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Estimates and critical stability thresholds characterizing the ground-state energies have been established
with the help of a quasiclassical generalization of the virial theorem proposed previously. This enables us to
evaluate ground-state energies in terms of the minima of corresponding Hamiltonian dispersions. Relativis-
tic (mt- m2-mo) and nonrelativistic two-body Hamiltonians with Coulomb and Yukawa potentials have

been considered. For relativistic spin-2 particles, as well as for the nonrelativistic ones, the calculations

proceed by fixing to unity the underlying phase-space quantum,

I. INTRODUCTION

The nonrelativistic bound-state energies for Debye-
Huckel (Yukawa) potentials have been analyzed by use of
perturbative, ' ana1ytic perturbative, variational, scaling
variational, numerical intergration, ' nonlinear numerical,
and other methods. Summation methods of perturbation
series, ' and e expansions, ' as we11 as asymptotic methods
combined with normalizability, should also be included.
Super positions of Coulomb and power potentials, ' or
Coulomb and Yukawa potentials, " have also been con-
sidered. In this paper we shall continue such studies by
analyzing the ground-state energies (GSE's) for Coulomb
and Yukawa potentials, this time in terms of a suitable
quasiclassical generalization of the quantum-mechanical
(QM) virial theorem proposed previously. " This enables us
to define quite simply the GSE as

N'- minSH (r ),
provided that the above minimum exists and takes finite
values. Equation (I) generalizes some usual uncertainty-
relation estimates assumed provisionally on this subject. "
Here SH(r) =H(r, tdo/r) is the so-called QM dispersion'
of the spherically symmetrical Hamiitonian H(r, p). Next
do- I (do) 0) denotes the underlying phase-space quan-
tum, whereas r - ]x) and p = ~p~.

One proceeds with use of basic non-Hermitian constit-
uents of usual observables as well as suitable probe func-
tions. " Such constituents come from the quasiclassical

0 limit of expansions of the usual physical phase-space
observables f (r,p), with respect to basic r, and a
=itx 8/Bx operators, in which the rf dilation operators are
placed on the right of each term for purposes of nonsymme-
trical ordering. ' So far, nonintegrable powerlike probe
functions have been invoked. In spite of its simplicity, the
present method enables us to establish reasonable estimates
and typical stability constraints as well as general properties
characterizing the GSE's for single- or two-particle sys-
tems. '5 For the sake of generality we shall consider the
relativistic (R) two-particle ( mt = m2 = mo) Hamiltonian

H)(r p) =2po+ V(r),
in which the vector potential is the above-mentioned super-

position

V (r) = —(at/r ) —(gt'/r ) exp( —ur/t) (3)

of Coulomb and Yukawa potentials. Next we shall perform
detailed calculations for o. =0 and g =0, respectively. The
corresponding nonrelativistic (NR) Hamiltonian is

H2(r, p ) = (p'/mo) + V (r ), (4)

as usual. In the equations, o. & 0, g & 0, p, & 0 is a mass
scale and po= (pt+ mo )'~'. In the R case we can revert to
the single-particle problem by performing the rescalings
a 2e and g 2g and dividing the results by 2. In the
NR case this also happens by inserting 2mo or 2m instead of
mo, ~here m is the reduced mass.

X=f2(u) =u[q+ f(u)], (8)

in which u = ydox, q = ao/go, u E (0, m ), whereas X = 2doy/
go denotes the dimensionless screening parameter. One also
has

f(u) = (u+1)exp( —u), (9)

which decreases with u, so that f (u) E ( I, 0) for
u C (0, ~). Equations (7) and (8) give the location of the
minima of SH~(x) and SH2(x), insofar as the concavity

II. BASIC EQUATIONS

First the QM dispersions of H~ and H2 are

SH~(x) - mo/x[241+x —ao —goexp( —ydox)], (5)

and

SH2(x ) = mo/x ——ao —go exp( —ydox )
1

x

where

x = r/It, l~ =tdo/mo, a = ao&o, g = gonzo u ™oy
Next the generalized virial theorem" yields the algebraic
equations

Z = f, (u ) = (u'+ y'do' ) '~'[q +f ( u) ]
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conditions

x )ft (u ) = (u'+ y'dp2 )v'exp( —u ) (10)

and

lt. ) f2(u) = u'exp( —u)

III. THE COULOMB PROBLEM

Let us ignore the Yukawa potential at the beginning.
Then Eqs. (1), (7), and (10) produce the two-particle GSE,

I'o = 2mo[1 —(ao'/4) ] t~', (12)

are fulfilled, respectively, Now wc shall prove that Eqs.
(7)-(ll), as weil as their by-products, though very simple,
actually express an efficient and general investigation of the
GSE problem.
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in which the inequality

ap & uc=2 (13)

F-o = —moao/4, (14)

which is the NR limit of Eq. (12). The concavity condition
is o.p ) 0 in both cases. However, np & 0 comes up in terms
of the virial equation, so that the concavity condition is su-
perfluous with respect to the Coulomb problem.

Further, we shall use this opportunity to analyze the more
general R superposition,

0; (r p) = —(at/r)+ [p'+ [mp —(Pt/r)]'}'~', (15)

where —Pt/r (P = Podo) denotes the scalar Coulomb poten-
tial. First the virial equation reads

1/»= [Po/(I+Po)][I+(ao/Po)(I+Po —ao) '"],
which is meaningful only if 1+Pp2» ap. Next, it follows
that the region ap & 0 and Pp & 0 of the (ap, Po) plane is
forbidden. Note that the concavity condition is fulfilled au-
tomatically in terms of Eq. (16), which agrees with the simi-
lar conjecture mentioned above. So one obtains thc GSE

has the meaning of the Coulomb stability threshold. Equa-
tion (13) is simply an inequality by-product of Eq. (7).
Now one secs immediately that the single-particle counter-
part of Eq. (12) reproduces exactly the well-known GSE I'p
= mp(1 —a )'~ of the R hydrogen atom' if do= 1. More-
over, Eq. (13) is identical to the Coulomb stability threshold
a (2 (Ref. 18) established for two interacting massless
spin-~ particles, if dp I also. In this respect proofs have

been given that Eq. (13) is also valid within the zero-mass
limit. " These agreements enable us to say that thc present
approach effectively yields the GSE's for two interacting R-
spin-~ particles if one sets dp-1, thereby relying on the

dominant Coulomb-type behavior of thc potential near the
origin. For the sake of generality we shall maintain, howev-
er, the inclusion of dp. Of course, Eqs. (1), (8), and (11)
yield the GSE

FIG, 1. Phase-structure diagram characterizing the Hamiltonian
(15}. The GSE (17) can be defined only outside the hatched
domains, i.e., to the left of the right-hand side hyperbole branch
all-1+Pp2, as well as above the second bisectrix ap ———Pp.

Equation (18) establishes the phase structure character-
izing Eq. (15), as shown in Fig. 1. One sees that
lg'p & ( —mp, mp), in contradistinction to lg'oC (O, mp). In
addition, one has 0 & 8'p & mo if O.p & 1, whereas
—mp& Fo &0 if ap) 1. So far ap) 0 and Pp) 0. Fur-
thermore, 0 ( g'o ( mp for sgnap- —sgnpp. So 8'p

—mp for ap ~ and Pp —~, while 8'p = mp for
ap Pp-0, as well as on the second bisectrix.

it =g2(u) = uf (u) (19)

One realizes that g2(u) is centered around its maximum
point

u = vp= (1+j5)/2=1.6180, (20)

so that g2(0) =g2(~) =0, as shown in Fig. 2(a). Then Eq.
(19) exhibits positive u roots only if

)t ( it,t2' = g2(vp) =—0.8399 . (21)

This shows the existence of the critical screening parameter
%e might remark that within the single-particle case

A. =A. =ydp/gp. Thus Eq. (21) compares reasonably well
with the critical evaiuations A.

'
& 1.19 (Ref. 9) and

h.
'

& 1.19060 (Ref. 5) established previously on this subject.
Next, the concavity condition reads u & vp, so that the GSE
is produced by the smaller root of Eq. (19); see Fig. 2(b).
On the other hand, Eq. (19) also leads to u ) vp, so that

IU. THE NONRELATIVISTIC YUKA%A POTENTIAL

For the next step let us set o.p=0. Considering the NR
case, one would then have the virial equation

5' o = [mo/I + P2o] [(1+Po2 ao) '~' —apPo], —

ap' & 1+Po, ao ) 0. Po )0,
ap& Pp& I+Pa, ap(0, Po) 0

Pp & ao & 1 + Pp, ao ) 0, Po ( 0

u E (vp, vp)

where

vp= T[(1+4A.)t~' —1]

These results enable us to define uniquely the GSE as

~ = 882(u) = moy'd$ (u —1)/u'(u+ 1)

(22)

(23)

(24)
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Under such conditions Eq. (26) exhibits u roots belonging
to the concavity interval (30) if

gc & go& gc & 2. yc & y~o& y1
( —) (+) (1)

gc &go&ge y1&y~o& I

2 & go & g,"'. y&o

(32)

I'=SH~(u) =2mo(u + u +y2d02)/(u+1)(u +y2do )'~',

(34)

in which y)--1.1024. These inequalities establish the in-
creasing branches of g~(u), as shown in Fig. 3. Note that
P & ydo reads go ~ 2, whereas g,'+' & 2 & g,' ' for

y» ydo&1. In Eq. (32)

g,' —'= g t+'(ydo) = 2ydo(1+ u+ ) 3~' exp(u + ) . (33)

Equation (32) establishes the phase-structure diagram in the

(go, ydo) plane, characterizing the R-Yukawa-Hamiltonian.
The above results lead to the GSE

where u is subject to Eqs. (19) and (22). Further, one has
the constraints

SH2(uo) & E & SH2(uo) =0.0901moy d$ (25)

in which SH2(vo) & 0, as h. & 2. We note the appearance of
positive-energy excitations for I & u & vo and mention that
the concavity domain u & uo is also the exclusive u region
in which both g2(u) and SH2(u) increase with u, and con-
versely.

U. THE RELATIUISTIC YUKAWA POTENTIAL

Within the R case the virial theorem reads

FIG, 2, The u dependence of {a) g2(u) and {b) &02{u). The
solid curves show that both g2{u) and 502{u) increase with u if
u & vo. Along the dot-dashed curves the concavity condition is not
fulfilled. Here the GSE is measured in y do2mo units. The dotted
lines show how one obtains the GSE by starting from a given
A. & A.,~2~ value, and vice versa.

where u is subject to Eqs. (26) and (30). In consequence

2ydomo & 8' & SH~(u+), ydo & 1

SH&(u ) & I' & SH)(up ), ydo & 1

(35)

SHi(u-) & 2ydomo 1 & ydo & yI

SH((u ) & 2ydotftp, y~ & ydo & yI
(36)

in which y&
= 1.0765 (see Fig. 4). We note that

SH~(u ) & 2mo for ydo & 1. If ydo & I, one has
SHt(u) ~ 2mo, insofar as u ~ u+ = (1 —y'do )'~'. This
latter case is compatible with the NR limit of zero-energy
binding. In the other cases positive-energy excitations
~ould also be involved. At this end we also note that the
complex u roots characterizing Eqs. (7) and (8) can also be
interpreted in terms of the possible onset of underlying res-
onances. '9

where SH~(0) =2ydomo. In agreement with Eq. (30), both
g~(u) and SH~(u) increase simultaneously with u for
u E. (O, u+) if ydo & 1, as well as for u 6 (u, u+) if
ydo & 1. Above SH~(u+) & 2mo, whereas

X =g~(u) = (u'+y'd$ )' 'f(u)

Combining Eqs. (26) and (10) one finds

) ' & F(u) = (1+u)'exp( —2u)

(26)

(27)
(b)

which in turn produces necessarily the critical screening
parameter

d r- ——————
0 ~

i~

%E
~

'~

a & h.,'"= VF (0.5) = (3/2)3~2 exp( —0.5) =—1.1142 (28)

Above F(u) is centered around its maximum point u =0.5,
whereas F (0) = 1 and F(~ ) = 0. The present concavity
condition is u +y do & u+1, which involves the critical
mass quotient

ydo & y, = &5/2 =—1.1180,

as well as the admissible u interval

FIG. 3. Plots of g~{u) vs u for {a} $, '~ & ado & y&, {b)
y& & ado & 1, and {c)ado & 1. The solid curves are responsible for
the GSE's. Along the dot-dashed curves g&{u) decreases with u, so
that the concavity condition is not fulfilled.
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2u —~pu + Ap
E~ = 5H2 (u ) = —ydpApmp 2u'(u+1) (37)

In the present case such limitations come from the underly-
ing quasiclassical non-Hermitian limits of the momentum
powers. ' For non-Coulomb potentials some further refine-
ments ~ould then be desirable. Comparisons with available
data could also be used in order to refine the dp choice.

Finally, let us say a few remarks concerning the superpo-
sition (3). Proceeding in the same manner leads to the
GSE's

FIG. 4. Plots of SH1(u) vs u for {a) y, ' & ydp & y1, (b) y1
& ydp ) 1, and (c) ydp ( 1. One sees that (a) &H1(0) & SH1(u+)

and (b) SH1(0) & SH1(u+). The solid curves are involved ex-
clusively in each case.

where Xp = 2y dpiap, and

2 (u + y dp2 ) + 2u
S'g ——SH,"(u) = mp

o.'pp dp

u+1

VI. CONCLUSIONS

The above results show that the quasiclassical approach to
the virial theorem can be used satisfactorily in order to es-
tablish in a simple manner reasonable estimates of GSE's
and of stability thresholds. The main capability of the
present approach concerns, however, the possibility of es-
tablishing relevant analytic forms and typical structural prop-
erties characterizing the estimates mentioned above. Such
evaluations are then able to reproduce the actual results up
to suitable values of the dp —l parameter. Phase-structure
diagrams like those exhibited by Eqs. (18) and (32) are also
of real interest. Of course one has a valuable motivation for
using such a quasiclassical approach with respect to more
complicated potentials, momentum-dependent ones includ-
ed, which are hardly tractable with the help of standard
methods. The Coulomb potential turns out to be a special
limiting case, as the GSE is reproduced exactly if dp= l.
This choice also expresses the self-consistent evaluation of
the underlying phase-space quantum. In general, the
present quasiclassical approach, though expressing an effi-
cient qualitative method, is able to produce reasonable ap-
proximations, like those obtained for the Yukawa potential.
This conjecture agrees with the usual %entzel-Kramers-
Brillouin approach, which is subject to similar limitations.

(38)

in the NR and R cases, respectively. The corresponding
concavity conditions mean that u should be restricted only
to the mutually identical regions in which, similarly as be-
fore, both f2(u) and SH2t" (u), as well as fl(u) and
SHt"t (u) increase with u. Then u is subject only to Eqs.
(8) and (7), respectively. Some additional peculiarities,
such as bifurcations toward two minima, should also be ob-
served. ' %e also note that F., and 8', are located below the
corresponding Coulomb GSE's (14) and (12), as one might

expect.
Note added in proof Using en.ergy upper bounds for hy-

drogenlike problems, Eq. (21) has also been obtained by R.
L. Hall, Phys. Rev. A 32, 14 (1985), via his Eq. (4.11). It
should be mentioned that, within a suitable dp choice, our
Eq. (1) reproduces the right-hand side of his Eq. (1.8).
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