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Quantum and classical Liouville dynamics of the anharmonic oscillator
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We consider the dynamics of a quantum joint phase-space probability density in an exactly solv-

able model. The density is defined to be a true (i.e., positive) probability distribution for approxi-
mate (and thus simultaneously measurable) position and momentum variables. The dynamics of the

quantum density is governed by a second-order partial-differential equation with non-positive-

definite second-order coefficients. The quantum dynamics is contrasted with the dynamics of a
similar joint density in a classical description. The non-positive-definite second-order terms in the

quantum evolution equation, not present in the classical case, are responsible for quantum re-

currences and prevent the appearance of fine-scale-structure "whorls" predicted in a classical
description. The generation of "squeezing" in the model is also discussed.

I. INTRODUCTION

What is the quantum analogue of a classical phase-
space trajectory? This is an important and difficult ques-
tion of relevance to many inquiries. It arises when we
seek to understand the quantum dynamics of systems
whose classical counterpart exhibits chaos. It also arises
in discussions an semiclassical dynamics. There have
h~ many studies related to this question over recent
years. ' 5 Consideration of this question will be one of the
two guiding themes of this paper.

The central difficulty any reply to this question must
face is the inherent probabalistic character of quantum
descriptions. Of course, probabilistic concepts are essen-
tial for a complete classical description as well. However,
despite the fact that the probabilities which arise in the
quantum theory are (usually) interpreted in the same sense
as in the classical theory (that is, as limits of relative fre-
quencies), quantum probabilities exhibit properties which
have no counterpart in a classical theory. Investigation of
these differences has been the subject of active research
fram the earliest days of quantum theory (see Ref. 6) and
will comprise the second major theme of this paper. Of
particular relevance to this discussion will be the different
time development of probability distributions in classical
and quantum dynamics.

The most familiar departure of quantum statistics from
classical is expressed in the Heisenberg uncertainty rela-
tion. This, as is well known, places a nonzero lower
bound on the product of the variances in the canonically
conjugate position and momentum for every state. In the
classical theory this product can be zero. This has many
consequences. For example, any attempt to produce a
state with fluctuations reducing to zero in one canonical
variable, necessarily has divergent variance in the conju-
gate variable. (Assuming of course, the operators are un-
bounded. ) It is, of course, possible to produce states
which simultaneously minimize the fluctuations in the
two conjugate variables so as to be at the lower bound in
the uncertainty product. These are the minimum uncer-
tainty states a subclass of which, the "squeezed states, "

have been the subject of a great deal of attention recently.
In this paper we will consider the concept of squeezing

as a particular manifestation of nonclassical statistical
behavior. However, as we shall show, one must exercise
caution here, as the concept of squeezing is really only
meaningful for quantum systems. Classically, the fluc-
tuatians in the canonical variables can simultaneously be
reduced to zero. This point is further discussed in Sec.
III.

One may also view the uncertainty relations as reflect-
ing the difficulty of defining a true joint phase-space
probability density in quantum mechanics. 6 Were it pos-
sible to define such an object, a comparison of classical
and quantum dynamics would be straightforward; one
would simply compare the dynamics of the relevant
phase-space distributions. This suggests that the question
in the opening paragraph of this section should perhaps be
put differently: What is the quantum analogue of a clas-
sical joint phase-space probability density and how does
its dynamics differ from its classical counterpart? That
this change of emphasis in comparisan of quantum and
classical dynamics leads to a more direct and conceptually
simpler formulation of the problem has only recently been
recognized.

There have been many attempts to define a quantum
joint probability density in various contexts. Perhaps the
most famous of these is the Wigner function. Unfor-
tunately, the Wigner function for some states can become
negative (e.g., energy eigenstates of the harmonic oscilla-
tor) and thus cannot have any direct interpretation as a
probability density. Despite this difficulty the Wigner
function has been extremely useful and has been used to
contrast classical and quantum dynamics via a phase-
space picture. '

In this paper we will not use the %'igner function as the
appropriate quantum analogue of a classical phase-space
density. Instead we will use a true probability density de-
fined in terms of the oscillator coherent states as"

Q(a, a', t)=Tr(p(t)
~
a)(a

~ ],
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where p(t) is the density operator of the system and
~
a)

are the oscillator coherent states. In quantum optics this
function is known as the Q function and is directly associ-
ated with anti-normally-ordered moments of the annihila-
tion and creation operators. It has also been used to dis-
cuss quantum maps.

A more revealing insight into the Q function is provid-
ed when we note that it is indeed a true joint probability
density whose marginal variables are ap~proximate position
and momentum operators q~ and gr~.

' These variables
are defined by their spectral decomposition as

excluded from the class of Q functions.
The object of this paper is to compare and contrast the

dynamics of the Q function, and its associated moments,
for an exactly solvable system, with the corresponding
behavior of a suitably chosen classical density.

It should be noted that the stochastic behavior in the
quantum case arises wholly through the intrinsic quantum
fluctuations in the initial (pure) state and in the classical
case by uncertainty in the initial conditions. There are no
additional stochastic influences acting on the system.

(2) II. ANHARMONIC OSCILLATOR

where

dE (x)= f dy [@ (y) ) (x —y)(x —y )
dx .

(3)

(4)

The anharmonic oscillator we wish to discuss has the
Hamiltonian

I=Ho+ 00,

F is the Fourier-transform operator, and g (y) is the
coordinate-space wave function corresponding to the
coherent state

~
a) [that is, P (y)=(y

~
a)]. As pointed

out by Davies,
~
a) describes some measuring apparatus

which is designed to measure q and p simultaneously to
an equally high degree of accuracy, as is permitted by the
uncertainty relations.

It seems that these measurements are the appropriate
ones to consider to determine a phase-space dynamic pic-
ture in the quantum theory. It is for this reason we re-
gard the Q function as the appropriate quantum analogue
of a classical joint phase-space density.

Intuitively, we can regard the Q function as a restric-
tion of the class of joint probability densities to a certain
"minimum width" subset. To see this we note that the Q
function must satisfy two relations. Firstly, if it is to be a
true joint probability density, it must be normalizable.
Thus,

where Ho is the free Hamiltonian of the simple harmonic
oscillator. The anharmonicity parameter p is positive.
The semiclassical dynamics of systems such as this has
been analyzed extensively in Ref. 13. The appearance of fi
in Eq. (7) is purely to provide a convenient scaling for the
energies.

We first discuss the classical description of the dynam-
ics for this system.

A. Classical description

In terms of the position and momentum, the free Ham-
iltonian Ho, is

Ho —,'(p +co q
——)

(we choose the mass to be unity). To obtain a direct com-
parison with the quantum description, we introduce the
complex variable by

a=(co/2R)'~zq+i ( —,
' iris')'~'p .

Then, Ho %coo )
cc i, and——

H =%coo(
/
a

/
i+@

J
a

f

4) .

The equations of motion may be written as
(6)0& Q(cc,a', t) &1 .

which follows from Tr(p)=1 and the completeness rela-
tion for coherent states.

Furthermore, we have
(10)

This may be proved as follows. One may defme a norm
on the space of bounded operators by

~
~AB~~ =Tr(AB)

and
~

~A
~ ~

=Tr(A). Theil it follows that Tr(AB)
&Tr(A)Tr(B). From Eq. (1), this implies

i(i+2@
~

cz —
~

)a,
dv.

where we define the dimensionless time r=coot. We will
find it convenient to work in a frame rotating at frequen-
cy coo. The solution in this rotating frame is

Q(cc,a', t) & Tr[p(t)]Tr(
~
cc)(a

~
) . a(r)=aoexp( 2ipr

~

a
~

—) . (12)

But Tr(p) = 1, as p is a density operator and
Tr(

~
a)(a

~

)=1 as
~
a) is a normalized state. Thus

Q(a, a', t) & 1. The equality is excluded by Eq. (5). The
second part of the inequality in Eq. (6) follows, as both p
and

~

cc) (cz
~

are positive operators. Taking conditions
(5), we see that the more narrowly we try to concentrate
Q, the higher it must become. However, the growth is
limited by condition (6) and, thus, the "narrowness" of al-
lowed Q functions is restricted. The delta functions are

Following Mackey, ' we define a classical "state" to be
a probability measure on phase space of the form
Q(a, cc')d cc, where Q(a, a') is the joint probability den-
sity. The density then obeys the time-evolution equation

(13)

where I, I is the usual Poisson bracket. In the rotating
fraine our model gives



G. J. MD BURN 33

=2ipf, a[ a —2ip [a f

a'
d~ Ba

This may be solved by the method of characteristics, the
characteristics being the trajectories in Eq. (12). Let us
choose the initial state to be

Q(a, a', 0) =exp( —
~

a —ap
~

) .

This is a Gaussian centered on Ao with the covariance ma-
trix

0 1

1 0 (16)

and ( ~a
~

)=1+~ap(, which is invariant. &s harp
be-

comes large, the relative width becomes small. 1Vith this
initial condition the solution of Eq. (14) is

Q(a, a', r)=exp( naze'"~'—~ "—1( ), (17)

where

The simplest way to represent the time evolution of the
density is to consider the behavior of a particular initial
contour. In a time ~ each point on the initial contour will
move according to Eq. (12). Clearly, this is simply a rota-
tional sheer. This is evident in Figs. 1 and 2, where we
have followed the evolution of the contour

~

a —ap
~

= T'

over 0(v&2. The initial circular contour develops the
phase-space structure known as a "whorl. "' ' This is ex-
pected, as the invariant curves in this system are circles
centered on the elliptic fixed point at the origin. (In fact,
whorls are generic behavior in one-dimensional systems. )

As t~ ce, the initial contour becomes increasingly more
convoluted on a finer and finer scale.

The behavior of the density is reflected in the moments.
For example, the mean amplitude is given by

(a(v) ) =ap( 1+iv) exp n 1——-2 — 1

1+iv

z=a/ap, v=2@7, n= ~ap~ which decays to zero as t~ Dp.
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FIG. 1. Phase-space evolution of an initial Gaussian contour centered on o;0——0.5 in a classical description of the anharmonic oscil-
lator. (a) v=m/2, (b) v=m. , (c) v=3m/2, and (d) v=2~.
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FIG. 2. As for Fig. 1, vvith an initial Gaussian contour centered on ap=2. 0.

X) ———(a+a }, X2 ———.(a —a ) .
2 2l

(19}

~ith ao real, the variances in each of these quantities is
then found to be

A convenient route to the phase-dependent properties is
to define the quadrature phase amplitudes

trajectory of (a(t)) over one cycle (0&v&2) for two
values of ao. The decay of the mean amplitude due to the
development of the whorl is clearly evident. In Figs. 4(a)
and 4(b) we have plotted var(X& 2) versus v/2nfor two.
values of ao. Note that, initially, the fluctuations in X,
are reduced as those in X2 increase, but eventually the
whorl develops and the fluctuations saturate at

var(X& 2) = —,
'
[I+n —nf &(v)+nf2(v)],

where

(20} var(X) 2)= —,'(1+n) .

f)(v)=(1+v ) exp 2n—
1+

f2 (v) =Re (1+2i v } exp —2in
1+2lv

—(1+iv) exp 2in—4 V

1+iv

{21) B. Quantum description

In the quantum description of the model, the canonical
coordinate and momentum become self-adjoint operators
on Hilbert space while the states are trace class operators,
the density operators on Hilbert space. The free Hamil-
tonian may then be written in terms of amplitude opera-
tors (the annihilation and creation operators) a,a, where

In Figs. 3(a) and 3(b) we have plotted the phase-space a =(co/2A)'~ q+i( —,'trito)'~~p, (24)
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H =Reic[(1+p)a ta+ p(a ta)t] (25)

and [a,a ]=1. As is well known, He ——iricoc(a a+ z ),
and thus

where v =2pt.
We now assume the initial state to be given by

p(0) =
} az) (ao }

that is a pure coherent state of complex
amplitude az. The corresponding Q function is

(we have neglected constant-energy shifts). We now
transform to an interaction picture via

Q(a,a', 0)=exp( —}a—ac} ), (28)

U(1) =exp[ i (1+p—)a ar] .

This is equivalent to the transformation to the rotating
frame used in the classical picture. The quantum descrip-
tion requires a slight modification of the rotating-frame
frequency.

The Heisenberg equations of motion in the interaction
picture are

which has the same form as the classical density con-
sidered in Sec. III A.

Of course, all moments for this problem may be calcu-
lated in the Heisenberg picture using Eq. (27) and p(0).
However, in order to make more direct comparisons be-
tween the quantum and classical descriptions, we will
firstly consider the time evolution of the Q function.

The equation of motion for the density operator in the
interaction picture is

da (r)
2ip(a a+ 2

—)a(1.) .
d'p

(26) Bp = —ip, [(ata)2,p] . (29)

As a a is a constant of motion, the solution is

a (r) =exp[ iv(a a + —,)]a(0—),
This may be converted to an equation of motion for the Q
function using standard techniques. '
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Q =ipa(1+2
~

a
~

') —isa'( 1+2
~

a
~

')
7 Ba a'

a'
~

a'
+ii a' Q i—pa"

Ba Ba
(30)

If we compare this with the classical equation [Eq.
(14)], we immediately see that the quantum dynamics of
the density will be quite different due to the appearance of
the second-order derivatives. (There is also a slight modi-
fication of the first-order coefficients. ) If higher than
quartic terms had been included in the Hamiltonian,
higher-order derivatives would occur in this equation.
For deterministic systems such as that considered here,
the classical density evolution is necessarily a first-order
partial differential equation. The quantum-density-
evolution equation, however, is not so restricted, as the
particular example of Eq. (30) demonstrates. How can
this be reconciled with the statement that Q is always a
true positive probability density? The answer is that the
quantum description requires us to restrict the class of in-
itial conditions so that Eqs. (5) and (6) hold. This im-
mediately excludes certain functional forms, such as delta
functions.

In this paper we simply acknowledge the fact that the
equation of motion for the quantum analogue of a phase
space density will not necessarily be a first-order partial-
differential equation. As we shall see, this greater flexibil-
ity is essential in order that the characteristic recurrences
of the quantum description result.

In the more general case of true stochastic evolution,
such as arises when the system of interest is coupled to a
heat bath, the classical evolution equation may contain
second-order derivatives. This is the Fokker-Planck equa-
tion. However, the coefficients of the second-order terms
determine a diffusion matrix which must be positive de-
finite. Other authors'6 consider it desirable to define a
quantum density in such a way that its evolution equation
has Fokker-Planck form for both deterministic and sto-
chastic dynamics. %e will not consider these in this pa-
per, as it is not clear how they permit direct comparisons
of quantum and classical dynamics of phase-space densi-
ties.

Equation (30) may be solved subject to the initial condi-
tion [Eq. (28)] to yield

Expanding the coherent states in number states,

( a (~) ) =aoe '" exp[ n(1 —e —'")],
(a (r)) =aoe '"exp[ n(1 —e '")] .—

(34)

(35)

Comparing Eq. (34) with its classical analogue in Eq. (18),
we see how the quantum rex:urrences are manifested in the
moments. We also note that for v small the quantum and
classical results are quite similar. In Sec. III we show that
this is indeed the correct semiclassical limit.

To calculate the quadrature phase statistics as described
by the Q function, we must proceed a little more careful-
ly. As noted in the Introduction, the Q function is a true
joint probability density for approximate canonical vari-
ables. Let X~,X2 denote these approximate variables.
However, the true, nonapproximate canonical quadrature
phase amplitudes are defined by

~a)=e-~ ~'" g ~n),„o
we obtain Eq. (31).

It is clear from the form of Eq. (31) that the quantum
probability density will exhibit periodic recurrences of its
initial form. This is in marked contrast to the evolution
of the initial density in the absence of the second-order
terms, and, of course, is a reflection of the "discreteness"
of the quantum description. It is the appearance of non-
positive-definite second-order terms in the quantum equa-
tion which is directly responsible for these recurrences.
We thus expect non-positive-definite "diffusion" terms to
be characteristic of the evolution equations for quantum
Q-type phase-space densities.

In Sec. III we shall show that in the semiclassical limit
fi~0 these second-order terms are unimportant for small
times and semiclassical dynamics results.

%e now consider the time-dependent moments in the
quantum case. As the Q function directly gives moments
of the form

(a a ")= I a a'"Q(a, a', r)d ala,
we may determine the time-dependent moments using Eq.
(31). Alternatively, they are directly obtained via the trace
operation from the initial density operator and the
Heisenberg operators. We find

Q(a, a', r) =exp( —
/
a

[
—

/
ao /

)
/
5

f

with

(31) A,

Xi ———,(a+a ), Xi ——.(a —a ) .
2l

(36)

(aoa')" —IP,Tt!e
n=0

(the details may be found in Appendix A). That this is
indeed correct may be verified more directly as follows.
The density operator at time r, p(r), is related to the ini-
tial density operator by

How are the variances in these quantities related to the
variances in the approximate variables X& and X2 as
determined by the Q function? Using the commutation
relations between a and a and the fact that Q directly
gives anti-normally-ordered expectation values of a and
a [Eq. (33)],we find

&H&rlh iH&r/h—
(32)

var(Xi q)=var(X& z)+ —,
' (37)

Thus for p(0) =
~
ao) (ao ~,

Q(a, a'7)=
[ (a~e ' ~ao) [

The additional term of 4 is, of course, a reflection of the
"built-in" impossibility for the measuring instrument to
measure both X& and X2 simultaneously to an accuracy
inconsistent with the uncertainty relations.
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One easily shows that

v~(X, ,, ) =-,' ~(&«'&-&.&&"&}+R.(&"&-&.&') j .

(3g)

Noting that a a is a constant of the motion, we have
&aa &=1+

~
ao ~, then using Eqs. (34) and (35) the vari-

ances in the approximate canonical quadrature phase am-
plitudes may be easily determined. These, of course, are
analogues to the classical quadrature phase variances cal-
culated in Sec. IIA.

The mean amplitude &a(t)& for two values of ao are
shown in Figs. 5(a) and 5(b} for 0 & v(2m'. It is clear that
for

~
ao

~

sufficiently large and sufficiently small times
the classical and quantum trajectories are quite similar.
However, for later times the amplitude &a(t)& shows a
complete recurrence of its initial value at v=2m (up to a
phaseof e' ).

In Figs. 6(a) and 6(b) are plotted the variances in X~
and X2. Once again, for large

I ao I
and small times we

see a close correspondence between the classical and quan-
tum result. However, for later times there is an important
divergence related to the concept of "squeezing. "
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Squeezing is said to occur @@hen

var(X;) g —,
'

(39)
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&b)

for i =1 or 2. In terms of the approximate variables X&
and X2, squeezing will be reflected in the variances in X&
or X2 falling below their initial value of —,. Of course,
this can occur classically as me have seen. What is
characteristic of the quantum case is that this cannot
occur simultaneously in both X& and X2. From Figs. 6(a)
and 6(b) we see that the variances differ most dramatically
from the classical case at v=n At this point .the fluctua-
tions in X~ suddenly drop belo~ the classical saturation
level while, correspondingly, the fluctuations in X& in-
crease. In fact, the greatest reduction in var(X~) occurs
for ao ——0.5 when squeezing is present and

var(X) }=—,
' (1—1/e) .

FIG. 5. Phase-space plot of the quantum trajectory &a (~) )
over 0 & v & 2m.: (a) ~=0.5 and (b) ao ——2.0.

This is the greatest squeezing possible in the model.
It is clear that the second-order derivatives in Eq. (30)
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play a rather complicated role from the point of view of
squeezing. They are not entirely responsible for squeez-
ing, for if they are neglected, we still expect some squeez-
ing for short times. (We must then interpret the resulting
equation as an approximate quantum equation, not a clas-
sical equation. The concept of squeezing is meaningless
in classical mechanics. ) However, these terms are essen-
tial for the occurrence of maximum squeezing at mid-
cycle. We conclude that the existence of non-positive-
definite "diffusion" terms is not essential for squeezing;
however, it does lead to more squeezing than would other-
wise be expected.

We turn now to a study of the dynamics of the time-
dependent Q function [Eq. (31)] itself. In Figs. 7 and 8
we have plotted contours of the quantum Q function for
two initial conditions over the range 0 & v g 2n It h. as not
been possible to follow the evolution of the same contour;
however, the contours plotted do give a clear indication of
the Q-function dynamics.

There is a clear distinction between the dynamic

behavior for ao above and below ac=1.0. This is to be
expected as the state

~

ac=0.5) has a mean occupation
number of 0.25 and is closely related to the invariant
ground state. In Fig. 7 me see the characteristic distortion
of the initial circular contour. This is reflected in the
squeezing in the quadrature phase variables. As expected,
there is a complete recurrence (up to a phase of e' ) of the
initial circular Gaussian contour at v=2m. However, for
ao ——2.0 some rather surprising features emerge. For
short times the initial circular contour rotates and
stretches in a way similar to the classical result. However,
as the distribution is smeared around the origin, addition-
al structure in the form of separate peaks form on a fairly
flat background. These peaks smear, flatten, and reem-
erge as the cycle proceeds, eventually yielding two identi-
cal Gaussian peaks on opposite sides of the origin. The
entire process then repeats in the opposite direction, lead-
ing to the expected recurrence at v=2m centered on
ao ———2.0. This behavior is remarkably different from
the expected classical dynamics for this value of ao.
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FIG. 7. Phase-space plot of the quantum Q function for initial circular Craussian contour centered on ao ——0.5: (a) v=n/2, (b)
v=m, (c) v=3m/2, (d) v=2m.
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III. SEMICLASSICAL DYNAMICS

We have shown in the preceding discussion that the
dynamics of phase-space densities in the quantum theory
differ quite markedly from dassical behavior. The quan-
tum dynamics exhibits the typical recurrence not present
in a classical description and also generates a greater
reduction in the quadrature phase fiuctuations. This
behavior, it has been suggested, is intimately connected
with the appearance of non-positive-definite second-order
differential terms in the evolution equation for the phase-
space density. %'e might expect, however, that the quan-
tum dynamics approaches arbitrarily closely the classical
dynamics in the semiclassical limit of fi~O and for short
times). We now investigate this in some detail.

In view of the scaling used in this paper, the semiclassi-
cal limit A~O cannot be taken directly. However, as we
now show, this limit is equivalent to choosing the initial
condition such that )ao~ ~ao. We write Eq. (30) in
terms of the variable a =a/ao, and then

'( ) —+2~a~' +cc

, a'
i(}Lin )—a +c.c.

a
(41)

where n —=
~
ao

~
. The semiclassical limit is then obtained

by keeping pn constant while n~~. The evoluti. on
equation then approaches the classical equation (14). To
see that this is equivalent to letting fi~0, we evaluate the
average energy in the initial state. For n large this is
given by

(H) =ficoon(1+pn) .

Then for a chosen value of the initial energy, Pi~0 re-
quires n~m with pn held constant. This ensures that
we are comparing the classical and quantum dynamics on
the same energy surface.

We first consider the semiclassical limits of the quan-
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turn moments. These are functions of v=28/n, where
H=pnr .The large-n limit is taken with pn fixed and
thus H=constXr. For sufficiently large r, there will al-

ways be a departure of the quantum and classical results.
For example, there will always be a recurrence at v=2m.
no matter how large n. This suggests that in taking the
semiclassical limit we restrict r «n/{np), that is, v « 1.
In this limit the mean quantum amplitude is given by

1
( a (r) )=ao(1 i—v/2) exp n—1—

1+iv
(42)

Q (a,r )=exp[ n e+ 4n 8$( 1+2e)], (43)

where 8 =fipr. The classical Q function at these points is
given approximately as

Q (a, r)=exp[n e+4n 8$(1+3e)],
which is quite c1ose to the quantum expression.

(44)

IV. CONCLUSION

In this paper we have sought to contrast classical and
quantum dynamics by considering the evolution of joint
probability densities in phase space. %e have suggested
that the appropriate quantum analogue of the classical
phase-space density, in this context, is the Q function.
This is a true probability density restricted to a certain
"minimum-width" class.

Using a particular exactly solvable model, we have
shown how the well-known recurrences of quantum
dynamics and squeezing are related to the appearance of
second-order differential terms with nonpositive coeffi-
cients, in the evolution equation for the density. It is ex-
pected that this is characteristic of quantum systems.
These second-order terms prevent the fine-scale classical
structure, known as a "whorl, " from developing. It is an

which is close to the mean classical amplitude given in

Eq. (1S).
The quantum quadrature phase variances also become

closer to their classical counterparts for large n. The
reduction in fiuctuations of Xz at mid-cycle occurs for
larger times and is diminished.

To take the semiclassical limit of the quantum Q func-
tion directly is a rather more difficult task. The details
are relegated to Appendix B. Essentially, this involves
converting the sum S, in Eq. (31), to an integral, which is
evaluated by the saddle-point method. This is quite simi-
lar to the procedure used in Ref. 17 to determine the semi-
classical limit of collapses and revivals in the Jaynes-
Cummings model for the interaction of a two-level atom
with a single-mode field.

To consider the semiclassical limit of the quantum Q
function, we first note that for large n the initial distribu-
tion retains its shape but is displaced a long way from the
origin. Thus the contours in which we are interested cor-
respond to those points a, such that a/ao ——(I+e)e'~,
where e and P are small. For small v the quantum Q
function evaluated at these points is given approximately
by

interesting mathematical question to ask for the possible
general forms of the partial-differential equations for the
evolution of Q-type functions. Work on answering this
question is in progress.
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APPENDIX A

In this appendix the solution of Eq. (30) is presented.
Consider

set

a a . za
ar

=ijMa{1+2
~

a
~

) +ipa +c.c. ,aa aaz
(A 1)

ap . ap, ap, a'p „a'p
O', —C +CX —0,'aa' aa aa'

where r'=pr
Assume

P(a, a', r') =Pi(a, r')P2(a', r'),
and then

api api i a pi
, +g(r')P, =ia +iar' a aa

, ap,
g( r')Pz ———ia'—, ia,z,—aa aa'

(A3)

(A4)

(A6)

where g (r') is an arbitrary function of r' alone. With no
loss of generality, we may set g(r) to zero. Then, defin-
ing P=lna, Eq. (A5) becomes

api a pi
=L (A7)ar api

%e define

P, (z,r)= I e '+Pi(P, r')dP, (AS)

where 4 is a suitably chosen contour. Then (A7) be-
comes

= —iz I') .~ 2 (A9)

The initial condition

Q(a, 0)=exp( —
~

a —ao~ )

implies

(Alo)

Q(a, a', r) =exp( —
~

a
~

—
~
ao

~
)P(a,a', r), (A2)

and then
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P( {a,0)=e

and thus

(Al 1) where

& (x)=f(x)+ix (itp 8—x) . (BS)

(a(1 )"
P1(z,0)= g 5(z —in) .

nf

Solving Eq. (A9} subject to (A12), we have

(a('1 )"
P((z,r')= g e 5(z in—) .

Thus,

(a('1a)"
P((a,r)= g exp{in p~)

(A12)

(A13)

(A14)

%'e now evaluate this integral by the saddle-point method.
Thus we consider

dZ Z
—1/2e nh (z) (89)

where 4' is a contour along the real axis from z =0 to
z~ ao. The saddle points are given by

z(1 ——R exp[i ((I)—28z(1)] . (810)
0

Writing zp=rpe ', Eq. (810}may be separated into two
equations,

r(1 ——R exp[((() —gp) tangp], (811)

Q«&}=exp( —
I
a

I

' —
I ap I'}

I
~

I

' ro ——
2 SCCA . (812)

with

e
n=o

APPENDIX 8

The saddle points are determined by the intersection of
these curves. There are many solutions to these equations;
however, as we are primarily interested in the small time
limit 8«1, and points v=(1+e)e'8 where (() and e are
small, we need only consider solutions in the range

/2& gp&'2rI2
In Fig. 9 we have plotted

Consider the quantum Q function given in Eq. (31).
The semiclassical limit essentially involves finding the
asymptotic form of

f((x)=R exp[(()) —x) tanx]

" (a~'" —;8.2~e-s8n /8

—o n.
(81) f2(x)= secx

where 8 =iona and n =
~
ap

~

', for n large but i2n fixed
Consider

g g e
—1( ~e isn /1(—

n=o t

on the interval
~

x
~

&rrI2. As 8~0 the intersection 3
comes in from rp-0, x= n l2 to x =—(() (from below) and
rp R(from ab——ove). We thus expect that for small 8,
gp-(I)+5, and we expand f1 and f2 around x =(I). In this
approximation,

where

v=a'Ia,' =Re'8 .

Then,

(83)

5=—28R cog,
rp R(1+28R sin(I)) .

(813)

(814)

%e may write Sas

n=o
p(n)~e i8n /n—

where P(n) is a Poisson distribution, which for n large is
sharply peaked at n =n.

When n ~&1 we may approximate P(n) by the continu-
ous function

P (x) =(2g n ) '/2x '/2 exp[nf (x)],
where x =nln and

f(x)=x (1—lnx) —1 .

I
(

T I I I
)

I I

-0, 4 -0 2 p. 4

The sum in Eq. (85}may be written as an integral,

}1/2 f dX
—1/2enb(z) (87)

FIG. 9. Plot of f((x) and f2(x) (see Appendix B) versus x
over

~

x
~

&m.I2. Solid line, f2(x); dashed line, f, (x}.
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To linear order in 8 and small P,The saddle point is given approximately by

zo =Re'&( I +28R sing)e
i

h "(zo)
i

' =R'

a=/(1+28RQ),

h (zo)=R [1+i(4 8R—)]+28R'0 1—.

Then, from (87) and (84),
(816)zo ——Re'~,

When 8=0, zo ——Re'~, as expected, and for small times
the saddle point moves away from this point in a clock-
wise direction.

For convenience we may write

where p=P —28Re'~, being careful to take only linear
terms in 8 at the end. The integral in Eq. (89) then be-
comes

~

h~~( )
~

—1/2 —I/2

~

S
~

2=exp(2nR +4n8Rzp) .

Thus,

Q(a, a', r) exp[ n(—R +1)+2nR +4n8R P]

(818)

(819)

l
Xexp nh( z)o+ —(n —a)

2

where

a=arg[h "(zo)] .

(817)

is the asymptotic form for the quantum Q function when
n &~1, pn is constant, and r is small, evaluated at points
a, such that a/ao ——( I+a)e '~, with P and e small.

It is expected that were one to account fully for the
multiplicity of saddle points as in Ref. 16, a greater
understanding of the recurrences in the semiclassical Q-
function dynamics may be obtained.
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