom, respectively, cv is the
frequency of the atomic transition and the resonant field
mode, a, a are the photon creation and annihilation opera-
tors for the resonant field mode with the wave vector k, g

The expectation value of the atomic population inversion
operator is then

(R'&, = Tr[R p(t) ] = ( —r +1)pt~ —r (p22+ p33), r =—
2

(15)

where we used R*l rm &
= m lrm &, (tt = 1) . Further from

Eqs. (14) and (15) we obtain for the expectation value of
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the squared opopulation inversion

BRIEF ~p

'R'), = —r (R*),+ ( —r +1—r+1) = —2r+1) (R*),+ r( —r +1),p»

By successive diffi erentiations of equation

(R') r = Tr }R'exp[ —itexp —it(Lqtt+iAtt)] (0)}

we obtain'

exp —It g p

d (R'),' =ig Tr [( —a 8 R+ + a+a 8R )exp[ —it L '
tt p

'(R *)

+a —it Lgtt+ i Att)]p(0)}

d d (R*)
4g'Tr}a a 8 R*exp[ —it L '

tt pexp —it L~ tt+/A t)t]p(0)},
2

(16)

(1S)

(19)

~here were we used Eq. (16) end t

2

and the following relat&ons'

R (rm) —r(r+1)Irm, R

[a,a'] =1,
rm, R'- R 'R + (R')'—

[R,R ] = 2R*, [R'

(20)

,R ] —+R* .

A further differentiation 8
quatton of third order

closed linear dif-

d'(R'), d'(R, ),3K, —[2''+ Sg'r ]
dt

(21)

—Sttg r(R'), —Sttg r r =—
J

2

where we have taken
'

e a en into account that

(22)

Trja aa 8 R+ex [ —' R)]p(0)}-0, (23)exp —i t (Lgtt +i A

r a a a 8 R exp[ —it(Lgtt+tAtt ]p(0) } 0, (24)

d oth lfh d

, and the abbreviation Z( )=t = (R*)„ the ex-

d'Z (t) d'Z (
dt

3 t)
dt~

+2( P+2) dZ(t)
Ch

(iii) For a ( 2:

Z(t)=e "'[g t cos( +4g'N —tt' t

with

+Basin( J4g N —tt t)+8+ 83]
2

(29a)

2g N
2 2' 4g~W —K

(29b)

Z(t) = e "'cos'(s g Nt) ——
2

(30)

and the radiation rate reads

In Fig. 1 w'g. we have plotted the n
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+4aZ(t) = —2aNa , (25) i( ) dZ(t) = e "'g JN sin(2gv N t) (31)

Z(0) = ——+1
2
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Z(t)-e "'[A+ exp(Mt'~ —4g'N t )

+A~ exp(— 4g'Nt)+g, ]--N

with

~,—= —++ 1 2
K

~ —4g N K —4g N

-r+1/2

2g'N
K —4g N

(ii) For a = 2:

(27b)
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Z(t) =exp( —2g'Ntltr) ——.
N
2

I (t) = ——g'N exp( —2g'Nt/~)2 2

K

(32)

(33)

inversion Z(t) undergoes damped squared cosine oscilla-
tlons. The collective spontaneous emtsslon becomes ap-
parent if we compare the above results with the single-atom
case (N =1). The oscillation frequency as well as the am-

plitudes of the radiation rate increase by a factor of JW.
Moreover, in contrast to the single-atom case, it is evident
that the condition of a high-Q cavity (K (& g JN ) can easi-

ly be fulfilled for large number W of atoms even in cases
where the cavity damping factor x is large (K )g). This
fact simplifies significantly the reahzation of high-Q cavities

for the present model.
2. For low-Q cavities a &) 1, i.e., K » g JW, Eq. (27)

reduces to

In this case the emitted photon is not stored long enough in

the cavity and cannot be reabsorbed by the atom. The
atomic population inversion as well as the radiation rate de-
cay exponentially (increased by a factor of N in the ex-
ponent as compared to the single-atom case). This result
coincides with the result obtained from the Bonifacio-
Schwendimann-Haake master equation (derived in the Born
and Markov approximations), 4 and for t =0 it yields the
Dicke result

l(0) = NIO, IO= I (N = 1)
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