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The frequency-dependent and wave-number-dependent dielectric properties of a condensate of a
boson gas with static disorder are evaluated. For weak disorder the condensate is superfluid and the
disorder induces a mass enchancement. For strong disorder the condensate is insulating and the
static dielectric function is finite. Numerical solutions for the frequency dependence of the density
relaxation function and the dynamical conductivity are given. The dielectric properties of a charged
Bose gas with charged impurities and a repulsive Bose gas with neutral impurities are evaluated ex-

plicitly.

I. INTRODUCTION

It is well known that strong enough disorder localizes
classical particles' as well as fermions.? For a system of
fermions this disorder-induced phase transition from a
metal to an insulator is known as the Anderson transition.

The influence of disorder on phononlike excitations has
recently attracted interest. In this field of ‘“dirty bo-
sons4,’£3 phonon and photon localization have been stud-
ied.®

We have previously studied the influence of static dis-
order on interacting bosons in the condensate phase with
collective modes as elementary excitations.® We found a
disorder-induced transition from a superfluid state to an
insulator state. The transition point has been character-
ized as a metallic state. The method which was used in
our work® was analogous to that of Gotze,” who calculat-
ed the propagation of density and current fluctuations
self-consistently for a noninteracting electron gas. This
approach gives a transition from a metallic phase to an in-
sulating phase within one frame. Essential for the ex-
istence of a mobility edge in this theory was the idea of
self-consistency.

In the work of Ref. 7 the decay channel for the current
was the particle-hole spectrum of the noninteracting elec-
tron gas. The influence of disorder on a system with
particle-hole excitations and collective excitations
(plasmons) has been discussed for an interacting electron
gas.® The boson condensate is interesting because here the
current can decay only into the collective modes.

In this paper we give some numerical results of our
equations given in Ref. 6. In particular, the frequency-
dependent properties of our models are discussed. As
models we use a charged Bose gas disturbed by charged
impurities and a repulsive Bose gas with neutral impuri-
ties. The paper is organized as follows: In Sec. II the
models used and the self-consistency equations of our
theory are explained. The charged Bose gas is discussed
in Sec. III, and the results for the repulsive Bose gas are
given in Sec. IV. A conclusion is given in Sec. V.

II. MODELS AND SELF-CONSISTENCY EQUATIONS

In the following we report the dielectric properties of a
Bose gas characterized by the Hamiltonian with kinetic
energy H,, interacting part H;, and disorder part Hp
with

Hy,= zekazak , (1a)
k
Hi=+3p'(qQV(qpq), (1b)
q
Hp=3 U(q)p'(q) . (1¢)
q

Here ai is the creation operator for a boson with wave
vector k, €,=k2/2m is the parabolic dispersion relation
of bosons with density n and mass m. V(q) is the
Fourier transform of the interaction of the bosons, and
the operator

plq)= 2 al-q/zanq/z
k

is the operator for density fluctuations. U(q) is the
Fourier transform of the random potential. For the
charged Bose gas’ with plasmons as elementary excita-
tions'® we use ¥ (q)=4me’/g? and

(| U(Q) | Y=n;(4me? /g7,

and for the repulsive Bose gas'' with phononlike excita-
tions we use V' (q)=U? and

(| UQ)|?)=(6m/¢3)UO(go—q) .

n; is the density of charged scatterers with charge e, U is
the strength of the repulsive interaction of the bosons, and
qo and U are the range and the strength of the random
potential.

In the theory of Ref. 6 the Kubo density-density relaxa-
tion function ¢(q,z) for wave vector q and complex fre-
quency z is given in terms of the thermodynamic wave-
vector-dependent  compressibility g’(q) and the
frequency-dependent current relaxation kernel M (z) via
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and g’(q) was calculated in the random-phase approxima-
tion (RPA) (Refs. 12 and 13) as

0
J g(q)
(q)= . (3a)
E T T v @)
g°(q) is the compressibility of the free Bose gas given as
g%q)=2n/¢, . (3b)

The current relaxation kernel determines the dynamical
conductivity o(z) via'*

o(z)=——7— (4a)

X(2)=iol(z)/z . (4b)

In a mode-coupling approximation M(z) is expressed

as’

__ 1l 5,2 2
M(z)= S %q (1U(q)|*)¢(q,2) . (5)

Equations (2) and (5) imply a self-consistency problem;’
the asymptotic solutions of the problem have been dis-
cussed before.® It has been shown that in the ideal-
conductor phase M(z—0)~z, at the transition point
M(z—0)~ia (a>0), and in the insulator phase
M(z—0)~—1/z.

III. DIELECTRIC PROPERTIES
OF A CHARGED BOSE GAS

The interacting Bose gas is characterized by the energy
scale w, =(4mne’/m)'/?, which is the g—0 plasmon en-
ergy of the interacting boson gas without disorder. The
relevant length scale is gg ! =(2mao, )~1/2 and the connec-
tion with the dimensionless RPA parameters r; (Ref. 12)
is (goag)*=(12/r}). ag=#*/me? is the Bohr radius.

It was found in Ref. 6 that the parameter A4, given by

3/4
1

n.
A =0.0885— , (6)
n | n'a

determines various phases. For 4 <1 the system of bo-
sons is superfluid and for 4 > 1 the bosons are localized.
A =1 determines the phase-transition point, and here the
system is in a metallic phase. For n;=n the phase transi-
tion condition 4 =1 can be rewritten analogous to the
form of the so-called Mott criterion!® for the metal-
insulator transition of fermions (n, is the critical density,
where the transition takes place)

nt*ag=0.040 . (7

So for n <n, the system is in a localized phase; for n > n,
the boson system is superfluid. The dependence of 4 on
n; and n is crucial. By increasing n (for n; =n) the disor-
der in the system is increased. But also the screening

properties are improved. Equation (7) tells us that in our
approximation screening wins over disorder. For the elec-
tron systems realized in semiconductors, for example,
phosphorus-doped silicon, this behavior is seen in experi-

ment.'® For an interacting electron gas a relation of the
form n!”%ap=f has been given within our theoretical
frame.?

The homogeneous dielectric function €(w) is given by
the polarizability X (@) of the boson gas

e(q=0,0)=€lw)=1+41X(w) .

In the insulator phase the static polarizability X (0) is
given by
1/4
} (8)

1
47X (0)

47X (0)

=44 —
1+47X(0)

1—

with the asymptotic solutions

1
—, A—>
47X (0)= 44 9)
_5____A A 1+
8 A—1’

In the insulator phase we have a finite static polarizability
and in Fig. 1 we have shown the dependence of the inverse
polarizability on n/n. according to Eq. (8). The asymp-
totic solutions (9) are shown as dotted (4— o) and
dashed curves (4 —17%). The scaling law (dashed curve)
is in good agreement with the solution of (8) for
0.9 < n/n. <1.0. The inset compares the 4 — o solution
of 47X with the self-consistent solution. The factor
A/(A —1) may be interpreted as a Clausius-Mosotti for-
mula:

(A—17) .

The frequency-dependent dielectric function is ex-
pressed as

T T T
12+ —or
eTeX(0)
v r " -oos .
4TUX(0)
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FIG. 1. Inverse polarizability as function of boson density n

according to Eq. (8) (full curve). The dashed curve is the
asymptotic solution for 4-—1* and the dotted curve is the
asymptotic solution for 4 >>1 (n;=n), see Eq. (9).



654 A. GOLD 33

2

Dp
1—(1—A)-2, 4 <1
)

—0)=
€l@—0) (10)

In the ideal-conductor phase the influence of the impuri-
ties can be interpreted with e(w)=1—-& ;/a)z and
(T)f,=44me2/m * as a mass renormalization (mass
enhancement) with

m* 1

m—l__A,A<1. (11)
The state characterized by 4 <1 is free from dissipation,
and impurities induce a mass enhancement. The transi-
tion point 4 =1 is specified by metallic properties.

In ergodic systems g**°(q)=g’(q) holds, but in noner-
godic systems the Kubo relaxation function [ g*°(q) is the
isolated density-density susceptibility] exhibits a nonergo-
dicity peak ¢(q,z)=—f(q)/z and one gets'”'®

g*(q)=¢g’(q)—f(q) .
For our model f(q) is expressed as

f@=g"@ [ 1+47x©2Lg? /gl

So we conclude that the state with 4 > 1 is a nonergodic
state with insulating properties. The condensate is pinned
by a random array of impurities. _

The isolated density-density susceptibility g**°(q) deter-
mines via

e(qw=0)"'=e(q)"'=1-V(q)g™(q)

the static wave-vector-dependent dielectric function e(q).
We find

1
14—, A<1
(g/g0)*
e(q)= (12)

1
1+ , A>1.
1/47X (0)+(q/q0)*

The screened interaction of the bosons is given!® by
V.(q)=VI(q)/e(q). With (12) we give the Fourier
transform as

2 _, 172
T os(rge /2170, A <]
r
(13)
Velr)= 1 2 1 —rg
— —[14+47X (0 0 qo) ],
r 1_1_4‘”_)((0)[ +47X(0)e cos(rgg)]

A4>1

and go=qo[1+1/47X(0)]'/*/2!/2. From (13) it is clear
that for 4 <1 the interaction is screened at r ~2!/2/gq,.

But in the insulator phase the screened potential is a
Coulomb potential with an effective charge Z*

e
= Tt4mx0) <¢"

Next we investigate the induced charge distribution p;pq
when a static impurity @ (r)=Ze /r has been introduced
into the system. With

z* (14)

Pex(q, ) =877 Zed(w)/q*

the induced charge is

3 o 2
pind(r,t).—-———Z— (—Z—ﬂ)}—e"q"’g's°(q)iﬂ—.ze— . (15)
™ q

In the dissipationless phase we get the known result?

2
Ze gge —rgy /2172

: 172
ar r sin(rgog/2°/7) (16)

Pind(T) = —

but in the insulator phase we get

172

_rﬁ

2
Ze 90 Osin(rgy)  (17)

pind(r)= - z; ’

47X (0)
1+47X(0)

and the induced charge is reduced in comparison to (16).
The total induced charge Q = [ d°rpinq(r) is then

boAs<l (18)
Q=—2e S , A>1
1+ 1/47X(0)

and the screening in the insulator phase is no longer per-
fect.

The Fourier transform of the form factor of the noner-
godicity peak of the density fluctuation is given as

nm 1 1 —rs

— 2 To
fir)= 7 154rX(0) e cos(r/rgy) (19)

with the decay length rg
rogo=[8—4/elw=0)]""*. (20)

Density fluctuations do not propagate in time and are lo-
calized to a finite volume given by r3. So for 4A—1% the
decay length ry shows no divergence. The dependence of
the corresponding inverse decay length on n/n, is shown
in Fig. 2 as the full line. The asymptotic solutions with
(10) are shown as dotted (n <<n,) and dashed lines
(n—n; ). For n >n, the inverse decay length is zero. So
the ry jumps at the transition point and the prefactor of
f(r) goes to zero at the transition point. In the following
part of this section we discuss the numerical solution of
Egs. (2)—(5) for n;=n.

For a good ideal conductor with n/n, =12 (A4 =) we
compare in Fig. 3 the self-consistent solutions for M'(w),
M"(w), and o'(w) (full curves) with the zeroth-order re-
sults®?! (linear in n;) M%(w), M” (), and 0% (w) (dotted
curves). The zeroth-order result is expressed as
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FIG. 2. Inverse decay length 1/rg as function of n according
to Eq. (20) (full curve). The dashed and dotted curves are the
asymptotic results with X (0) from (9) (n;=n).
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MY (w)=44—-L 1,212 (21b)
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P

The (@ —w,)~"/* singularity in the zeroth-order result is
fully renormalized in the self-consistent theory. The in-
crease of M%'(w) in the zeroth order at w=0, is ex-
plained by the decay of current into plasmons. Only for
®>w, can the current decay into plasmons and the sys-
tem is free of dissipation for w<w,, see Eq. (2), for
M (z)=0. So one has also a singularity for o° (@—w)p)

’ 0, ®<w,
% (w)= | w (22)
I 1/4 +
Toma /A 4 (@/0,—1)""", o—w, .
T
§ ;
all | MU e
-02 t
3‘10’8— n/nc=12 7
3 0uk *.MO0"(w)
ik Miw) |
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FIG. 3. Comparison of zeroth-order result (dotted line) and
the solution of the self-consistency equations for the current re-
laxation kernel M'(w), M'"(w), and o'(w) for n/n.=12
(n;=n). The dashed area is the 8(w) contribution to o’(w).

In Eq. (22) we have neglected this 8(w) contribution for
0%(w), which signals the dissipationless state. As can be
seen in Fig. 3, the gap frequency w,, where M"(w)=0 for
O<w <y, is reduced in the self-consistent solution of
M'"(w), while in the zeroth-order result Wy =w).

For the transition regime 4 ~1 the scaling equation®
implies a frequency range, 0 <w < w,, where M"(0)=0
and cof,z |4 —1]2/4AC with C =3 4. For the Coulomb
gaswegetfor A—>1Tor 4—1"

11—

ne

wg =0.63w, (23)

The reduction of w, is seen more drastically in Fig. 4,
where the dynamical conductivity has been shown for
n/n,=2, 4, and 8. For decreasing n the gap frequency
w, is reduced. In the theory the f sum rule'? is ful-
filled: | U’(w)dw:(ﬂ'/4)cuf,. In the ideal conductor
phase the 8(w) contribution to o’(w) (shaded area in Fig.
4) contributes to the f sum rule, and so we receive for
w*—0

o , T o A, A<I1
fw‘dwo(w)zgwp L, A>1. (24)
This is the reason why the o'(w) in Fig. 4 for n/n, =2 is
greater than for n /n. =4 and 8.

The reduction of the gap frequency is also seen in Fig.
5, where the density relaxation function normalized to the
compressibility is shown as function of frequency for
g=10"%¢, and n/n.=2 and 12. ®,, in the figure marks
the maximum in the excitation spectrum and indicates the
softening of the plasmon energy by disorder. The origin
of this collective-mode softening will be discussed more
explicitly for the repulsive Bose gas in Sec. IV. The line
broadening induced by disorder becomes greater when n
gets smaller. Because of the compressibility sum rule'?

7 dos"qo1=mg’a

(see Fig. 5) there follows because of (5) a sum rule for the
imaginary part of the current relaxation kernel

¥
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FIG. 4. Dynamical conductivity for n/n.=2, 4, and 8 as
function of frequency. The shaded area indicates the 8(w) con-
tribution to the conductivity in the ideal-conductor phase
( n;=n ).
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FIG. 5. Density relaxation function ¢"'(q—0,w) as function

of frequency for n/n.=12 and n/n.=2. The arrows indicate

the gap frequency w, and the energy of maximal excitation w,y,
(ni=n, ¢ =107°qo, n;=n).

[ doM"(w)=7Bo}, (25)

where B is the strong-insulator result for the inverse po-
larizability.® This sum rule holds also for fermions.?
Here B =4A and because in the insulator phase there is a
8(w) contribution to the integral in (25), we get for 0* —0

24, A<1
[LdoM (@) =m0} 24 —+(1-1/4), A—1*  (26)
(o]

0, A—> o .

This sum rule can be seen in Fig. 3 by comparing the fre-
quency integral of the zeroth-order result and of the self-
consistent result, which must be equal according to Eq.
(26).

In Fig. 6 the frequency dependence of the current relax-
ation kernel M (w+i0)=M'(w)+ iM"(w), and the corre-
sponding dynamical conductivity, is shown for n/n.=0.8
(insulator phase), n/n.=1.0 (transition point), and
n/n,=1.2 (ideal-conductor phase). In the insulating
phase M'(w—0)~ —1/w and M"(w) exhibits, according
to the Kramer-Kronig relation, a 8(w) peak (shaded area).
The dc conductivity is zero. The transition point is
characterized by M"(w—0)=const and M'(w—0)~w
with a finite dc conductivity. The state with no static dis-
sipation shows M'"(w—0)=0 and M'(w—0)~w, the
conductivity has a 8(w) contribution (shaded area).

The corresponding density relaxation function as func-
tion of frequency for ¢ =10~ g, is shown in Fig. 7. The
insulating phase is characterized by the nonergodic 8(w)
contribution (shaded area), and in the ideal-conductor
phase near the transition point the plasmon modes are
strongly softened and are very broad. Note that the area
under the curves are equal according to the compressibili-
ty sum rule.

The M'(w), M"(w), and o'(w) behavior for the insulat-
ing phase looks very like the corresponding functions of
localized fermions®'® and localized classical particles.?? It
seems that the statistics of the quantum particles is not so

1
0
! dos
2 B
=, 5
3 ~
= 0 3
=t w10 T ninz10 Ho5_
3 - : - 3
= !—lr L TT=——=cz---- os ©
O o 03
- n/n.=12 }' nm=12 1057
1 A
0 1 2w /wpU 1 2uywp

FIG. 6. Frequency dependence of the current relaxation ker-
nel M'(o) and M"(w) and the dynamical conductivity o'(w)
and o"'(w) for n/n.=0.8, 1.0, and 1.2 (n; =n).

important when the particles are localized. This seems
plausible when electrons and classical particles are com-
pared. In the case of a localized Bose condensate one has
to remember that the whole boson system acts as one par-
ticle, which is localized.

The gap behavior of M"'(w) and ¢'(w) in the insulating
phase is probably a characteristic behavior of the Bose
condensate. For classical properties one gets in the insu-
lating phase 0’(w—0) ~? (Ref. 22) and for fermions log-
arithmic corrections!® are expected: o'(w—0)~ow*(Inw)®.
For a trapped macroscopic Bose system a finite frequency
gap for finite conduction could be due to pinning. We
mention here that for a one-dimensional pinned charge-
density wave a Mott-Berezinsky law, o' ~w?(Inw)?, has
also been found?? for w greater than some characteristic
frequency w,. For a frequency w <w; an excitation gap
exists also for a charge-density wave. Within our frame-
work a gap also exists for a disordered electron system.'®?
But there the gap in the insulator is a consequence of the
approximation and can be improved by a o'(w—0)~w?
behavior, when a generalized hydrodynamic description of
the density propagation is used.?*?* In our case here the
density propagator [Eq. (2)] is already hydrodynamic
without any further approximation, and the gap seems to
be a real effect.

The behavior of w, and w,,, where the density relaxa-
tion is maximal, see Fig. 5, as function of n/n, is shown
in Fig. 8. For n/n,>1, w, may be interpreted as the
disorder-induced softening of the plasmon mode and indi-

T
108 n/n.=08 _|
-~ § .
o
30
~ 10
2
3
S0
© 10
- —~
0 1
0 1 2
w/wp

FIG. 7. Frequency dependence of the density relaxation func-
tion for the parameters as in Fig. 6 (n,=n, ¢ =10~°qq, n; =n).
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FIG. 8. w, (full curve) and w,, (dashed curve) for g =10~¢,
as a function of density. The dotted curve is the scaling law
[Eq. (23)] (n;=n).

cates this softening quantitatively as a function of disor-
der. Because of the broadening of this mode w, <w,,.
The phase transition from a superfluid phase to an insu-
lating phase occurs when w,, has been reduced to zero.

IV. DIELECTRIC PROPERTIES
OF THE REPULSIVE BOSE GAS

For the repulsive Bose gas'! disturbed by neutral im-
purities two energy scaless Eo=g¢/2m and
w,=(4me’n/m)'/?>  together ~with the parameter
72=2U%/E, have been introduced in Ref. 6. The dis-
cussion of the dielectric properties of the repulsive Bose
gas goes along the line shown in the last section for the
charged Bose gas. So we give here only the most impor-
tant results.

It was found in Ref. 6 that the parameter A4, depending
on U, E,, and 7, determines the state of the system. U,
is the critical strength of the random potential, where the
phase transition happens. For 4 <1 (U < U,) the system
is superfluid, for 4 > 1 (U > U,) the system has the prop-
erties of an insulator, and 4 =1 (U =U,) is the transition
point. This behavior is summarized in the low-frequency
behavior of the homogeneous dielectric constant

1—(1—A)w) /0?, 4 <1
ew—0)= {1-w}/[0(w+i(E}/C,)'?], A=1 27
1+ 0}C./[E}A—1)], A—17 .

C. parametrizes the insulator phase near 4 =1.

Analogous to the charged Fermi gas the static wave-
vector-dependent dielectric constant, because of the noner-
godicity of density fluctuations in the insulator phase,!”!8
is expressed as

2.2, 2
N°q909
e(g)=1+ . (28)
q*+q00} /{E}[elw=0)—1]}
Because e(w—0) diverges for A4<1, we have

elg)=14+n%q¢/q* for A <1.

The most important difference between a repulsive Bose
condensate and a charged Bose condensate is the g depen-
dence of the collective modes. In the case of the charged
Bose gas an excitation gap for the collective modes exists.
For a repulsive Bose gas the collective modes are phonon-

like and no excitation gap exists. In this sense a charged
Bose gas is like a three-dimensional electron gas and a
repulsive Bose gas is more like a two-dimensional electron
gas when the particle-hole excitations for the interacting
electron system are neglected.

For the density relaxation function, see Eq. (2), one gets
in the superfluid phase for M(z—0)=A4z and ¢—0 a
very sharp peak structure

¢"(q—>0,w——>0)=—2—(7;-5[8(a)——a~))+8(w+5)] (29)

located at @=gs(1—A4)"? and s =(nU°/m)"/2. This is
shown in Fig. 9 and & is shown by an arrow. The shaded
area is the 8(w —gs) peak for the free repulsive Bose gas.
The finite linewidth in Fig. 9 comes from the finite
M"(w). The disorder induces a collective mode softening
via reactive effects [ M'(w)] and we get a correction of the
Landau criterion?® for superfluidity due to disorder. This
softening is linear in the impurity concentration. Normal-
ly dissipative effects also induce a mode softening; howev-
er, this is quadratic in the impurity concentration. A very
analogous effect for a disorder-induced softening of the
plasmon modes in a two-dimensional electron gas has
been reported recently.! Whether the mode softens or
hardens depends on the signature of M’'(w), see Eq. (17)
of Ref. 6. For M'(w) >0 the mode becomes softer; how-
ever, for M'(w) <0 the mode hardens.

In the case of the repulsive Bose gas the zeroth-order
result of the relaxation kernel is given by

M®%(0)=4U%/w] —narctan(1/7)+(y, —x,) /(x +p)] ,
(30a)

M (0)=27U%/w[x*"?/(x +y)]0(1 +n*—w?/E}) ,
(30b)

and

T T T
ci) q=01q,, M=1 |

S

2.
T
1

2
0

Uy = |04 0.2

O°(qw/(gMENER)

o

S
w
T
|

TTETTTETEINYY

2
10 .
153 W] % v

FIG. 9. ¢"(q,) normalized to compressibility as function of
frequency for U/U,=0.2 and 0.4. The arrows indicate @ (see
text).
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FIG. 10. Comparison of zeroth-order result (dotted curves),
low-frequency expansion of zeroth-order result (dashed curves),
and self-consistent theory (full curves) for M'(w), M"(w), and
o'(w) for A =0.04.

y=x+n%, (31a)
x=—02/2+[(@/Ey)*+7n*/4]'%, (31b)
y,=y*?arctan(1/y'/?) , (31¢)
x,=x2/2In|(14+x1?)/(1-x'?)]| . (31d)

The low-frequency expansion gives M’ ~w, M" ~w*, and
0'(w) ~8(w)+w?. The increase in M"(w) with increasing
frequency is due to the decay of current into the collective
modes.

The behavior of M’, M”, and ¢'(w) is shown in Fig. 10
for 4 =0.04 (U/U,=0.2) and n=1. The dotted lines
are the zeroth-order result, the dashed lines are the low-
frequency expansion of the zeroth-order result, and the
full lines are the solutions of the self-consistent theory.
The shaded area in o'(w) indicates the 8(w) contribution
in the superfluid phase. The finite range g, implies a fin-
ite frequency range where the decay of the current into
the phononlike collective modes is possible and the singu-
larity in M'(w) of the zeroth-order results reflects this un-
physically sharp cutoff. M (w=0) and 0 (w=0) are
the values for 4 =1. For low frequency M'(w)>0 and a
mode softening of the collective modes, as shown in Fig.
9, occurs.

In Fig. 11 the behavior of the density relaxation func-
tion normalized to the compressibility as a function of
frequency for ¢ =0.1¢g, and the dynamical conductivity is
shown near A4 =1 for a superfluid phase (A4 =0.64,
U/U.=0.8), the conductor phase (4 =1, U=U,), and
an insulator phase (4 =1.44, U/U.=1.2). The dashed
area in ¢"'(q,w) indicates the nonergodicity contribution
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FIG. 11. Density relaxation function and dynamical conduc-
tivity as function of frequency for 4 =0.64, 1, and 1.44.

in the insulator phase. Note that in Figs. 10 and 11 the
dynamical conductivity in the superfluid phase is finite
for v >0 and no gap like for the charged Bose gas exists.
The origin for this behavior is the w ~g dependence of the
elementary excitation of the system.

V. CONCLUSION

Analytical and numerical results have been presented
for the influence of disorder on a Bose gas in the conden-
sate state at temperature zero. The frequency dependence
and the wave-vector dependence of the dielectric function
indicate the transition from a superfluid phase to an insu-
lator phase. We want to mention that our approximations
assume no singularities in the static properties of the sys-
tem, for example, the compressibility of the system. Only
under these circumstances, which cannot be proved within
our frame, should our theory content some of the essential
physics.

The discussed models are classical models in statistical
mechanics. So to study the influence of disorder on these
models is interesting from an academical point of view.
Moreover they have some overlap with the disordered in-
teracting electron gas, when the particle-hole excitations
are neglected.

Recently a collective excitation gap was discussed in
connection with the fractional quantum Hall effect.’’ In
this theory disorder was neglected. We believe that our
results are relevant in this context, but further theoretical
work is necessary to discuss the details.
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