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Coupled generalized master equations for Brownian motion anisotropically scattered
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The connection between a coupled non-Markovian Chapman-Kolmogorov equation and the
coupled generalized master equation is established. In particular the model of coupled random walk
is used for the description of correlated Brownian motion with anisotropic scattering.

Starting from a Liouville equation, the projection-
operator technique gives a generalized master equation
(GME). This GME is, in general, a non-Markovian equa-
tion and all the problems are included in the memory ker-
nel. On the other hand, it is very well known that the
continuous-time random walk (CTRW) is connected with
a GME, ' the relation between the memory kernel and
the waiting-time density being well understood.

Recently the problem of including internal degrees of
freedom into the random walk (RW} has been studied, '

and the close connection between the CTR%' with internal
degrees of freedom and GME has been pointed out.
Nevertheless this problem has only been studied for
translationally invariant RW schemes, and a self-averaged
(in each mode) waiting time has been used (this must not
be confused with the Hartree approximation used by
Scher and Lax which involves a space-averaged version).
What we need is an explicit calculation using a mode-
dependent waiting time, for example, in order to under-
stand neutron diffusion in a two-group energy model or,
as in the present paper, to study the Lorentz model where
the forward and backward scattering has a different
waiting-time distribution (such as due to some internal ex-
citation).

In order to understand the motion of a Brownian parti-
cle when the random force is correlated with its velocity
(i.e., all scattering centers present an anisotropy in the
sense that the direction of the velocity after scattering de-
pends on the direction before it), a set of coupled re-
currence relations of the RW type has been studied. '

Also in this problem, the CTRW theory has been applied
to describe more general situations. ' However in these
studies, we have used only a unique averaged waiting
time, i.e., we have neglected completely the mode depen-
dence of this function (note that in this case, "the one-
dimensional Lorentz model, " each mode is represented by
the direction of its velocity).

What we want to do in this paper is to study the non-
Markovian behavior (through its associated coupled
GME) which arises as a consequence of the mode depen-
dence of the waiting time. We have called this approach
"coupled CTRL," and it is closely related to the CTR%'
with internal degrees of freedom. The difference between
this and related approaches has been discussed.

In this paper we establish the connection between the
coupled CTRW and the coupled generalized master equa-
tion (coupled GME) associated with it. Particularly the
nearest-neighbor persistent RW model is used to study a

non-Markovian Lorentz-gas model (the connection be-
tween the persistent RW and the Lorentz-gas model has
been shown elsewhere' ).

I. THE COUPLED GME

As it is known in the CTRW theory, " the basic quanti-
ty is the waiting-time density function P(t) [f(t)dt is the
probability that the walker makes its jump in the time in-
terval (t, t+dt)]. Owing to the necessity of including a
mode dependence we must extend this waiting-time con-
cept to gtt (t), a mode-dependent waiting-time function.
This is because we are interested in solving certain classes
of coupled recurrence relations between probability func-
tions. We only need to define quantities like Ptj(, t) in-
stead of the transition quantities Ptt (j, t) defined by Land-
man et al. Both probabilities are closely related, but due
to the simplicity of work with a vector we shall continue
with our description. It follows that, in the coupled
CTRW theory, the probability distribution Pt(j, t) (l being
the mode and j the site} will be found as an average over
all the paths accessible to the walker. In what follows we
present the connection between the coupled CTRW and
the coupled GME for the general case where translational
invariance is not demanded and the mode dependence is
included. This situation has not been treated up till now.

As in Ref. 4, we start with a general set of coupled
CTRW recurrence relations for P„'(j,t), the probability of
the particle to be at the sitej with model 1, at time t in the
nth step:

which can be seen as a set of coupled generalized
Chapman-Kolmogorov equations, for non-Markovian sit-
uations, for each of the components of the vector P„(j,t)
(characterizing different "degrees of freedom" or
"modes"). The transition matrix p(j,j ', t) completely
characterizes the set of coupled recurrence relations. Also
[f(j,j,r)]ttdr is the probability that arriving at position
j' and mode I', the walker makes a transition to a position
j and mode I at time v, ~+d~. Thus, the following nor-
malization conditions are fulfilled:

(2)

If we define the vector generating function by
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R(j,t,z)= g z"P„(j,t)
n=0

(3) where for the inverse [P(u,j')) ' we have used Eq. (8) and
defined

and assume that the initial condition for the vector proba-
bility distribution is

Flv, u) = 1 —g gf(({J'i u)]pl .
j'

(1 lb)

Po(j, t) =5J 05, 0(ai, a2, . . .), (4)

where the overhead tilde ( —) indicates the Laplace
(t~u) transformation. Defining R(j,u)—:R(j,u, z =1},
Eq. (5) reads

R{ju) =Qy(j j'»)'R(j' u)+Po(j) (6)

This equation connects the matrix p(jj ', r) with the
vector R(j,r), the probability per unit time to reach j in

time r independent of the number of steps to arrive at j.
This is the starting point to obtain the relation between
the coupled CTRW Eq. (1) and the coupled GME.

As an extension of the Montroll" relation between the
probability distribution P(j,t) and the generating function
R (j,t) we assume, as in Ref. 4, the following relation be-
tween the vectors P(j,t) and R(j,t):

Pl(j, t) =g I [W(t ri ) Ia ~i (J—»« (7)
0

where P(r) is a diagonal matrix, which is a natural gen-
eralization of the function P(r) of Montroll. In the La-
place representation this is given by

1 —y /[it(i'i u)li-I
rlhar j' I"

[4'(u J}lti = 50 (8)

After Laplace transforming, Eq. (7) can be rewritten in
matrix form as

P(j,u)=P(u, j) R(j,u) . (9a)

In order to solve Eq. (6) as a master equation for the
vector probability, we use the inverse of Eq. (9a),

R(j,u)=[/(u, j)] 'P(j, u) (9b)

which replaced in Eq. (6) gives

[P(u,j)] 'P(j, u)

=+4(j.j' u[)4~ .u' j))'PV', u)+POV}.
j

Owing the diagonality of the matrix [p(u,j')] ', we can
~rite for the Ith component,

where a; are the initial normalizations for each mode, we
can write a matrix equation for R(j,t,z). Upon multipli-
cation of Eq. (1) by z", summation over all n, and use of
the initial condition Eq. (4), we obtain

R(j,u, z) =zg i'(j j',u) R(j',u, z)+Po{j), (5)
=y y[e{j,j' u)]li- ., Pl-v', u)

p
' ' F(i'»

[1—Fl (j,u)]—g u . Pp(j u)5lp .
p Fl ju (12)

Finally, using Eq. (11b) and making the inverse Laplace
transform of Eq. (12), we find the 1th component of the
coupled GME we are seeking:

Pl(j—,t) =g g [A(jj ",t r)]ti-Pt-(j—",r)«
at ' -r

P) j,z A j",j,t —v
0 ~ tl IIIJ

(13a)

where the memory kernel is

u [p{jj' u)]ti
[A{JJ' u)ltt = (13b)

Fp J,u

This coupled GME is a generalization of the treatment
of Landman et al. for the general situation indicated
above. At this level Eq. (13) offers a formidable task if
we want to solve it. In fact the memory kernel A is a
fourth-rank tensor and if the space domain is bounded to
[—N, le] the dimension of each matrix [A(j,j', u))lp will
be 2NX2N.

Nevertheless if a decoupled space-temporal model is
used, a simplification is obtained. Then as a special
case of coupled GME [Eq. (13)] we can use a decoupled
space-temporal matrix g(j,j,r), that is,

[Hi i r))ll'= ~ll'(J J )Oli'(r) (14a)

where gtp(r) must satisfy the normalization condition

II' s 7 —1 s (14b)

Thus, using the normalization condition Eq. (2), for (14a),
we obtain

gg Kt(J'i')=&Qll'{J }
l j I

(14c)

Then the definition of functions Fl(j', u} [Eq. (11b)]
gives us the possibility of writing the memory kernel as

[Avi'»)]ll' I'll'(u J )~lp(J1 }

where the temporal memory function Qa (u,j'}is given by

Adding and subtracting gt, uPi(j, u)5ti in Eq. (1 la) we

get

guPl {J u}5tt [P—o{J)]t

l{J )=g g[f(jJ "))ll"F ~ Pl"{J
Fl J~u ~ l. Fp J,uJ

+[POV))l (1 la)

uki {u}
&0 (u&J'}=

1 gQi"i'(u}Qi"i'{j }
I l1

(1Sb)
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The coupled GME then takes the form

P/(j, t) = y y Q 0"(t —rj ) Wg '(j j )Pp (J,r)dr
Bt J

Eqs. (2} and (14b) can be written as

g IVY(k =0)=g Qa
——1.

I I
(17d)

—I Pt(j,r)g Qp t(t rj—)Qt-t(j )dr .
Il ~

(16a)

Also for this case the temporal memory functions
Qs-(t j") are space dependent {through the index j ") and
thus the simple contraction of the 2XX2N matrix 8'0
and the 21' dimensional vector Pt(t) cannot be decoupled
from the temporal memory function.

A big simplification arises if we study a translationally
invariant case. Since the quantities Fi(j,u) will be space
independent, i.e., we must replace

Obviously in this case if we want to have a 5-Dirac
memory we must solve an eigenvalue problem, where the
coefficients Qa have an important role.

(4}Symmetric 2X2 model: if

0.=fn =$„1&1'
fa=4z' «

we have for the 2X2 temporal memory matrix, the fol-
lowing elements:

Kp(Jj ) ~ll'(J

QN {j} Qa

Qg (j,u)~Qtt (u) .

Then the coupled GME will be

uPz(u)
Qtt(u) = Vl

1 —[pz(u }QII+ it'1(u }Qpi ]

u 11 i(u)
Qit {»= 1~l' .

1 —[fz(u}Qt t +Pi(u}Qu ]

(17e)

Bt
' 0Pt(J, t)—= g Qll (t —r)g Alp (J —j )Pp (J,r)dr

J

Pt(J', r)g Qp &(t r)Qi-id—r .
0

(16b)

But this temporal memory function Qti (t} can depend on
the structure of the lattice, as will be shown in what fol-
lows.

The simplest four temporal memory functions that can
be obtained, with different mode dependence for the wait-
ing time are as follows.

(1) Independent of mode: /It(u)~g(u), then

u (u)
Qtt (u)~Q(u}= (17a)

1 —1t'(u)

which is the well-known case of Montroll. '

(2) Dependent on the initial mode: 110 (u)~g& (u), then

uPp(u)
QU (u)~Qt (u) =

1 Pp(u)—
(17b)

which shows us that different temporal decays appear in
each mode, independent of the lattice-structure function,
this is the self-averaged (in each mode) waiting time that
we pointed out before which has been used by Ladman
et al.

(3}Dependent on the final mode: litt (u) 1(t{u},then

u1lt(u)
Q0 (u)~

1 QQt-t itt-(u }—
I/1

showing that, in this case, the tempora1 memory function
depends on the lattice-structure function through the
coefficient Qtp, a result which does not appear in the
Montroll or Landman descriptions.

The coefficients Qtp are a generalization of the lattice-
structure functions, which are used when there is transla-
tional invariance. Then the normalization condition using

It can be seen that for this special case (4), if we want to
have a 5-Dirac memory [i.e., Qti (t)~vent S(t}]we must use
a Poisson density of time intervals between distinct events.
This corresponds to an exponential waiting-time function

Pit(t) but in which the characteristic mean time value
(t }it ——Jc tgit (t)dt depends on the lattice structure
through the coefficient Qit .

II. EXAMPLE: A NON-MARKOVIAN
LORENTZ-GAS MODEL

In order to exemplify this approach we can show the
two-mode case for the description of the motion of a one-
dimensional Brownian particle with anisotropic random
force. The Lorentz-gas model has been used in order to
study several problems and long-time tail phenomena.
This has been carried out incorporating in the model ef-
fects of disorder at the scatterer' or fractal dimensional
effects. ' In this example we want to study a slight gen-
erahzation of the simple persistent RW; ' then we
must use a coupled CTR% theory where the waiting time
will be mode dependent.

Following the same notation as used in Refs. 6 and 8,
P(j,t) =(P"(j,t),P (j,t)) being the vector probability pre-
viously defined, where P (j,t) or P (j,t) are the condi-
tional probabilities of finding a particle at sitej and time t
moving to the right or left direction, respectively, subject
to the initial condition

p(J, t =O) =(a, ,a, )5,-05, o .

If we assume case (4) fol the waiting tlnle (i.e., a pro-
cess, where the time elapsed in each step is different de-
pending on the type of scattering that will occur),
gttt (t) =gttt(t) =pi(t); gtttt (t) =QLL(t) =Pz(t). This situ-
ation is weil understood if we take into account that for-
ward and backward scattering are symmetric with respect
to the velocity direction of our Brownian particle:
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scattering
~LR'LR

p"(j,t) ~ p (j 't'),
Q~~ =QLL =g ~x~V i—') =p

Q« Q—-- =g ~«v J'-) =q
(22)

—v2t
PLL(t) =gzz(t) =v2e

PLx (t) =QRL (t) =v, e
(20}

scattering
&RR I"RR

px(~, r) P"(j ', r'),

where by symmetry we must take

eRR(r) WLL(r)i eRL(r) PLR(t)

Using the exponential model, characterized by v; in
each one, we can write

Then the temporal memory matrix mill be

Qxx(u) QaL(u)
Q(u) =

QLx(u) QLL(u)

where

uf2(u)
Qxg(u) =QLL(u)=

1 —[$2(u)p+lt )(u)q]

uP~(u)
Q~(u) =QLa(u) =

1 —[02(u)p+ el(u)q]

(23a)

(23b)

(23c)

which implies a Markovian behavior in each mode if there
is no coupling among them [i.e., Wl ~(j —j ') =0; I'~l ].

To complete our description we must make an assump-
tion for the lattice structure. Analyzing the case of
nearest-neighbor model we must use a translationally in-
variant single-step transition-probability tensor of fourth
rank,

~~2t V i ') —II aL(i i ')—
w(j —j ') =

~ca V i ') ~cL—V i ')—(21a)

where we have used the index "8"and "I." to character-
ize each mode; the matrices Wli (j —j ') are given in the
following way:

p 0 0
~z~V i')=[&a.L—(j —j')] = p 0 o

p 0 0

(21b)

0 0 q

~i~V —i ')=[~~LV —i ')]"=
0 0 q

The notation T indicates the transposed matrix, and p (or
q) are the probability of forward (or backward) scattering
relative to the flight direction before scattering
(p+q =1). Using Eq. (21b) we can calculate the coeffi-
cients QU given by Eqs. (14c) or (17d) as foHows:

Note that each element has the same Laplace structure,
which can be easily antitransformed. As it was expected
it gives a 5 dependence together with a transient non-
Markovian description:

QLL (t) =v2[5(t)+q (vl —v2)e ' ' ],
Q2tL(t) =v, [5(t)+p(v2 —v2)e ' ' ] .

(24a)

(24b)

It can be easily seen from Eq. (16b) and using (24a) and
(24b) that for the case v2 ——v& we recover the Markovian-
coupled ME description, i.e., the master equation for the
simplest one-dimensional stochastic Lorentz model.

This is so because when we put v&
——v2 we are averaging

the waiting-time functions Pil (t) over all the modes; then
we get the Montroll case for the temporary memory func-
tion [Eq. (17a)] independent of the mode. Because we
have used an exponential waiting-time model we get a 5-
Dirac memory function as is well known. Then the cou-
pled GME will be Markovian. ' If we preserve vt&v2,
non-Markovian effects arise; this is so because the modes
are coupled together. Physically our model of mode-
dependent exponential waiting time is closely connected
with a non-Markovian description between each step. In
other words there are different correlations between the
changes of velocity directions of our Brownian particle.

The coupled GME will be

d, Px (j,t) =v2pPx (j —1,t)+ v~qPL (j —1,t)

—(v2p +v~q)Px(j, t)+M(j, t),

d,PL(j, t)=v2pPL(j +1,t)+v~qPx(j +1,t)
—(v2p+viq)PL(J, &)+i(, &),

where the non-Markovian term M(j, t) is

—(v&p+&2q)(& —r) —( vlP +v2q)(t —w)W(J, t)= v2pq (v, —v2}e
0 Pzj(—l,r)dr+ v~q(v2 v, )e ' —' PL(j —1,~)dr

0

—(~,q+~,q)(~ —~)
[ pq(v1 v2) ]e Pa(j, r)dr (26a)
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and a completely similar expression for the non-

Markovian term 4'(j, t) can be obtained by making

Ptt (j —1,~)~PL (j + l,r ),
pt j(—l, r}~ptt(j + l,r),
Ptt V &) PL(J»

(26b)

We can see from Eq. (26a) that the non-Markovian ef-
fect is a causal convolution of Pt(j, v ) with

exp[ (t —r)/~—,], where r, =( vip+vzq) ' is a charac-
teristic time, which can be used in order to define a tran-
sient non-Markovian regime. Consequently we can infer
from the knowledge of r„as a function of backward and
forward probabilities (q,p), the characteristic quantities
vi, vz which specify our simple non-Markovian Lorentz-
gas model.

If we study this system for times t »v, we can approx-
imate the coupled GME by one of Markovian type. The
non-Markovian terms can be approximated by

M(j, t)-vzb vPqr, Ptt (j —l, t)+ vi( hv)Pq~—,Pt. (j —l, t)

+pq(bv) r,Ptt(j, t) if t »~, ,
(27)

8F (j, t) -vi( hv)pqr—,PR(j + I,t)+vz(hv)pqr, Pt, (j + l, t)

+pq(dv) r,PL(j, t) if t »r, .
This contribution must be added to the Markovian term

[Eq. (25)] in order to write the final coupled GME which
control our systems for times t »v, . We can see from
Eq. (26) that the non-Markovian effect has been quenched
off for sufficiently long times and only effective factors
appear in each gain-loss term of the coupled Markovian
master equation.

Finally we can remark that in this simple description
for t»v, the effective loss-term factor will be smaller
than for the Markovian approach. This is so because the
mode-dependent waiting time introduces a delay in the
loss contribution if we want to write a master equation.

On the other hand, for the gain term the sign provided
from the non-Markovian contribution will depend on the
model: vi & vz or v, & vz. We can see, that in the limit of
pseudodiffusive phase q~0, the non-Markovian terms
disappear. This is due to the fact that if we take this limit
the coupling between modes disappear [i.e.,
wtt (1 —J') =01+I'].

In the opposite case, the limit of counterdiffusive
phase p~O, the non-Markovian terms disappear also.
But in this case it is due to the normalization condition

(p +q =1) and the model of gi(t) [Qtt (t)~v, 5(t) if /&I',
and wtt(j —j ') =0]. Then for the limit "one-side RW" we
never will have a non-Markovian description. But for the
"collapsed R%" the non-Markovian description is direct-
ly related to the model for the waiting time Q„L(t) (the
backward process}.

Then Eqs. (26a) and (26b) give us useful information on
the behavior of the non-Markovian memory function for
the description of Brownian motion correlated with aniso-
tropic scattering. As it has been shown before the formal
solution of the RW equivalent problem, can be expressed
by means of the coupled CTRW theory [in the Fourier
(j~k) and Laplace (t~u) space] by

P'(k, u)=4(u) [1—it *(k,u)] 'Po, (28)

where the matrices f,4 are well defined through Eqs.
(14a), (20), (21), and (8), respectively. The probabilistic ar-
gument contained in solution (28) is that we have made an
average procedure by adding up with their weights all the
paths accessible to the walker. In fact the memory func-
tion Eq. (24) allows us to use an alternative procedure and
study how the non-Markovian description will be relevant
to the description of this problem.

In this paper, we have established the connection be-
tween the coupled CTRW and the coupled GME, for the
general not translationally invariant case, when the mode
dependence is taken into account. This is an alternative
framework to study the evolution of the coupled CTRW
while it is in progress. Also we have analyzed the non-
Markovian behavior of a correlated Lorentz-gas model in
the framework of the coupled CTRW theory by means of
its associated coupled GME, using a mode-dependent ex-
ponential waiting time. A study with another mode-
dependent waiting-time function is in progress. Further-
more a variety of physical problems for nonequilibrium
processes, other than scattering anisotropy, where a cou-
pled recurrence relation of the form (1) between different
modes is relevant, can be encompassed by a description
via a coupled GME as given by Eq. (13), or for the decou-
pled space-temporal model by Eqs. (16a) or (16b).
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