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A phenomenological model has been devised for calculating the cold compression curves of metals
up to the 10-TPa pressure region. The nuclear Griineisen coefficient can also be correctly computed
using this model. Shock Hugoniot curves were calculated for several metals using these cold
compression curves to which the ion and electron thermal contributions were added. The results
gave excellent agreement with experimental results for Pb, W, and Cd when the electron thermal
portion is computed according to the Thomas-Fermi-Khirzhnits model. For Al, Cu, Fe, and Mo
other electron thermal models must be used to give agreement with experimental results.

I. INTRODUCTION

Recently it has become possible to measure pressures in
the TPa range using a variety of new methods, from un-
derground nuclear explosions' to large pulsed lasers,>?
and including such novel means as rail guns.* In general
these experiments are of the impedance-matching type
which require for their interpretation a fairly exact
knowledge of the equation of state (EOS) of some refer-
ence material. As the pressures attained have climbed to
the TPa range, the reference EOS has had to be based
more and more on theoretical calculations and/or ex-
trapolation from better-known pressure regions. Particu-
larly problematical has been the computation of the cold
compression curve or zero-degree-Kelvin isotherm.’

One of the standard sources of reference EOS data for
impedance-matching experiments has been the Los
Alamos Scientific Laboratory (LASL) SESAME tables.®
These tables were generated for most materials using a
phenomenological model due to Barnes’ for computing
the cold curves and the temperature-dependent Thomas-
Fermi-Dirac (TFD) theory® for calculating the electron
thermal contribution. However, comparisons between
theoretical Hugoniot curves calculated from the SESAME
tables and experimental points recently obtained by Ra-
gan"®1% showed that the validity of this SESAME EOS
model appears to be limited to the region below 100—200
GPa. Agreement with experiment was improved for some
metals by using recent additions to the SESAME library.!!
However, for practical applications, particularly to
impedance-matching experiments on metals, it is of in-
terest to determine a more realistic phenomenological
model for the cold compression curves which can be used
in matching the experimental data above 200 GPa.

In this paper we present a semiempirical model for the
cold curve which is based on an analytical interpolation
between a modified version of the Barnes model and the
quantum statistical model (QSM) of the isolated atom.'>!3
This interpolation, which is valid for pressures in the TPa
range, yields only two free parameters which have to be
fitted to match the experimental results. This is in con-
trast to most of the semianalytical expressions found in
the literature® which have, in general, a greater number of
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free parameters to be fitted with experimental data. Due
to the spread in the latter, these various semianalytic ex-
pressions, while in reasonable agreement within the inter-
polation interval, display large differences in their asymp-
totic behavior, i.e., outside of the experimental region. We
use this model to calculate the Hugoniot curves of various
metals employing in the calculation one of two theoretical
models for computing the electron thermal contribution.
Excellent agreement with experiment is obtained.

II. THE PHENOMENOLOGICAL MODEL

The original Barnes formulation’ for the cold curve is
given by

v

P, =a112/3(17eb'v—eb“ ), (1)

where v=1—7"1"3 7 being the compression ratio p/py.
a and b, are chosen so as to make the repulsive term of
Eq. (1) reproduce the pressure as given by one of the
known statistical models (Thomas-Fermi, TFD, or QSM)
while b, can be determined from the experimental bulk
modulus B, by

3P,
- 377 =1

This formulation appears to suffer from several difficul-
ties.

(1) For most of the materials cited by Barnes in Ref. 7
there are significant differences between the normal
Griineisen coefficient 'y and the theoretical value derived
from Eq. (1) by use of the Dugdale-MacDonald'* (DM)
formula, as shown in Ref. 7.

(2) Kalitkin and Kuz’mina,'? in developing their QSM,
performed an analytical interpolation of the numerical
solutions of the Khirzhnits energy equation'> for highly
compressed matter and showed that there is apparently an
additional quadratic term in the argument of the exponen-
tial decay term in Eq. (1). Incidentally, this is not totally
unexpected as the Barnes expression was derived from an
analogy to the Morse diatomic potential model which is
valid for molecules and crystals in the normal pressure
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range.

(3) The TFD and the QSM theories'? predict a correc-
tion to the pressure with a dominant term which scales as
the electron density on the atom boundary raised to the
power of 5. This power law results from the exchange
forces which are accounted for in these models. It was
shown by More'"? that within the framework of the QSM
this electron density is almost proportional to the average
charge density in the atom, and then the correction term
scales as 7*/3. Similar behavior is also predicted by
electron-gas perturbation theory.!> The 7*/> power law at
high compressions is in contrast to the %>/ law in the
crystal state, Eq. (1). The transition between these two
correction terms could be taken into account, as Barnes
did, by using the predicted pressure of the TFD, rather
than from the Thomas-Fermi model, in describing the
repulsive term and assuming that for increasing compres-
sion this term predominates over the Morse diatomic
correction. However, this method does not appear to be
adequate as it determines the behavior of the cold curve at
high pressures by extrapolation of numerical relations for
the normal state where the TFD model is clearly not
correct.

As an alternative, a phenomenological model for the
0-K pressure isotherm is proposed which is composed of
the difference between repulsive and attractive terms, viz.,

Pc ZPQSM_S . (3)

The positive term, Pgsy, is derived from the respective
repulsive term in the QSM theory for the pressure (as
given in Ref. 12) and & is defined as

A,m*Pexp(—B, ™' P —Bym =), n<my

4 .
&= ZAi'ﬂ'”y M<N<nN, (4)

i=1

Sosm s> M=M2 -

Here 8qsy is the attractive term in the QSM model'? and
7, and 7, are the boundaries of the interpolation region.
The maximum degree of the polynomial in the interpola-
tion region is + because of theoretical limitations. The
number of polynomial coefficients used in the model is
the minimum number required to fulfill the continuity
conditions for the correction term 6 and its first derivative
at the boundaries 7; and 7, of the interpolation region,
viz.,

8(nj)=A4m",
i
’ . /3
37’]]8 (77}')=2Ail7]j
i

with j=1,2. 7, and 71, are the two parameters which are
to be fitted with the experimental data. We thus have a
system of four linear equations in four unknowns. For
fixed values of 17, and 7, and known values of the atomic
number Z, the atomic volume V,, and the constants A,
B,, and B, in the Morse correction term, the polynomial

coefficients A; can be calculated from Eq. (5). Moreover,
Ay, B,, and B, are related to ¥, By, and I’y by the boun-
dary conditions of P, at n=1, viz.,

P.(1)=0,
9P,
=B,, (6)
a"l =1
P, 2Bo(To++7,)
= 3Tg) -
anz el 0 0 3°'¢g

The last equation is obtained as a result of theoretical con-
siderations linking the Griineisen coefficient to the cold
compression curve.” In this equation Tg is a parameter
which varies according to the lattice configuration and
can vary from —1to + 1.

The constant A, is obtained by way of the first equa-
tion in (6), viz.,

A0=PQ5M(V0)CXP(BG+Bg) ’ (7)

where B, and B, are found from the remaining equations
of (6). They can be written in the following form:

5 9B,
&7 Posm( Vo)
(5+a+2B8)12—4a—10B—13—¢€2

(F0+ —;'Tg)

— 5 , (8)
B,=¢—2B,
where!?
1% 2/375/3
PQSM(VO):?W(:;TT') Z°>exp[ —(a+B)],
0
e=3[1-—2— |+a+28
PQSM(VO) ’
@ =0.3225R oz * 4500w ©)

=3R3[0.068+0.078 log;oZ —0.086(l0gZ )*] .

The constants here, besides those given previously, are
Vo=1.66042074 /py A?,

where A is the atomic weight, and
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where a,=#/me? is the Bohr radius.
The internal energy along the 0-K isotherm is obtained
from known thermodynamic relations, viz.,

Em=Vo [P0 %% (10
x
This splits up, depending on the values of § from Eq. (4),

into
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n dx
Vof] Pc(X);—z » M<M

n
B = {Ecn)+Vo [P0 % mi<n<m (b

n dx
Ec(n)+Vo [, Pex) 5 n>m.

The internal energy is best computed by numerical in-
tegration of Eqgs. (11) since there is no simple analytical
solution. This is due to the quadratic term in the ex-
ponential decay found in the expression for the pressure.

III. HUGONIOT CURVES AND THERMAL
CONTRIBUTIONS TO THE EQUATION OF STATE

The best method of testing the validity of the 0-K iso-
therms given by Eqs. (3)—(9) in the ultrahigh-pressure re-
gion is to construct Hugoniot curves using these isotherms
and then to compare such Hugoniot curves with experi-
mentally determined points.

The Mie-Griineisen EOS (Ref. 16) cannot be used in
this high-pressure region, as its use assumes that neither
the ion nor the electron thermal contributions are impor-
tant. Since both of the above thermal contributions must
be added to the 0-K isotherm in order to obtain a proper
Hugoniot curve, the problem arises as to which thermal
models are the most appropriate in the region of interest.

The ion thermal contribution to the EOS was calculated
using the Debye-Griineisen perfect-gas interpolation
method.!”!® This method does not include a detailed
treatment of phase transitions. However, up to the GPa
region (35 GPa for lead and 330 GPa for Mo, for exam-
ple) it has been found by others!® that satisfactory results
are obtained for the Hugoniot curves without considering
phase transitions at all. For higher pressure values, the
fluid phase, which becomes the most significant, is taken
into account using the method of Ref. 18.

The EOS obtained with the above model, as well as
with any other ion fluid theory, depends on the values of
the Griineisen coefficient I", which in turn is related to
the cold compression curve by means of the following ex-
pression:’

rcy)

_ r QAP VE) (P, VH)
_ t—2 _L ¢ / ¢ (12)

3 2 ov? 14

Several authors have found that various values of ¢ cor-
respond to different configurations of the crystal cell.
Thus, t=0, 1, and 2 give, respectively, the Slater-
Landau'® (SL) ionic crystal state, DM (Ref. 14) linearly
aligned metal atoms, and Vaschenko-Zubarev® free
volume (FV) expressions. More recently, it was proposed
by Romain et al.?! to generalize the interpretation of Tg
as being a characteristic parameter of each material. In
terms of the compression variable 77, Eq. (12) may be ex-
pressed as

18P,
| | n o +5[1—7(1427,)]P,
F(n)=——7g+3 P, )
n an =5 +7)P,
(13)
where
Tg=t—1.

For n=1, one obtains the boundary condition in Eq.
(6). The value of 7, may be obtained for each material by
comparing experimental shock-wave data to theoretical
calculations based on Eq. (13). This last equation relates
the ion thermal excitations to the cold compression curve
and emphasizes the interdependence between these two
components of the EOS.

In contrast, the electron thermal contribution cannot
readily be described by a single theory, valid for all ma-
terial elements and for all ranges of temperature and
compression. Since a thorough study of this topic is
beyond the scope of this paper, we have restricted our cal-
culations to those elements whose electron thermal contri-
butions to the EOS can be reasonably described by one of
several available thermodynamic theories.

The Thomas-Fermi-Khirzhnits (TFK) model is con-
sidered to give the most realistic formulation of the sta-
tistical behavior of the isolated atom and in addition,
there are available tables of scaled values of computed
thermodynamic functions based on this model.?? In order
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FIG. 1. Plots of electronic specific heat B, as a function of
atomic number Z for various elements. Calculated values of the
TF and TFK models are shown as well as experimental points
taken from Ref. 28. Regions in the calculated curves where no
data are available are marked by a dashed line. —.—.—. , lines
connecting adjacent experimental points.
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TABLE I. Summary of physical properties and interpolation parameters used in cold compression

curve calculations for seven metals.

Element z Vo (A3 B, (GPa) To Ty m m
Al 13 215.71 75.036 2.14 —1

cd 48 1035.64 48.605 2.29 0 1.273 2.710
Cu 29 342.62 136.15 2.00 0.5

Fe 26 307.15 109 2.15 1

Mo 42 655.94 269 1.63 —1

Pb 82 2487.64 42.353 2.38 0 1.476 2.125
w 74 1174.29 308 1.68 -1

to investigate the range of applicability of the TFK
model, the electronic specific heat 3, was obtained using
the tables in Ref. 22 and compared with the experimental
results for material elements of various values of Z, the
atomic number. The results are shown in Fig. 1.

It can readily be seen that the effect of the shell struc-
ture, which is neglected in the statistical models, has an
important influence on these results for most of the ele-
ments of the Periodic Table. Certain elements such as Cd
and W appear to be affected to a much smaller extent and
therefore the calculated S, values are quite close to the ex-
perimental ones.

When shell-structure effects are small, though not
negligible, the use of a numerical interpolation between
the Saha [local thermodynamic equilibrium (LTE)] and
the TFK methods appear to yield satisfactory results.?3 It
is also possible to perform EOS calculations which take
shell structure into account as for example by using
Liberman’s average-atom (AA) model (INFERNO).2* Re-
sults of such calculations for Al, Cu, and Mo are available
in the literature.'!

In calculating the theoretical Hugoniot curves for the
elements considered in this paper, it was found that the
TFK theory gave the best results except for the case of
molybdenum where the INFERNO results were adopted.

IV. RESULTS

In Table I are listed the physical properties and interpo-
lation parameters for calculating the cold compression
curves of seven metals investigated in this paper, using the
phenomenological model presented here.

In Figs. 2 and 3 the calculated 0-K isotherms and
Hugoniot curves for Cd and W are shown. Also shown
are experimental points collected from the literature.
Those experimental data that are indicated with their er-
ror bars originate from impedance-matching experiments.
These require for their interpretation the use of a standard
EOS model and the different shaped points indicated in
the figures have been determined using different EOS
models. In Fig. 3 there are added curves obtained from
the SESAME tables for tungsten. As can be seen, the agree-
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FIG. 2. Zero-degree-Kelvin isotherm and Hugoniot curve for Cd. Experimental points taken from OJ, Ref. 29; O, Ref. 30;, Ref.
19; and >, Ref. 32. Data with error bars originate in impedance-matching experiments of Cu-Cd stack from Ref. 31 interpreted by
use of different Cu EOS: {4, present work; +0O—, SESAME table no. 3331; ~O— , SESAME table no. 3332.
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ment with experiment is excellent over the whole range of
compression values. In the case of tungsten, the results of
our calculations seem to give a somewhat better agree-
ment with experiment than the SESAME results (which are
based on the Barnes model).

The results of similar calculations are shown for Pb in
Fig. 4. The need for a revision of the EOS for this metal
has already been indicated by Ragan in a recent paper.'°
This is due to an apparent inconsistency between the Pb
and the Mo EOS SESAME tables (material no. 3200 and
no. 2981, respectively) used by him in interpreting his
impedance-matching experiments. Incidentally, this Mo
table uses the Saha-TFK interpolation to calculate the
electron thermal contribution. Ragan therefore concludes
that the lead Hugoniot curve needs to be ‘“softer” than
predicted by the Pb SESAME table, even though this would
increase the discrepancy in the results of a similar experi-
ment using a lead-quartz stack. Our calculations using
the TFK model appear to confirm these results of Ragan
and show that, if the above-mentioned SESAME tables are
used, the resulting Hugoniot curve is just at the edge of
the experimental error bar. On the other hand, if the lat-
est SESAME table for Mo (no. 2983), which incorporates
Liberman’s self-consistent-field model for the electron
thermal contribution, or our proposed EOS for Mo, are
used, a better agreement is obtained.

The results of our calculations of the Hugoniot curves
for Mo are shown in Fig. 5. In the same figure we show,
for comparison, the Hugoniot curves derived from the
above-mentioned SESAME tables for Mo, namely, no. 2981
and no. 2983. It is seen that the first of these fits the ex-
perimental values at low compression while the second
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gives a better fit for higher compressions. Our curve,
which has been calculated using the AA-predicted values
for the electron thermal contribution, appears to give a
proper interpolation between the two extremes.

In Figs. 6 and 7 are shown the results obtained for Al
and Cu.

Finally, in Fig. 8 the calculations carried out for Fe are
presented. The application of our model to iron is com-
plicated by the existence of several solid-state phase tran-
sitions for this element. In our calculations we consider
only the € phase which is stable above 25 GPa. Here we
can no longer use for I'y and B, in Eq. (8) and (9) the ex-
perimental values measured in the normal state, but we
use instead quantities extrapolated from measurements in
the solid phase of interest. For example, I'y is deduced
from the slope of the U;-U, (shock vs particle velocities)
curve obtained from compiled shock-wave data?® while B,
values have been fitted so as to give good agreement with
the experimental Hugoniot curve. Our theoretical predic-
tion of the Hugoniot curve in Fig. 7 makes use of the
TFK model for the electron thermal contribution. The
observed discrepancy between the experimental Hugoniot
points and the calculated curve above a compression of
1.8 is not surprising if we take into account the large
difference between the experimental and calculated values
of the electronic specific heat B, as shown in Fig. 1.
Nevertheless, our curve is still closer to the experimental
data in that region than the Hugoniot curve obtained
from the Fe SESAME table (no. 2140) which is based on the
TFD model. Since it is known that the TFD model gives
values of the electron thermal contribution which are
greater than those obtained using the TFK theory and

O | E— ™
: p
- |
| = —

o F ]

a — -

- B B

o

3

A r -

e

a

Ol— —
g .
: — Py :

—== P¢

00l [ SN N B A

| 2 3

P/ Po

FIG. 3. Comparison of zero-degree-Kelvin isotherms and Hugoniot curves in W. Heavy line shows present work and light line the
results derived from SESAME table no. 3451. Experimental points taken from O, Ref. 19; O, Ref. 34; O, Ref. 35. Data with error
bars were derived from impedance-matching experiments of Mo-W stack (Ref. 10) using different Mo EOS: ~{~, present work;

+—O— , SESAME table no. 2981; o+ , SESAME table no. 2983.
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FIG. 4. Comparison of zero-degree-Kelvin isotherms and Hugoniot curves in Pb. Heavy line shows present work and light line the
computations derived from SESAME table no. 3200. Experimental points taken from O, Ref. 25; OJ, Ref. 29; >, Ref. 30; A, Ref. 36;
<, Ref. 19;0, Ref. 37;0, Ref. 32. Data with error bars originate in impedance-matching experiments of a Mo-Pb pair from Ref. 10
using different Mo EOS: —~ , present work; —0— , SESAME table no. 2981; »- O~ , SESAME table no. 2983.
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FIG. 5. Comparison of zero-degree-Kelvin isotherms and Hugoniot curves in Mo. Present results of the cold compression curve as
well as those obtained from the Barnes model are represented by the dashed line (———); augmented-plane-wave (APW) (--- --- ) and
AA (e vnes ) predictions are also shown. The respective calculated Hugoniot curves are indicated by a heavy solid line (present re-
sult), light solid line (SESAME table no. 2980), dashed line (SESAME table no. 2981), and dotted line (SESAME table no. 2983). Experi-
mental points taken from O, Ref. 29; O, Ref. 38; O, Ref. 19; +~—, Ref. 39. Data originating in impedance-matching experiments of
a Pb-Mo pair from Ref. 10 using our Pb EOS is indicated by +~ . Results derived from similar experiments on a Al-Mo stack (Ref.
10) using different Al EOS: +< , present work; ~O— , SESAME table no. 3712; ~O—, SESAME table no. 3713.
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FIG. 6. Comparison of zero-degree-Kelvin isotherms and Hugoniot curves in Al. Present results of the cold compression curve as
well as those obtained from the Barnes model are represented by the dashed line (———); APW (--- --- )and AA (- - ) predic-

tions are also shown. The respective calculated Hugoniot curves are indicated by a heavy solid line (present results), light solid line
(SESAME table no. 3710), dashed line (SESAME table no. 3712), and dotted line (SESAME table no. 3713). Experimental points taken
from , Ref. 31; >, Ref. 40; O, Ref. 41; O, Ref. 42; 0 , Ref. 37; 0 , Ref. 43; >, Ref. 44. Data originated in impedance-
matching experiments of Mo-Al stacks from Refs. 1 and 10 using different Mo EOS: +{3}~, present work; —0— , SESAME table no.
2981; —O-, SESAME table no. 2983.
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FIG. 7. Comparison of zero-degree-Kelvin isotherms and Hugoniot curves in Cu. Present results of the cold compression curve as
well as those obtained from the Barnes model are represented by the dashed line (———); APW (--- --- )and AA (- ---- ) predic-

tions are also shown. The respective calculated Hugoniot curves are indicated by a heavy solid line (present results), light solid line
(SESAME table no. 3330), dashed line (SESAME table no. 3331), and dotted line (SESAME table no. 3332). Experimental points taken
from O, Ref. 31; O, Ref. 29; >, Ref. 41; <7, Ref. 7; A, Ref. 36; V, Ref. 37; 0, Ref. 25; O, Ref. 19; @, Ref. 43; B, Ref. 32. Data
originated in impedance-matching experiments of Pb—Cu pairs from Ref. 33 interpreted by our Pb EOS are indicated by +#—. Re-
sults derived from similar experiments on a Mo-Cu stack (Ref. 1) using different Cu EOS: H3+ , present work; +—O—+ , SESAME table
no. 2981; -, SESAME table no. 2983.
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FIG. 8. Comparison of zero-degree-Kelvin isotherms and Hugoniot curves in Fe. Light line shows present work and heavy line
the results derived from SESAME table no. 2140. Experimental points taken from 0O, Ref. 25; >, Ref. 29; <7, Ref. 45;0, Ref. 25; O,
Ref. 19; O, Ref. 37;<0, Ref. 42; , Ref. 38. Data with error bars originate in impedance-matching experiments of a Mo-Fe pair from
Ref. 1 using different Mo EOS: —(— , present work; —O— , SESAME table no. 2981; O, SESAME table no. 2983.

since, as can be seen in the figure, the cold compression
curves are almost identical, we are led to the conclusion
that the ion thermal contributions have not been properly
calculated in the iron SESAME tables.

V. DISCUSSION

One consequence of our model for the cold compression
curve may be that it can provide an accurate estimate of
the nuclear Griineisen coefficient I'. The connection be-
tween this coefficient and the cold compression curve is
given by Egs. (12) and (13).

In Fig. 9 we show a comparison between different
theoretical calculations and experimental measurements of
this parameter for Al. The fitted value of 7, for Al in our
work is Tg=-—1, indicating that for this element the SL
configuration seems to be valid, in agreement with other
works.>!® The theoretical curve calculated by the phonon
theory of Godwal et al.,? as well as that given by the SL
expression obtained from Eq. (12) using a 0-K isotherm
taken from the same reference, are shown in the figure.
Also shown is the curve calculated from Eq. (13) using
the cold compression curve as obtained from our calcula-
tions. All these curves are compared to Neal’s experimen-
tal points.’ In addition, we show the normal value T, for
Al in the figure. As can be seen, our calculations fit this
normal value better than either of the other theoretical
predictions, as well as being about as good as they in the
remainder of the range.

Of the elements studied in this paper, only for Pb and
Cd have the experimental values published to date reached
the pressure range in which the Morse-QSM interpolation
technique is required. This is probably due to the fact

25

Nuclear Gruneisen I" parameter

04 o€ o8 10

V/Vo

FIG. 9. Plot of nuclear Gruneisen I' parameter vs volume
compression ratio (V/¥,) for Al. Experimental values taken
from Ref. 27 and Ref. 28 . Theoretical curves indicated
by solid and dashed lines as obiained from Ref. 26. Present re-
sults are indicated by —-—.—-.
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that these elements have closed (or nearly closed) shells
which are characterized by a comparatively uniform elec-
tron density distribution as assumed by the QSM theory.
Incidentally, Sn may be another element which fits into
the same category but the Hugoniot data presently avail-
able is not sufficient to permit the construction of a reli-
able fit. For the other cases studied here the use of the
pressure correction term derived from the Morse diatomic
potential is sufficient to give a proper fit to the experi-
mental data published to date.

In conclusion, we have shown that the cold compres-
sion curve can be calculated in a straightforward manner
provided that the values of By, Iy, and 7, are known. We
have applied this model to a number of elements and have
found excellent agreement with both experiment and more
sophisticated theoretical computations. It is our belief
that this formulation can be extended to other metals not
considered here and, in a modified version, perhaps to
compounds and alloys as well.
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