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Macroscopic dynamics near the nematic-columnar transition in liquid crystals
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We derive the dynamic equations for the macroscopic variables close to the nematic-
to—hexagonal-columnar transition in discotic liquid crystals. We discuss especially the physical
consequences of a static cross-coupling term between fluctuations of the discotic order parameter
and gradients of the nematic director, a term omitted by previous workers. Furthermore, we predict
the breakdown of flow alignment in disklike nematics close to the transition to a columnar phase
and we discuss the microscopic reasons for this effect and, in general, the same type of behavior for
other liquid crystalline phases with positional order such as smectic-A, -8, -C, -6, etc.

After the discovery of thermotropic discotic liquid crys-
tals' the investigation of similarities and differences to
liquid crystalline phases composed of rodlike molecules
has become an important topic in the study of meso-
phases. The first transition nematic to columnar (posi-
tional order in two directions, disorder in one direction—
along the columns) was announced in 1979 and since
then various phenomena connected with this transition
such as an inverted nematic phase ' (the nematic phase is
found only below, as a function of temperature, but not
above the more ordered columnar phase} and a reentrant
nematic discotic phase —the analog of the reentrant
nematic phase in compounds made of rodlike
molecules —have been found.

Theoretical approaches to understanding the nematic-
columnar transition have so far been restricted to writ-

ing the static free energy for the order parameter and
studying —via mode coupling' —the influence of order-
parameter fiuctuations on Frank's elastic constants ' and
viscosities. This approach is similar in spirit to the one
used" to describe fiuctuations close to the smectic-
A —to—nematic transition.

Here we present a model for the macroscopic dynamics
close to the transition, including a new static cross cou-
pling between gradients of the order parameter and gra-
dients of the nematic director. A simple experimental set-
up to study the influence of this cross coupling is suggest-
ed. Furthermore, we predict the breakdown of flow align-
ment close to the nematic-columnar transition due to fluc-
tuations of the columnar order parameter —a result which
is implicitly contained in the mode coupling calculation of
Ref. 8. We discuss why the breakdown of fiow alignment
does not follow from microscopic calculations of the type
proposed in Ref. 12 and applied to unaxial nematics' and
to biaxial nematics and smectics-C. ' In addition, we in-
vestigate where, i.e. for which regime of temperatures, a
breakdown of flow alignment can be expected in reentrant
nematic phase= a question that has not yet been studied
experimentally.

To set up the macroscopic dynamics we complement
the hydrodynamic equations for uniaxial nematics'4's by
thc quantltlcs which vary slowly 1n time and space but thc
excitation frequencies of which do not vanish in the limit
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and for F „we have

F~„= r,zk V;m VJnk (3)

F ( oop, V) contains the same contributions as in an iso-
tropic liquid. In writing Eqs. (2) and (3), we have used the
abbreviations

with 5,J- the Kronccker symbol and n; the nematic direc-
tor (n; n; =1 },and

(tuba =PKanj+&'ann ) .

The order parameter m is taken to be

d k arI= I e'"'p(k) .
D (Zsr)

of infinite wavelength. An obvious candidate close to the
nematic-columnar transition is the modulus of the colum-
nar order parameter m, if the transition is second order or
only weakly first order, as is the case here. ' It will be-
come clear from the discussion on the breakdown of flow
alignment below, that the regime for which rn is slow
might be quite large and extend over most of the regime
of existence of the discotic-nematic phase. Before
proceeding, we add a word of caution. Since macroscopic
dynamics does not have the same degree of rigor as a hy-
drodynamic approach, one cannot rule out completely
that there is an additional "slow" quantity —aside from
the order parameter m. But there seems to be no obvious
candidate and thus we obtain for the generalized free en-

ergy F,

+F +I" .+I:o

where F„ is the usual Frank free energy for uniaxial
nematics, ' I'~ is given by
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Foi the transition nematic-hexagonal discotic (&bs), the
wave-vector integration is over a torus, whereas for a rec-

tangular discotic (D,z} the underlying symmetry requires
a corresponding change in the domain of integration. (To
include the transition rectangular discotic-nematic is im-
portant because many of the nematic-columnar transitions
observed are of that type; cf., e.g., Refs. 2—5 and 16.) In
Ref. 8 it is imphcitly assumed that the domain of integra-
tion in k space is very small and that the distribution p(k)
is sharply peaked; in the following we will assume that—
especially far away from the nematic-columnar
transition —the domain of integration in k space is large
with a distribution p(k) which is broad and also contains
small, but finite values of the wave vector. The term pro-
portional to g [Eq. (3}]has not been considered before. '9
It couples gradients of the nematic director to gradients of
ni where the two gradients are parallel and perpendicular
to the nematic director, respectively. By enforcing the
director field n to have no spatial variations in the bulk of
the sample the influence of the cross-coupling term can be
removed (e.g., by a sufficiently strong external magnetic
field). It seems worthwhile to note that a similar type of
cross coupling (between gradients of an order parameter
and gradients of the nematic director) has been discussed
before for the uniaxial-to-biaxial phase transition in
nematic liquid crystals. ' ' In contrast to the present
case where the order parameter is a scalar, it is an an-
tisymmetric, traceless tensor for the uniaxial-to-biaxial
transition.

A possible experimental detection of the effects of
$

can
proceixl along the lines outlined for that transition. ' An
even simpler way, however, to achieve the same type of
effect experimentally seems to be the use of a wedge-
shaped sample instead of an inhomogeneous magnetic
field. This way one naturally imposes on the director
field a certain degree of deformation and as the nematic-
columnar transition is approached the ensuing pattern to
be observed in the polarizing microscope is expected to
change. The estimate of the magnitude of the change,
however, is beyond the scope of a continuum-type ap-
proach. We also mention that the same technique can ob-
viously also be applied to the uniaxial-to-biaxial phase
transition in nematics. The investigation of the nematic-
columnar transition offers one advantage: it is known to
occur in pure compounds' 's so that one need not be
concerned about multicomponent effects, as it has always
been the case so far, for the uniaxial-biaxial transition in
lyotropic systems.

Assuming local thermodynamic equilibrium me have
the Gibbs relation

de=@dp+ Tder+ V.dg+Pj d V; n&+h; dn;+@~ dni,

where p, o, and g are the conserved densities of particle
density, entropy, and linear momentum and p, , T, V, P;J,
h;, and p are thamodynamic conjugate quantities de-
fined via Eq. (7). For the dynamic equations we have —as
in uniaxial nematics —conservation and quasiconservation
laws for p, o,g and the transverse director fluctuations 5n;
with n;5n; =0,
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with R the entropy production. For ni we have

(a} for the reversible currents
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(b) and for the irreversible currents
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where

and

Ajk =T(1 A)5jnk ——,—(1+A)5gnj.

p;J =p((n; nj +pj 5,'J .

(12)

The term proportional to g in Eq. (11) just expresses the
fact that slow spatial temporal variations of ni are non-
conserved. A term of the same structure as P;J has been
discussed before for the nematic —smectie-A transition.
In the present case, the meiuung of P;J is quite intuitive; it
gives the degree to which columnar order is induced in the
nematic phase under the action of an external flow field,
especially a shear flow. In Ref. & this term has been omit-
ted due to the different assumption about the domain of
integration in k space for the order parameter.

It seems vrorth noting that the existence of an expres-
sion similar to P;J in Eqs. (10) is not restricted to phase

+I =0.
dt

To close the system of macroscopic equations we have to
relate the currents g;, q;, cr,&, Z;, and X in Eqs. (8) and
(9) to the thermodynamic conjugate quantities defined via
Eq. {7), and then in turn we must express those in terms
of the macroscopic variables. Making use of general sym-
metry arguments we have the following:
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transitions from a nematic to a columnar or smectic-A
phase. Symmetry allows for the same type of cross cou-

pling close to a columnar-crystal transition which can be
of second order, ' i.e., the dynamic equations given in

Ref. 22 should be supplemented by such a term. In the
case of the columnar-crystal transition the intuitive physi-
cal meaning would be the following: applying a flow,
especially a shear fiow, to the system leads to a growing
degree of solidification as the transition to the crystal is
approached in temperature, a phenomenon which one
could call shear flow induced solidification, a feature not
studied in liquid crystals so far. The effect predicted here
is a pretransitional effect and different from the shear
flow induced melting which has been studied in colloidal
crystals.

To express the thermodynamic conjugate quantities
which appear in Eqs. (11) and (12) we can just take varia-
tional derivatives of the generalized free energy with
respect to one macroscopic variable while keeping all the
other ones fixed. We have, e.g.,

F F
Pm =, H; =iii —VJ(()ij ——

5m 5n;
(13)

From the fact that under an external shear flow a finite
amount of smectic or discotic order is introduced (via P;J ),
immediately the question arises whether this will have any
consequences for flow alignment —a phenomenon charac-
teristic for nematic liquid crystals. " By flow aligninent
we mean here a stationary configuration in which the
nematic director encloses with the external shear velocity
an angle which is different from 45' (characteristic of an
isotropic liquid' ). In Ref. 13, Pleiner and I discussed
flow alignment in nematic discotics using the microscopic
model introduced by Forster. ' On the other hand, we
have seen above that approaching the nematic-discotic
transition we pick up some degree of columnar ordering
in an external shear fiow, the magnitude of which is pro-
portional to the P's. Also, it is not clear how these tran-
sient columnar areas in the nematic background could be
aligned, thus leading to a breakdown of fiow alignment as
the fraction of these columnar pieces increases. To phrase
it in a more formal way, the fiow parameter A, assumes a
value 0& A, & —1. This is a result which is implicitly con-
tained in the mode coupling calculations of Swift and An-
dereck if typical values are inserted into their expression.

These considerations can only be reconciled with the
microscopic calculations for the flow alignment' ' (in
which alignment is always found) if one takes into ac-
count that the mass quadrupole moment R,z, as intro-
duced in Ref. 12, is no longer a "good" order parameter
everywhere in space in the nonequilibrium situation con-
sidered (external shear), since via P;~ some degree of
columnar order is being introduced. For example, al-
though the thermal average of the mass quadrupole mo-
rnent is still a well-defined quantity, this is no longer true
for R;J. To cure this formally, one could use as an "effm-
tive" order parameter R,J(1 e) with e being —positive and
growing as the columnar phase is approached. If this is
done, one can get values for the parameter k characteristic

for the breakdown of flow alignment.
Experiments on this question close to the nematic-

columnar transition have not been performed as yet—a
situation which is completely different from that at the
nematic —smectic-A transition or even the nematic phase
above a crystalline phase ' where the breakdown
has been observed by different groups using different
setups and various compounds. %hen inspecting
the experimental results several interesting features
emerge. First of all, only three pure compounds,
HBAB [4-(n-hexyloxy)benzylidene-4'-aminobenzonitrile]
(Refs. 24—28), CBOOA [N-(4-cyanobenzylidene)-4'-(n-
octyloxy)aniline] (Refs. 27—29), and 8CB [4-cyano-4'-(n
octyl)biphenyl] (Refs. 30 and 31) and one mixture
have been investigated; all of those share one important
property: they are all strong polar compounds with a
cyano end group. In addition the nematic phases in these
compounds are followed at lower temperatures by an A

phase made of dimers as is the case for 8CB and
CBOOA or they have strong fluctuations (HBAB and its
mixtures) in x-ray scattering in the nematic phase at a
layer spacing d =1.31, with / the molecular length. That
is, the breakdown of flow alignment so far has only been
observed in compounds composed of molecules which
have a strong tendency to pair. From the general argu-
ments given above, however, one would expect to observe
the same behavior also in the vicinity of a
nematic —smectic-A transition with the A phase com-
posed of monomers. The fact that so far all experimental
investigations have been carried out on polar compounds
might have the trivial reason that those are easier avail-
able commercially, but it is definitely worthwhile to per-
form flow alignment in nonpolar compounds to rule out
the possibility that the breakdown has anything to do with
the polarity of the molecules.

Another noteworthy feature which appears from the
analysis of the experimental data is the fact that the tem-
perature range over which the breakdown of alignment
occurs is not necessarily restricted to the close vicinity of
the transition but can cover as much as 85% of the tem-
perature range of existence of the nematic phase thus leav-
ing only a narrow temperature range close to the
nematic-isotropic transition where the conventional
behavior of a nematic liquid crystal is found. In 8CB,
e.g., this strip can be as narrow as about 1 K (Ref. 31) and
the temperature range over which no alignment occurs
can be as large as 66 K. Therefore it seems that the
range of the validity of macroscopic equations which con-
tain the modulus of the order parameter as a variable can
be quite large near liquid-crystal phase transitions which
is in sharp contrast to the vicinity of the A. transition in
'He."

%'e would also like to emphasize that our analysis
presented here is not restricted to the "vicinity" of the
nematic-columnar discotic or nematic —smectic-A transi-
tion, but applies as well to nematic phases above transi-
tions to smectic-A2, -C, -8, and -6 phases or above a
transition to a tilted discotic phase, in particular, as long
as those are only weakly first order.

For reentrant nernatic phases completely new experi-
mental aspects open up; one will be able to observe in a
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nematic phase below a columnar phase or a smcctic phase
a breakdown of flow alignment on heating, i.e., just the
opposite behavior from all experiments which have been
done so far. This can definitely be expected to be true if
one has an isotropic phase below the reentrant or inverted
nematic phase, as has been observed recently. On the
other hand it seems quite conceivable to find inverted or
reentrant nematic phases which show no flow alignment
over their whole range of existence. This is to be expected
in particular if the range is small and the transition to the
phase at lower temperature is strongly first order. Final-
ly, we would like to comment on the vicinity of the
biaxial-uniaxial transition in nematics. In this case, we do
not expect a breakdown since only orientational order and
not positional order, as in all cases investigated above, is

added at the transition. So we would expect to have flow
alignment in both the uniaxial and biaxial nematic phases
and it will be more interesting to check the predictions
made for the biaxial phase. '

In closing, we have proposed a general mechanism for
the breakdown of flow alignment in nematic liquid crys-
tals, namely the existence of sufficiently strong fluctua-
tions of density waves in one or two directions, a rnecha-
nism which does not require the close vicinity of a phase
transition. This does not rule out the possibility of find-
ing other mechanisms not considered so far.

It is a pleasure to thank P. E. Cladis for a stimulating
discussion on HBAB and its unusual properties.
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