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Mechanism of the transient stimulated Rayleigh scattering in liquids
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In this paper we present a new theoretical approach to the transient stimulated scattering of light.
It was shown that a light-induced grating giving rise to stimulated scattering can be depicted in
terms of nonlinear Volterra equations. Taking advantage of this approach we made a detailed study
of the mechanism of transient stimulated Rayleigh scattering (SRLS), for which the pulse duration
of laser light and the rise time of the isobaric modulations of the dielectric functions are of the same
order. Assuming a small depletion of laser-light intensity only, we derive expressions describing the
spatially and temporally resolved distributions of isobaric modulations of the dielectric function and
of the optical field. From our analysis it follows that SRLS is generated only if a phase mismatch
between the optical field and the light-induced isobaric grating occurs. Such a phase mismatch is
due to the finite rise time of the grating. The calculations confirm that in absorbing liquids the ap-
pearing local heating determines the generation of isobaric gratings. Furthermore they put into evi-
dence that in transparent liquids electrostriction and the optical Kerr effect become significant. The
hitherto unexplained shift in the spectrum of SRLS in transparent liquids should now be related to
the optical Kerr effect. It was also found that for some experimental conditions a significant part of
SRLS reveals a wave front reversed to the incident laser field.

I. INTRODUCTION

Time-resolved stimulated scattering was extensively
studied over the last 20 years. ' Several methods were
developed which yield an adequate picture of the time
evolution of stimulated Brillouin scattering (SBS) and
stimulated Raman scattering (SRS) for a wide range of
experimental conditions. These methods fail, however,
for stimulated Rayleigh scattering (SRLS). The question
of how to describe, under realistic experimental condi-
tions, the SRLS and the phase gratings involved becomes
important again in view of th0 experimental demonstra-
tion of the optical phase conjugation due to Bragg reflec-
tion from light-induced phase gratings in linear absorbing
liquids. ' '"

The mechanism of stimulated Rayleigh scattering is
now well understood qualitatively. As it was experimen-
tally and theoretically proved, stimulated Rayleigh
scattering is due to isobaric modulation of the susceptibili-
ty function of the medium caused by density and tempera-
ture variations. ' ' On the other hand, these modu-
lations are created by the optical field arising from the in-
terference of the laser and scattered waves. In liquids,
linear absorption, electrostriction, and the electrocaloric
effect are considered to be involved in the interaction of
the optical field and the medium.

The role of the linear absorption was first pointed out
by Herman and Gray, ' who found that local heating due
to linear absorption created temperature and density vari-
ations giving rise to stimulated scattering with the spec-
trum shifted to the anti-Stokes side. This was later con-
firmed by several experiments performed in colored
liquids. ' The SRLS ruled by linear absorption has been
called the stimulated thermal scattering (STS-II).

If the contribution of linear absorption vanishes, as is
the case with transparent liquids, the scattered light spec-
trum is shifted to the Stokes side. The mechanism of this
scattering, referred to as STS-I, is not yet clear. The first
explanation of STS-I was given by Starunov et al. , '
who assigned the modulations of the susceptibility func-
tion to the fluctuations of isobaric entropy caused by the
electrocaloric effect. This explanation involved, however,
the improper form of the source term (Be/BT)z. Later,
Starunov, ' Harrison et al. ,

' Wang and Herman, ' and
Enns et al. ' proved that in the stationary case the elec-
trocaloric effect has only a small contribution to the sus-
ceptibility function.

Searching for other sources of STS-I, Wang and Her-
man' considered the influence of isobaric and adiabatic
mode coupling. Taking advantage of the previous calcu-
lations of Rother' they found that this mechanism con-
tributes significantly to the isobaric modulations of the
dielectric function. Their analysis did not include, howev-
er, the coupling of modes due to the influence of the scat-
tered radiation.

Several authors2o —22 have independently discussed the
influence of the finite rise time to the temperature and
density isobaric modulations on SRLS. They have shown
that in the cases when the rise time of isobaric fluctua-
tions and the width of the laser pulse are of the same or-
der, the gain factor has a form which cannot be explained
in terms of the steady-state theory. To overcome these
difficulties several attempts were made to develop a tran-
sient theory of SRLS.

For the case of small depletion of the laser-light intensi-
ty and small arnplification of scattered light, Rother de-
rived expressions' which describe the intensity of the
scattered electric field as a series expansion of the "z"
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coordinate. This approach was extended by Rangnekar
and Enns.

A different treatment was based on particular models
of the incident optical field. Using these inodels the
time-dependent gain factors and the temporally and spa-
tially resolved distributions of scattered light were calcu-
lated analytically and numerically.

In the present paper a theory of SRLS is developed in
which use is made of the integral-equations approach. We
show that the isobaric grating giving rise to SRI.S can be
depicted in terms of the nonlinear integral Volterra equa-
tions. Taking advantage of this approach we made a de-
tailed study of the mechanisms of transient SRLS, for
which the pulse duration of laser light and the rise time of
the isobaric modulations of the dielectric function are of
the same order.

In Sec. II, starting from Maxwell's, heat-transport, and
the Navier-Stokes equations, we evaluate integral equa-
tions describing the distribution of light-induced gratings
giving rise to stimulated scattering. We prove that, mak-
ing use of a simple linearization procedure, these equa-
tions can be solved using standard methods. In Sec. III,
on the basis of that integral-equations approach, in as-
suming a small depletion of laser-light intensity only, we
derive expressions describing the spatially and temporally
resolved distribution of the optical field, as well as the iso-
baric modulations of the liquid in stimulated Rayleigh
scattering. Particular attention was paid to the SRI.S in
amplifier systems. Section IV contains a detailed discus-
sion of the mechanism of SRLS for various experimental
situations and furthermore an analysis of the conditions
under which the optical phase conjugation in this kind of
light scattering should be observed.

II. GENERAL THEORY

E(r, t), p)(r, t), and T)(r, t) in the form

E ) [[ ( )
i(ruLt —kLz) —azl2

i {a&L t +kL z) +ar /2 +c.c. e,
pi ———,

'
[p(z, t)e ' +c.c.],

T, = ,'[T—(z,t)e ' +c.c.] .

(3)

(4)

(5)

The complex functions At, , A„p, and 1denote the slow-
ly varying amplitudes of the laser, Rayleigh, density, and
temperature waves, respectively; kL and k =2kL are the
wave vectors; o)L is the laser-light frequency; and e is the
polarization vector.

Substituting expressions (3), (4), and (5) into Maxwell's,
hydrodynamic, and heat-transport equations and neglect-
ing small terms involving derivatives of slowly varying
amplitudes, we obtain in the liquid limit a system of the
orm
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Stimulated Rayleigh scattering may be described by the
Maxwell wave equation of the formz

«0 BE(r,t) no B'E(r, t)
2
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c Bt
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where E(r, t) is the optical-field electric vector and e)(r, t)
describes the modulations of the dielectric function. The
ellipsis represents unspecified terms depicting other non-
linear phenomena. The first term on the right-hand side
of (I) is related to the perturbations of density and tem-

perature, denoted by p)(r, t) and T) (r, t), respectively, by

B
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As it has been proved, in liquids these perturbations
satisfy the hydrodynamic as well as the heat-conduction
equations, the optical field being a superposition of laser
and scattered radiation. Since the laser and the backward
scattered radiation are the most significant components of
the optical field, ' ' we shall consider in our analysis the
laser and the scattered light traveling in opposite direc-
tions. Taking advantage of this assumption, we take

where U is the velocity of sound; y=c~/c„ is the ratio of
the specific heats at constant pressure and volume; A, z and
Pz. are the coefficients of heat conduction and thermal ex-
pansion, respectively; no is the optical refractive index; a
is the linear absorption coefficient; q characterizes the
damping of' the acoustic waves; To and po are the average
values of temperature and density; and 7' ' is the non-
linear susceptibility tensor.

The term on the right-hand side of Eq. (8) describes the
contribution due to electrostriction, and the two terms on
the right-hand side of (9) represent the influence of linear
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absorption and electrocaloric effect, respectively. The last
terms in (6) and (7) represent the self-action of light con-
nected with the optical Kerr effect. These terms in (6}
and (7) were neglected in the previous theoretical con-
siderations.

On the basis of Eqs. (6)—(9) we derive our integral-
equations approach.

Using the standard methods we express the func-
tions p(z, t},T(z, t) in terms of optical-field components:

Q t
p(z, t)= g [poj(z, to)+ctFJ(z, t)]e ', (10)

Q.t
T(z, t) = g [TOJ(z, to)+d)FJ(z, t)]e '
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where poj(z, to), TOJ(z, to) are the values of p(z, t), T(z, t) at
time to and

where

3

+ g ej(z, to)e '+eTALA, ',
j=1
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Now the modulations of the dielectric functions are ex-
pressed in the form

—[r„n]f
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The relations between the particular constants are as
follows:
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The first term in (15) describes the isobaric perturbations;
the second and third ones relate to the sound wave travel-
ing parallel and antiparallel to the laser beam, respective-
ly; and the last two terms relate to the initial conditions
and to the contributions provided by the electrocaloric ef-
fect. The coefficients g, g, P', and t3 are assigned to the
electrostriction, linear absorption, mode coupling, and
electrocaloric effect, respectively. In expressions (14) and
(16) the terms proportional to (I a/(oa) and (I'a/(0a)
have been neglected.

After substituting (15), Eqs. (6) and (7) may be
transformed to take the form
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aIL n() aIL, ikt. e ' . . . (n,' n,").(et'Ft'+ et*(z, t() )e
az c t 4n()

where I, =A, A, and ek ——24m' +ET.
From (18) and (19) we have immediately that
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Let us introduce new variables t'= t+zn p/c, z'=L —z and denote

(20)
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Substituting (20) and (21) into (17) we finally get
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Since I L is of the order of I"n, we have the following relations:
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For real experimental conditions the case considered involves also2

2npL aAL.~, at
"'

(23)
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Integrating the system (22) and eliminating terms which are small in the meaning of (23) and (24) we get a set of non-
linear Voiterra equations of the form (Appendix A)

FJ(z', t')= fj(z', t')+A, f dt" f dz"KJ(z', t';z", t")FJ(z",t"), (25)
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Since for each finite pulse of laser light the integral operator in (25) satisfies the Lipschitz condition, the system of
equations (19) and (25) has an iterative solution. However, in cases when a strong amplification of the modulations of
the dielectric functions occurs, the iterated series obtained is slowly convergent.

The iterating procedure may be avoided by taking the laser-light intensity as a sum:

IL(z', t') =IL()(z', t'}+AIL(z', t'),
where ILp(z', t') is an arbitrarily chosen function. If we find such a ILp(z', t') for which we have

It p(z', t') && bIt (z', t'),

(30}

(31)

then the equations (25) assume the form

F~(z', t')=f1(z', t')+ dt" f dz"KJ()(z', t',z",t")FJ(z",t"+ dt" dz"KJNL(z', t';z", t"}F1(z",t") . (32)
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The kernel of the first integral operator is expressed in
terms of IL 0, while the kernel of the second one includes
EIt only. From the general theory of the nonlinear Vol-
terra equation it follows that due to the assumptions
(24), (30), and (31) the second order causes only small
changes of the shape of Fj(z', t'). Hence the solution of
(32) may be written in the form

where the function g(z', t') is given according to (20) and
(31) by

g(z', t') =ek e IL 0(z",t")
0

F,(z', t') = f, (z', t')
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where the Rj(z', t',z",t") resolvent is given by
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Since e(z', t') is now expressed in terms of the initial
conditions and IL0(z', t') only, A, and AL may be deter-
mined using standard methods. Let

Q.t'
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(34b)
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(34d)
where

By integrating this system and making use of Fubini's
theorem we get immediately

3 0 1 2
A, p(z', t')= g A,je (38)
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I
2
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The second right-hand-side term in (38a) describes the in-
teraction of the unperturbated laser wave with the isobaric
modulations, and the last one is the correction associated
with the change of laser field due to stimulated scattering.

Since (38a) is a linear equation with respect to
A,j(z', t'), its solution can be expressed using formulas
analogous to (33) and (33a)—(33c) in which the definitions
of kernel and resolvent are only changed. It follows from
(33)—(38) that all information about the mechanisms of
scattering processes including the coupling of the adiabat-
ic and isobaric modes are involved in the resolvents which
can be determined regardless of the initial conditions.

A. The resolvent for the SRLS

Our linearization procedure of the equations describing
SRLS is based on the assumption

I,(z', t') ((IL(z', t') . (39)

The approach as given in Sec. III provides a qualitative-
ly riew insight into the SRLS, being only an extension of
the previous treatments ' for SBS.

III. INTEGRAL-EQUATIONS APPROACH
IN STIMULATED RAYLEIGH SCATTERING



33 MECHANISM OF THE TRANSIENT STIMULATED RAYLEIGH SCA'l
JEERING.

. .

Hence, according to (24), we can write

dIL(f') 2z'no
It (z', t') =IL(t')+ +ddt (z', t'), (40)Bt' c

where the last two terms, concerning the time retardation
and the depletion of the laser pulse, respectively, are small
with respect to the initia1 laser-light intensity given by
IL(t'). In this case

dIL (t") esj
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According to relations (23) the term

dIt (t")
Bt"(Q2+ I a /2)

can be neglected. Furthermore, since F, (z', t') is definite by the convolution (12), it varies slowly with time with respect
to exp[Q2(t' —t")]. Thus
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Under these assumptions, one obtains

I I
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Using infinite iteration, again taking advantage of the Fubini theorem and summing up the series obtained, we finally
get the integral equation (Appendix 8)

dI (t")
F&(z', t')=g~(z', t')+I, f dz" f dz"

I exp[he, It (t")(q' q")+az' —]] ettIL(t") e, „—F, (z",t"),
0
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e —1
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Now, taking advantage of expressions (34a)—(34c), we get the resolvent of (44) in the form

8 &(z', t', z",t")=
I exp[tzz" +Re,IL(t")(q' —q")]I e„IL(t") e, —dIt (t")

B(z', t',z",t") . (4&)

The function B(z', t', z",t") is given by

B(z', t',z",t")= g B„(z',t', z",t"),
n=Q

(46)

Bo(z', t', z",t")= 1, (46a)



33

B„(z',t';z", t")= f „dt"' f, dz"' ettI(t"') e—,

X(exp[az'"+«, [IL (t"')—IL(t")](q'—q"')
J )B„ i(z"', t"',z",t") . (46b)

In the approximation considered we get the distribution of the scattered field after the one-step iteration of (38a).
Then, neglecting small terms, we may write

A„(z', t') =A, (O, t')+ At (O, t')g(z', t'),
where

z'
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One should note that according to (15) we can limit our considerations to time periods
~

(t" t')
~

—(2/I ii. If the func-
tion exp[«, [IL (t"'}—It (t")](q'—q")] is slowly varying within this period, i.e.,

I
«.[It.(t"'} IL(t"—)](q' q"'}

I

—« I
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then B(z', t', z",t") becomes (Appendix C)

dIL (t'")t
B(z', t', z",t")=ID 2A(q' —q") f„dt"' ettIt (t'") e, —

1/2

(48)

(49)

where Io[ I is here the modified Bessel function of zeroth order.

B. Special solution for amplifier systems

From the experimental point of view two cases are of particular interest: the amplifier system and the generator sys-
tem. In the amplifier system a weak optical wave enters the medium at point z =0 and gives rise to the initial modula-
tion of the medium, '2 while in the generator system the initial signal giving rise to SRLS is produced by a random fluc-
tuation of entropy. ' So far, however, we have no theoretical or experimental hints as to the shape of these random fluc-
tuations involved, so one cannot determine the forcing function g, (z', t') for this case. These difficulties do not occur,
however, in the case of the amplifier system, where as it follows from (26) and (44) the forcing functions take the form

f,(, , t )=p, (O, t }= dt"A, (o,t")A,'(O, t")e] (50)

g, (z', t') =F,(0,t')exp[i Roe, IL, (t')q'] (51)

regardless of the envelope of the initial light pulses. If we substitute (50) into (33) and make use of (38) and (45), then

Fi (z', t') = exp[ii4&e, I(t')q']

X, e A( LtO") A(o, t") 1+iZo f f B(z', t', z",t'") etiIt (t'")—e,

Xexp[az" +iloe, [IL(t'")—IL(t')]q" }dz"dt'" dt", (52)
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E'
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exp[ikoe, It (t')q'] . (54)

&ar, ,
&' „At'(O, t')A, (O, t")e

2coti 0io t'
dt ltltltI

( t I I I
)

1/2
tlt L

t'
XIi 2i~—'hatt f dt"'IL(t'")

' 1/2
(5S)

Expression (55) has a form similar to that describing the
distribution of the scattered field in SBS and SRS under
small signal approximation. '

IV. DISCUSSION

It follows from (47a)—(47c) that in cases when the in-

tensity of the light beam is time independent, SRLS does
not occur. This fact becomes evident if we examine Eq.
(18). Since equi is real,

ap(z', t')
az'

" '" at' (S6}

where F, (z', t ')=
~
F, (z', t' }

~
exp[ —iP( 'zt') ]. As it is

proved by (56), SRLS arises when eti(aQ/at') ~0. A de-
tailed analysis of the optical-field distributions and the
isobaric perturbations involving expressions (44) and (47)
requires the knowledge of the initial conditions. This dif-
ficulty may be avoided, if one takes advantage of the fact
that 3I L & I q in most experiments where SRI.S was in-
vestigated. In such a case we get from (44) and (43a)

Is 2e
0(- —E'g +6s

aIt (t') +'' (S7)

The physical explanation of (56} is fairly simple. In the
stationary case, two plane waves of the same frequency
produce a phase grating in perfect phase matching with
each of the waves so the intensity of both waves does not
change. Transfer of energy between these two beams
occurs only if the phase-matching condition is not ful-
filled. In view of the finite rise time of isobaric perturba-
tions, it will take place, however, if the phases of the opti-
cal waves are time dependent. Expression (57) shows that
the generation of scattered radiation takes place either on

the rising or on the falling slope of the laser pulse, de-

pending on the sign of the material parameters gati and e, .
In the model presented, these parameters are a linear com-
bination of contributions provided by electrostriction,
linear absorption, the electrocaloric effect, and molecular
reorientation (Kerr effect). The values of these contribu-
tions calculated for several liquids are summarized in
Table I [Eqs. (14a)—(14c), (16a)—(16d), and (43)].

As it follows from (16) and Table I, the values of eti in
absorbing as well as in transparent liquids are determined
by the term attributed to linear absorption. The compen-
sating influence of the coupling of modes may be signifi-
cant if a ~0.001 cm '. The electrocaloric effect is of no
importance here.

The dependence of e, on various mechanisms of in-
teractions between light and the liquid is more complicat-
ed. The value of ek is related to the anisotropy of the
molecules and lies in the limits from 10 ' esu in liquids
where this anisotropy is small (i.e., CC14) to 10 ' esu in
liquids where a large optical Kerr effect is observed (CS2,
nitrobenzene). The other term in (43a) gives the contribu-
tions of the coupling of modes and is of the order of
10 ' esu. So, in liquids with anisotropic molecules, e, of
the order of 10 ' esu and is positive. On the other hand,
in liquids consisting of isotropic molecules, e, is of the or-
der of 10 ' esu and is negative.

Numerical estimations prove that the terms involving
e, may be significant only in nonabsorbing liquids. If
a ~ 0. 1 cm ', the terms due to linear absorption dominate
regardless of the shape of the laser pulse and the anisotro-

py of the molecules of the medium. Therefore, as it fol-
lows from (57), the pulse of the scattered radiation is de-
layed in absorbing liquids by a value of 2/I L with respect
to the laser pulse. This conclusion is in excellent agree-
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ment with the experimental results of Rother et al. ' On
the other hand, the sign of BI,/Bz' is determined in trans-
parent liquids by the anisotropy of the molecules. If
[e, +(2ektlI 3t)])0, then the spectrum of scattered light
is shifted to the Stokes side. It becomes evident, there-
fore, that STS-I is caused by the self-action of the optical
wave and not by the electrocaloric effect, as was suggested

by Starunov and Fabielinski. 3

A. Phase conjugation in SRLS

From (47) it follows directly that in cases when small
depletion of the laser-beam intensity occurs, the scattered
radiation leaving the liquid is directed by

Ag )(L,t') =A, (O, t') i l(oe—R At (O, t')

x f, dh" f dz"Ak(L, t")A, (O, t")
0

E
Xexp az" + 2

I"x(t"—t') +bio IL(t')q "+t'QekIL, (t')q(L)
2cog

1 iso—f dt"' f dz"'expI az"' i loe, q"'—[IL(t"') Ik. (t')] I—

"dI (t"')
X e„Ik (t'") e, „,— B(z",t";z'",t"')t'"

(58)

where the centered dots denote terms depending on Ez(z', to). It follows from numerous theoretical and experimental in-
vestigations of optical phase conjugation3 that the dependence in form (58) is sufficient to make a part of the spectrum
of the scattered light obey the phase front reversed with respect to the incident laser light. Usually the efficiency of the
process of optical phase conjugation is characterized by the ratio of the intensities of the outcoming scattered and the in-
cident laser waves:

I, (L,t')

It (t') (59)

The detailed study of parameter 8 requires, in view of the nonstationary nature of SRI.S, extensive numerical calcula-
tions. However, if we restrict our considerations to colored liquids of isotropic molecules, for nanosecond-width laser
pulses we get, after dropping small terms, the approximate expressions

A, (O, t ) A, (o,t, )
exp[ ——,I &(t' —t, )]C(t', t')

AL Ot At Oto

A, (O, t' t")—
„exp( ——,

' I „t"), „C(t',t")dt"
dt' AL O, t' t"—

' 1/2

where the function C(t', t") is defined as
gtl

C(t', t")=I, 2ie„~(L—) f dt'"IL(t' t"')— (61)

TABLE I. Values of the contributions provided by electrostriction, linear absorption, the electrocaloric effect, and molecular

reorientation, calculated for several liquids. All values in esu. The data have been taken from Refs. 1, 2, and 4 and from references

therein.

I

{10 )

III

(10 )

IV V VI
pe E y(3(

(10 ) (10 '
) (10 ' )

VII VIII IX X XI XII
I I e„' e „' e I e„/2

(10 ) (10 8) {10 } (10 ) (10 ) (10 )

Nitrobenzene
CS2
Acetone
C6H,
CC14

'a =0.002 cm

3.07
4.93
2.07
2.70
3.61

0.11la
0.246a
0.105a
0.126a
0.302a

—5.68
—10.32
+0.110
—0.515
+0.041

107.1
181.0
38.7
44.3
67.6

—2.37
—2.34
—0.016
—0.26
—0.012

90
114

1

21
1.85

4.30
3.66
1.38
2.19
3.96

2.35
2.26
1.32
1.51
1.07

—3.60
—10.54
—4.50
—7.40
—9.09

1.5
5.1

2.1

3.7
4.5

7.6
15.3
5.24
9.23
5.24

29.2
31.4
0.096
3.46
0.550
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If we consider, by way of example, CC14 colored with

J2 of concentration giving a =0.2 cm ', then

e~ ——9 & 10, A,0
——4.2 &(10, and I ~ ——1.07 &( 10 s

For a 1-cm-length sample, illuminated by two laser pulses
of the maximum power densities 40 and 0.01 MW/cm,
respectively, and the width of 10 ns (full width at half
maximum), owing to the same initial optical-field distri-
bution, i.e.,

A, (O, t' t"—) A, (O, tr))

At (O, t' t")—At (O, tc)

we get R & 0.04. The value of R increases, if

A, (O, t' t") —A, (O, to)
exp[iso(t' t")]—j,

A t(0, t' —t") At (O, to)

co & —,
' I li (63)

which means that the frequency of the initial scattered
field is shifted to the anti-Stokes side. For to= —,

' I lt,
which corresponds to the maximum of the steady-state

gain for SRLS, we obtain R &0.07. These values of R are
much smaller than the values of 8 obtained for SBS (Ref.
31) and are of the same order as the values of R obtained
in experiments in which the optical phase conjugation via
four-wave mixing in linear absorbing liquids was investi-

gated

V. CONCLUSIONS

From our considerations it follows that the proposed
integral-equations approach provides a new insight into

the mechanism of transient SRLS. All information about
the processes contributing to SRLS including the coupling
of adiabatic and isobaric modes are involved in the resol-
vents of the linearized Volterra equations. These resol-
vents can be determined regardless of the initial condi-
tions. The expressions derived on the basis of this ap-
proach show that SRLS is generated only if a phase
mismatch between the laser field and the isobaric grating
occurs, which happens when the duration of the laser
pulse and the rise time of the grating are of the same or-
der.

The significance of various mechanisms contributing to
the generation of light-induced phase gratings depends on
the value of the linear absorption coefficient. In colored
liquids the local heating dominates, while the increase of
transparency, electrostriction, and the optical Kerr effect
become important. The hitherto unexplained shift in the
spectrum of STS-I should be related to the optical Kerr
effect. We also found that for certain experimental condi-
tions a significant part of STS-II reveals a wave front re-
versed to the incident laser field.
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APPENDIX A: EVALUATION OF INTEGRAL EQUATION FOR E

Let us consider the equation

O'F, (z', t') ikt e

Bz'Bt' 4li &

I

e /z(z ( —2z'ee/e)+ ', 'e ™wJ e(z /ez(z "( 2z "ee/e) ",+'e '—*/, (D, ('')
Z" '

BFJ(z', t') ~ ln, lg' 2nc BAt (z', t') BFJ(z', t')
X 2, ek+ g [el(z t0)+'EIFt(z t)le +

Bt at'

If we expand

BIt (z', t') 2Z'n()
It (z', t' 2z'np/c)=It (—z, t )—

Bt c
(A2)

eliminate the terms which are small in the meaning of (24), and take advantage of the fact that the functions FJ satisfy

the formal relation following directly from (12),

(0 QF.(z', t')=e ' ' F, (z', t')+(fl, —Q. ) dt"e ' ' F,(z', t"),
0

then we get

(A3)
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a'F, (z', t') (k e

Bz'Bt' 4(i o
e It (z', t')+ e dz"e „IL(z",t') +e I,(0,t)

—cz 2cKz

z" '
(3FJ(z', t ') 3 (n, n, )(

X 2, ek+ g e((z, to)e +(e((+2et(t()FJ(z, f )
(3t'

3 t'

+ Q e((Q( —Q~) e ' ' Fj(z' t )dt" =0. (A4)
fpl=r

After integrating (A4) and making use of Fubini's theorem we get a nonHnear Volterra equation of the form

FJ(z', t')= f~(z', t')+A. f dt" f dz "K~(z',t',z",t")FJ(z",t"),
where

(A5)

ft(z', t') =F,(0,t')+, f f e~"I,(z",t")+ e-~"fPl o O
ltt

r

X g e((z",to)e ' J dz"dt",(AI-O )t"

1=1

ikL e
k=ikO=

24n0

J II tl
KJ(z', t',z",t")= 2ekg(t' t")J(—z",t") —' ek+eJJ(z" t")t"

(n( —nj)((' —(") ( 8J(z, t ) (n( —0 )(t"—t"')

I (+j) dt

g'
J(z', t') =e It (z', I')+e dz"e „It (z",t")+e I,(0,t") .z" ' (A9)

Since according to (23) the function BJ(z",t")IBt"varies slowly with respect to exp[(Q( —QJ )(t"—t'")), (AS) can be
replaced by

tt It

K, (z', t';z", t")=. J(z",t")[25(t' t")e(, +ej)+— ,', g —ek(3t"
t (~,) Qt Q, —

+ g e( J(z",t')—, '
exp[(Q( QJ )(t' t"))—. —BJ(z",t')

( (~.)

' Bt'(Q( —QJ )
(A 10)

I.et us consider the equation
z

F(z, t)= f(z, t}+a(t) dze F(z, t)

+ ., h te Fztdz t.
If the forcing function is written in the form

g(z, t)=f(z, t)+ f dt f drab(i}e F(z, t),

Eq. (Bl) can be written as
2

F(z, t)=g(z, t)+a(t) dze F(z, t) .

After. infinite iteration of Eq. (83) we get a series

(Bl)

(83)

F(z, t)=g(z, t)+ g G„(z,t),
n=0

APPENDIX 8: TRANSFORMATION OF AN
INTEGRAL EQUATION BY INFINITE ITERATION

Go(z, t) =a (t) f dz e g(z, t),
z

G„(z,t)=a(t) f dze G„ i(z, t) .

(85)

(86)

From (85) and (86) it follows that G„(z,t) has the form

G„(z,t)= f dze a(t}",( —)"-
where q = dze~. For

0

G)(z t)= f dze f dze g(z, t)

= f dz g (z, t)e~(q —q ) .

The latter transforation in (BS) is the cons~uence of
Fubini's theorem. Let us suppose that (87) is true for n;
for n+1, then, (86) gives
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G„~,tzr), =a(t) f dze J dia (t")

X e g(zr)(q —q)"
n!

APPENDIX C: RESOLVENT FOR LIQUIDS
REVEALING SMALL ac KERR EFFECT

Let us consider the function 8(z', 1',z",t") if the condi-
tion

= f dzg(z, t)a" +'(t) f dze
~
Aeg[II (t"') II (t—")](q' q"')—

~
(( I (C 1)

z ( )+i
zgzt a" t

(n +1)!
Relations (84), (88), and (89) imply that

(89)
is fulfilled. This assumption means that in all expressions
the phase factor exp[Re, [Ir (t"') Il—(t"}](q' q"—') j pro-
vides only a small contribution of the value of 8„. There-
fore, we can approximately write

OO z

g G„(z,t) =a (t) f e~e"'"e e'g(z, t)dz .
0n=0

(810}
III

8„=f dt„"' f „dz"' e&I(t"') e, —

By substituting (82) and (810) into (84) we finally get
Since

XS„,(z'",t"';z",t")e (C2)

F(z, r) = f(z, t)+a (t) f dz e e"'"e &'f(z, t)

b i e"'"&-~'I' z, ~ z t .
fo 0

80=1
from (82) it follows immediately that811

8& (q' q")—— d—t"' eRI(t"') e, —"de (1"')

(q' —q")" f„dt"' eaI(t"') e, —

(n!)'

Making use of (46) we obtain finally

*n

B(z',t', z",1")= g
n=0

A,"(q' —q")" f „dt"' eaI(t"') e, —

(n!)

dIL (t"')
t tel

t' „dIL(1"')
=Io D, f dt"' eaIL(t"') e, „,— (q' —q")

1/2

(C3)

where Io [ I denotes the modified Bessel function of the zeroth order.
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