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Near the onset of a dynamical instability, any time-periodic system can act to amplify small

periodic perturbations. The details of this small-signal sensitivity depend solely on the type of bifur-
cation involved: Explicit expressions are derived for the. power spectra in the vicinity of the simplest
classes of codimension-1 bifurcations. Results obtained from analog simulations of a period-
doubling system are in good agreement with the theory. %e propose that the superconducting
Josephson-junction parametric amplifier is an example of this amplification process.

I. INTRODUCTION

This paper concerns time-periodic dynamical systems
near the onset of instabilities and their sensitivity to per-
turbations which are likewise periodic. We show that
such dynamical systems can greatly amplify small-
amplitude perturbations, provided the frequency of the
perturbation is properly chosen. The "proper choice" of
frequency range depends only on the type of bifurcation
encountered. In this paper we consider several classes of
bifurcation: saddle-node, transcritical, pitchfork, period-
doubling, and Hopf. These are the simplest codimension-
1 instabilities of periodic orbits. i.e., they are the bifurca-
tions typically encountered as a single control parameter
is varied. The results of this paper are based on very gen-
eral considerations; consequently, they apply to any physi-
cal system governed by a set of ordinary differential equa-
tions, near the onset of a bifurcation.

The basic principles involved here have already ap-
peared in a short paper. ' There, we studied a particular
system, namely the driven Duffing equation

x=F(x, t), xcZ~. (1.2)

Second, the unperturbed system may depend explicitly on
time, as in Eq. (1.1), or may not (the system is said to be
nonautonomous or autonomous, respectively). Third, the
perturbative modulation can enter either additively as in

x+yx+Aox+px =A cos(tot)+B+5cos(Qt),

where the constants y, Q, p, A, and 8 were tuned so that
the unperturbed oscillator (5=0) was close to the onset of
a period doubling. %%en the small-amplitude modulation
was turned on (5&0) with frequency Q=nco/2, n an odd
integer, the power spectrum of x (t) showed a large com-
ponent at Q. An explicit expression for the power spec-
trum was derived for Eq. (1.1) in terms of the detuning
frequency A=Q nto/2 and—the bifurcation parameter e
when both b, and e were small: Analog simulations of Eq.
(1) were also performed, and these supported the analytic
results. '

The purpose of the present work is to extend the results
of Ref. 1 in four important ways. First, we begin with the
more general evolution equation

Eq. (1.1), or "parametrically, " such as

x+yx+[Ao+5cos(Qt)]x+Px =3 cos(tot)+8 . (1.3)

Finally, the instability in question need not be a period-
doubling bifurcation. We are able to handle most of these
generalizations within a single notational formalism, the
only exception being the difference between autonomous
and nonautonomous systems. Consequently, the deriva-
tions for autonomous systems are covered separately in
Sec. V, though the differences with the corresponding
nonautonomous results are relatively mild.

The idea that a system poised near the onset of a
dynamical instability might amplify coherent (i.e., non-
random) signals was spawned from previous work con-
cerning the effect of noisy perturbations on the power
spectra of periodic systems. The addition of a flat-
spectrum input (white noise) gives rise to new broadband
peaks not present in the noise-free system. In each case
these noisy precursor peaks are centered at the new fre-
quencies that appear only after the bifurcation of the
deterministic system. The theory of noise precursors has
been checked quantitatively by measurements on voltage-
driven p njuncti-ons for period doubling and Hopf cases.
Noisy precursors have also been seen in experiments on
semiconductor lasers and in analog circuits governed by
Eq. (1.1).

One question that is bound to arise is whether the
small-signal sensitivity described in this paper has a prac-
tical use. One place where these ideas may find practical
application is in the study of superconducting Josephson-
junction parametric amplifiers ("paramps"). ' ' These
devices operate in an interesting frequency range (-35
GHz) and have achieved good gain in laboratory experi-
ments, ' ' although undesirable noise characteris-
tics' ' thus far have prevented them from being techno-
logically useful. We propose that the basic amplification
mechanism underlying the operation of these paramps is
just the dynamical explanation developed here, both for
three-photon paramps' and for four-photon paramps. %e
enter a fuller discussion of this topic in Sec. IV B.

An issue of a more general nature is discussed in Sec.
IV C, which may also be important for potential applica-
tions of this amplification mechanism. The theory finds
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that large amplification factors are achieved when both
the bifurcation parameter e and the detuning frequency b
are small. Consequently, significant amplification might
be achieved in only narrow frequency windows. An in-
teresting phenomenon can occur, however, that alleviates
this difficulty, allowing for a wide and continuous tuning
range for these high-gain windows. This phenomenon-
the so-called virtual Hopf sequence ' —is quite common
in low-dimensional systems, such as the Lorenz equations
and the driven damped pendulum (which in turn describes
the Josephson paramp dynamics mentioned above).

The contents of this paper are organized as follows. In
Sec. II the basic problem is laid out along with the formal
mathematical framework, and a general expression is de-
rived for the system's response to the perturbation. In
Sec. III expressions are derived for the power spectrum
near the onset of saddle-node, transcritical, pitchfork,
period-doubling, and Hopf bifurcations, when the unper-
turbed system is nonautonomous. Section IV discusses
three specific aspects of these general results: (i) The re-
sults of analog simulations of the driven Duffing oscilla-
tor are presented, and compared with the period-doubling
predictions; (ii) the connection with Josephson paramps is
made, for both the three- and four-photon operating
modes; (iii) the virtual Hopf phenomenon is described and
is shown to provide certain advantages for tuning and sta-
bility in small-signal amplification. In Sec. V we return
to the situation where the unperturbed system is auto-
nomous and compare the expected power spectra on a
case-by-case basis with the corresponding results of Sec.
III. Finally, a brief summary of the limitations and con-
clusions of the theory is provided in Sec. VI.

II. PERTURBATIVE APPROACH

Our aim is to study the effect of a coherent (i.e., non-
random) perturbation on a system near the onset of a
dynamical instability. Before developing the general for-
malism, we consider a specific example.

The damped driven pendulum obeys

8+y8+ oiosin8 =A cos(oJt) (2.1}

and can undergo a sequence of bifurcations as A is in-
creased from zero. ' o' ' For small driving amplitude A,
the steady-state response 8(t) is a symmetric, (2m/co)-

periodic oscillation. [The "symmetry" of 8(t)= —8(t
+m/oJ). The experimental signature of such an orbit is
that its power spectrum contains odd harmonics only. ]
As A is increased, the system first undergoes a
symmetry-breaking, or pitchfork, bifurcation. Then,
steadily increasing A can result in a sequence of period-
doubling bifurcations, leading to chaos. ' '

Suppose that 3 is adjusted so that the system is just be-
fore the onset of the first period doubling. Then we will
demonstrate that a small, coherent perturbation of the
system will be amplified greatly when the frequency of
the perturbation is close to co/2.

Generally speaking, there are two ways that a coherent
signal can be coupled into Eq. (2.1). The small signal may
enter additiuely, so that Eq. (2.1) becomes

8+y8+aiosin8=A cos(cot)+5cos(Qt+P) . (2.2)

x=F(x;A. ), xER (2.4)

Here, F may or may not depend explicitly on time, and F
depends on (at least) one parameter A, , which we take to be
modulated about its mean value A,o.

A, =Q+5cos(Qt} . {2.5)

The dependence of F on any other parameters is
suppressed for notational convenience.

We next suppose that the unperturbed (5=0) system
has a stable periodic solution xo.

x (ro+ T)= xo(t) (2.6)

The effect of a weak perturbation (5&0) is to make x(t)
deviate from xo(t). Writing this small deviation as
iI =x—xo, Eq. (2.4) becomes

xo+ g =F(xo+ iI' A o+5 cos( Qt) ) . (2.7)

Expanding F to first order in iI and 5, and using the fact
that xo is a solution of Eq. (2.4) when 5=0, leads to an
evolution for iJ:

g =DF(xo;Q)iI+5 cos(Qt)A,

where DF is the matrix of periodic functions

p.
(DF)EJ =

BXJ

and A is the vector of periodic functions

(2.8)

(2.9)

X=XO
(2.10)

For example, for the parainetrically modulated system
{2.3), we have A.o——bio, and

8
x= , DF=

8
0 1

—coocos80
2

J

—sin80

In writing Eq. (2.8), terms of quadratic (and higher) de-
gree in y have been ignored, leaving a linear inhomogene-
ous equation with periodic coefficients. Such equations
can be solved via the standard methods of Floquet
theory. %'e begin by recalling a few basic results needed
to construct the solution to Eq. (2.8).

Alternatively, one of the parameters may be modulated
about its mean value, for example,

8+y8+[coo+5cos(Qt+p)]sin8=A cos(oJt) . (2.3)

%'e can consider both additive and parametric modulation
at the same time by the following device. Think of Eq.
(2.1) as having an additional, constant term on the right-
hand side. Then Eq. (2.2) represents a parametric modula-
tion of that constant term, for the special case where its
mean value is zero.

The general development begins with a dynamical sys-
tem governed by the set of first-order nonlinear differen-
tial equations
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First, there exist special solutions P» of the homogene-
ous equation associated with Eq. (2.8), such that

with
A'C' k=e ~k (2.20)

P»(t)=e 'P»(t), (2.11) and

where Pk is a periodic function with the same period as
the matrix DF(xo', A). For convenience, we assume that
time is scaled so that this period is equal to 2m, so that

P»(t+2~}=P»(t) . (2.12)

The constant p» appearing in Eq. (2.11) is, in general, a
complex quantity and is called a F/oquet exponent. From
Eq. (2.11) it is seen that p» is arbitrary up to integer mul-
tiples of i W. e remove this ambiguity by picking the
branch

—2l QImpk Q 21 (2.13}

As will be sho~n, the Floquet exponents determine the
main features of the observed power spectrum —all of the
basic results can be neatly summarized in terms of the p».

Physically, the f» represent responses of the unmodu-
lated (5=0) system to a single impulse perturbation. If
the basic oscillation xo is stable, these must not grow with
time, so that

Rep» &0 (2.14)

C(t)=(pi, p2, . . . , pz), (2.15)

so that the jth column of 4 is Pj. In terms of the matrix
4, the solution of Eq. (2.8) may be written

t
ri(t) =4(t) J 4-'(t')[5cos(Qt')A(t')]dt' . (2.16)

In writing this, we have taken initial conditions ri(0) =0
for convenience —the results of this paper are insensitive
to the precise choice of g(0).

The inverse matrix 4 ' consists of row vectors
I

e '
q, (t')

4 -'(t') =
I

e "qx(t')
(2.17)

where the q», like the P», are 2~-periodic functions of
time. It is a simple matter to show that

Pk ql=&kl

where 5kl is the Kronecker delta, a fact which follows im-
mediately because 4 and 4? ' are inverse matrices.

In component notation, Eq. (2.16) becomes

i)~ =5+4»(t) J (@ ')»t(t'}At(t')cos(Qt')dt'
k, l

for all k. As the parameters of the system are tuned, the

p» vary. An instability is signaled when one or more of
the p» cross the imaginary axis into the right half-plane.

Typically, there will be N distinct Floquet exponents
for the system (2.8); consequently there will be N linearly
independent solutions P». The importance of these solu-
tions is that they may be used to construct a fundamental
matrix 4(t),

—~k'
)»t =e q»t (2.21)

which is the major result of this section. Note that this
represents an exact solution to the linearized Eq. (2.8).

%'e now make an im.portant observation: In the vicini-
ty of a dynamical instability, ri (t) reduces to a particu-
larly simple form. This is because the sum over k is dom-
inated by only a small number of terms, corresponding to
the number of near-critical exponent(s) p». In Sec. III we
compute ri (t) and the corresponding power spectrum
S~(co) for systems near the onset of the simplest classes
of codimension-1 bifurcations of a periodic orbit. We will
find that only the type of bifurcation encountered is im-
portant in determining the response of the system at the
modulation frequency Q. Moreover, there is a set of reso-
nance frequencies determined solely by the bifurcation en-

countered, this resonance becoming stronger and sharper
as the instability is approached.

III. PO%'ER SPECTRA—DRIVEN SYSTEMS

In this section we compute the power spectra expected
in the vicinity of various codimension-1 bifurcations.
Generically, the basic oscillation xo will go unstable in one
of three ways as a single parameter is varied.

(i) A single real exponent p~ crosses the imaginary axis.
Usually, three subcases are distinguished depending on
constraints and/or symmetries obeyed by the system. In
what follows, only symmetry properties are important, so
we will distinguish two cases: unsymmetric (saddle-node
and transcritical bifurcations) and symmetric (pitchfork
bifurcation).

(ii) A single exponent pi crosses the imaginary axis
along the line Imp= —,'. From Eq. (2.11), one sees that
this corresponds to a period-doubling instability, since—
precisely at the bifurcation point —the function Pi simply
changes sign after each 2m time interval.

(iii) A complex-conjugate pair p„pz ——pi cross the
imaginary axis with imaginary part different from zero or
one-half. This corresponds to a Hopf bifurcation: In
most cases the resulting orbits are confined to an invariant
torus.

Before proceeding to the case-by-case derivation of the
power spectrum, an important distinction between auto-
nomous and nonautonornous systems must be made. In
an autonomous system, time does not explicitly enter the
differential equations, and there is always one Floquet
exponent —call it pz —equal to zero. Geometrically, this
corresponds to the fact that, in phase space, the periodic
orbit is neutrally stable to perturbations along the limit
cycle. In the calculations that follow, the dominant con-

where P» is the mth component of P», and q»t is the 1th

component of q». Combining Eqs. (2.19)—(2.21}yields

(t)=5+P» (t) J e " q»t(t')At(t')cos(Qt')dt'
k, l

(2.22)
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tribution to the power spectrum near an instability comes
from exponents closest to the imaginary axis—conse-

quently, both the near-critical exponent(s) and the zero ex-

ponent p~ contribute in the autonomous case. For driven
systems, however, there is no such constraint on p~. As
we shall see, the prime effect of the zero exponent is to re-
normalize the strength of the 5 functions in the power
spectrum due to the basic oscillation x0; moreover, since
the exponent piv is not free to move as the control param-
eters are varied, this extra autonomous contribution"
changes only midly as the bifurcation is approached. In
contrast, the contribution of the near-critical exponent(s)
is quite sensitive to the value of the bifurcation parameter.

For the sake of clarity, we derive the expected power
spectra for nonautonomous systems in this section, return-
ing to the derivations relevant to autonomous systems in
Sec. V.

A. Case one: Saddle-node and transcritical bifurcations

In this case, a single real exponent lies close to the ori-
gin

p) = —6', (3.1)

where e is a small positive number, and is the natural bi-
furcation parameter, since it is zero at the bifurcation
point. With the other exponents relatively far from the
imaginary axis, the sum in Eq. (2.22) is dominated by the
k = 1 term:

i) (r)=5P, (t) I e"' " gq, &(t')Ai(t') cos(Qt')dt'.

g q„(r')A, (r') = g a„e'"', a „=a„',
I n

(3.3)

this last condition following since the quantity is real.
Equation (3.2) may be rewritten

(3.2)

The function qii is 2n. periodic and Ai is either constant
(for additive modulations) or 2n periodic (for parametric
modulations}, so we may introduce the Fourier sum

where k is an integer. Then the n=k (n= —k) term
dominates the sum over the first (second) part in large
parentheses in Eq. (3.5), with the result

e
—iht

71 = —5Pi cxk +c.c. ~

6' —l 6 (3.7)

Finally, introducing the Fourier series

pi (t)= gpje'', p =p.
J

(3.8)

the power spectrum S (co) corresponding to Eq. (3.7} is

given by

B. Case two: Pitchfork (symmetry-breaking) bifurcation

In one sense, this is a special case since it requires that
the dynamical system under study has a symmetry. On
the other hand, symmetries are fairly common in physical
systems, and in such systems symmetry-breaking bifurca-
tions play an important role in the observed dynamics.

Here we have a specific symmetry in mind, in which
the vector field F(x, t ) [see Eq. (2.4)] satisfies

F(x, t ) = —F( —x,t+ T/2), (3.10)

where T is the period of F, if it is explicitly time depen-
dent. This is a common symmetry —for example, the

(3.9)

Note that the denominator is the sum of two small quan-
tities, e and 5 . Consequently, the small input modula-
tion at frequency k+6, gives rise to a relatively large
response at frequencies j+b, for all integers j. The situa-
tion is illustrated in Fig. 1, where the spectral lines at
co=0,1,2, . . . due to the basic oscillation xo(t) have also
been included. For fixed bifurcation parameter e, the fre-
quency response S is a I.orentzian function of b„with
half-width e and height proportional to e

(r) 5P (r) g + eE(t —t)el&if (e —int +&int'}d't~
0

This integral is easily evaluated, yielding

i(n —Q)t
1 e

'9m =Y5Pim g &n +c c.
e'+i il —Q

(3.4)

(3.5)

Q=k+6,
~

b
~

&&1 (3.6)

where c.c. means complex conjugate, and we have taken
et &&1. This last inequality simply means that the time
series considered is of much longer duration than the
longest dynamical time scale, which is required for deter-
mining a sensible power spectrum.

From Eq. (3.5), one sees that the response i) will be
large provided that the modulation frequency Q is very
close to an integer. Thus, we put

I

I

2D

FIG. 1. Predicted power spectrum S{~)for a periodically
perturbed system near the onset of a saddle-node or transcritical
bifurcation, as given by Eq. {3.9).
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xo(t+ T/2) = —xo(t} . (3.11)

Typically, a symmetric solution will lose stability by giv-

ing rise to a pair of asymmetric solutions26 —such a
symmetry-breaking bifurcation is called a pitchfork bifur-
cation in the theory of iterated maps. Near the onset of
the instability, a single real exponent lies near the origin,

(3.12)

while the other exponents have relatively large (negative)
real parts, so that the sum in Eq. (2.22) is again dominat-
ed by the k = 1 term:

=5P, (t) e"' "g-q»(r')AI(r')cos(Qt')dr' .

(3.13}

%'e have assumed that time is scaled so that the matrix

DP(xo) [see Eq. (2.9)] and thus q, I(t') are 2m periodic.

Owing to the symmetry (3.11), the basic oscillation xo is

4m periodic. It follows that AI is either a constant (for an

additive modulation) or a 4m-periodic symmetric function

(for a parametric modulation). In the former instance, the

product QitAI &s 2m period

g g}IA~ = g Q„e (3.14)
I lt

while a parametric modulation entails this product being
4m periodic and symmetric,

driven Duffing equation (1.1) with 8=5=0 possesses

property (3.10), as does the driven pendulum equation
(2.1).

When property (3.10) holds, the (periodic) solution xo
may or may not share this symmetry. If it does, then

whereas a large response requires parametric modulations
to be near half-integer frequencies

0= —,'k+6, k odd (3.18b)

I= T5P]
—ihtake +c.c.

p —EA
(3.19b)

C. Case three: Period-doubling bifurcation (Ref. 1)

and

Sm(co)= —,5 g [5(co—j—6)+5(co—j+b, )] .I &)~k I

'
2+ Q2

(3.20b)

In writing Eqs. (3.20a) and (3.20b) we have used the
Fourier series (3.8) for P~ (t). The power spectra for the
two subcases are essentially identical. The observed spec-
trum, including the 5 function at 5= —,', —', ,—,', . . . , due to
the basic symmetric oscillation xo is illustrated in Fig. 2.

At first glance, it seems strange that the two types of
modulation, which require input oscillations at different
frequencies, lead to qualitatively identical power spectra.
The mystery disappears, however, when one recalls that
the actual input perturbation is given by the product
A~cosQt Ne.ar a pitchfork bifurcation, the system
"resonates" with input signals near integer frequencies for
both subcases. Thus, if A~ is constant (additive modula-
tion), one requires Q=integer, while if AI contains half-
integer frequencies (parametric modulation) one requires
Q=half-integer as well.

g g)(A( = g Qne
1 lf odd

(3.15} Near the onset of a period-doubling bifurcation, a single
exponent lies near the imaginary axis, with

As before, the integral appearing in Eq. (3.13) is readily

evaluated, with the results
r

pi —— a+i l2 . —

Retaining only the k =1 term in Eq. (2.22) yields

(3.21)

i(n —A)t
1 e

'9m = 25P&m g +n +c c
@+i n —Q

(3.16)

for an additive modulation, and

I e i (n/2 —A)t

rim 2 5Plm g +n +c c
@+in 2 —Q

(3.17)

A=k+6,
with the results

(3.18a)

—iht
k +C.C.
e —ib

(3.19a)

for a parametric modulation. An important difference
thus appears between these two subcases: The system

response ri will be large for additive modulations near
integer frequencies k,

l

lt2

I
I
I
I
I

I
I
I
I
I
I
I

I

l

I
I
I
I
I
I
I

I
I

I
I
I

l

S (co)= —,5 g [5(a)—j—6)+5(co—j+b, )],I PJ&k I

'
~2+ Q2

(3.20a}

FIG. 2. Predicted power spectrum S(co) for a periodically
perturbed system near the onset of a pitchfork bifurcation, as
given by Eq. (3.20).
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5P i(It f erat
' —t(e i—t'l2

'9m = )me 0

y g q, t(t')At(t'}cos(Qt')dt' .
I

S(M)

I n odd

Upon evaluating the integral in Eq. (3.22), we have

ei (n/2 —A)t

"e+i n/2 —0

(3.23)

The product q&iAI is 2m. periodic, and e " merely
changes sign after 2m. , so we may introduce the Fourier
series

0

I
I
I
I
I
I
I
I
Ij( I

I -I
2A

I

I

I

I

I

I

I

I

I

This will be large whenever

0=k/2+6, , k odd .

(3.24)

(3.25)

FIG. 3. Predicted power spectrum S(co} for a periodically
perturbed system near the onset of a period-doubling bifurca-
tion, as given by Eq. (3.28).

-i ht
1 ;t/2 k
, 5P( e'— +C.C.

The dominant contribution to Eq. (3.24) becomes

(3.26)

complex-conjugate pair, P& ——P2 and q&I
——qadi. Intro-

ducing the Fourier expansion as before,

Since P&m is 2m periodic, we may put

P (t) it/2 g P eijtl2

J odd

(3.27)

gq(t(t')At(t')= g a„e'"',
I n odd

the integral appearing in Eq. (3.30) reduces to

(3.31)

which is a 4ir-periodic, symmetric function. Combining
Eqs. (3.26) and (3.27) leads to the power spectrum 1 e i{n —b —Q)t e i{n—6+A)t

—, ga„ e+i (n b —0) —e+i (n 6+0)—+ (3.32)

+5(co——,
' j+5)] . (3.28)

(Note that a „&a„' here since the function q, i is com-
plex. )

To get a large response g, let

The situation is illustrated in Fig. 3. Analog simulations
for the driven Dufftng oscillator are presented in Sec. IV
to test Eq. (3.28).

D, Case four: Hopf bifurcation

(3.33}

where k is an integer. Then the dominant contribution to
(3.32) is

This final case entails a complex-conjugate pair of ex-
ponents p(, p2 crossing into the right half-plane. Just be-
fore the instability, we have

p) = —6+ lb

eight l ~ e
—iht

+—
2 a+i 6 2 e —ih

Substitution of this into Eq. (3.30) yields

(3.34)

1P2=P1,

(3.29)
( 5 g p

" ei(j+b+d)t
J

Now only the two terms k =1 and 2 are retained in the
summation appearing in Eq. (2.22):

5P ibi f e(( (i ib('' — —
'9m = (me 0

X g q(t(t'}At(t')cos(Qt')dt'+ cc.
(3.30)

+
e—sh

where the Founer expansion

P, (t)= QPje'j'
J

i(j +b blr +c c (3 35)—

(3.36)

where we have used the fact that, since p& and p2 form a
has been introduced. Equation (3.35) leads to the power
spectrum
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2

S(co)= —,'5 g [5(co—j —b —b)e+6
+5(~—j+b+ &)]

IV. APPLICATIONS

A. Analog simulations (Ref. 1)

As a check on the basic predictions of Sec. III, we per-
formed measurements on an analog electrical circuit obey-

ing the driven Duffing equation:

x'+ yx +ax +Px =A cos(cot ) +A, ,

=Q +5, cos( Qt) .

(4.1)

(4.2)

+ 5(co j+—b —b, )] .

(3.37)

The situation is illustrated in Fig. 4—a modulation intro-
duced at the single frequency Q gives rise to pairs of lines
syminetrically located about half-integer frequencies. The
occurrence in the present case of four lines between suc-
cessive harmonics of the basic oscillation xo, rather than
only two for the previous three cases, may be traced
directly to the fact that there is a pair of near-critical ex-
ponents for the Hopf bifurcation.

Figure 5 summarizes the results of this section, showing
the response of the system in terms of the near-critical ex-
ponent pi and the detuning frequency h. The dashed line
represents the envelope of the new signal-induced line:
The height and width of this envelope scales with Repi,
while the center depends on Imp».

In general, the imaginary part b of the near-critical Flo-
quet exponents may change as the parameters of the sys-
tem are varied. As will be shown in Sec. IV, this feature
is potentially important for exploiting the resonant mech-
anism discussed in this paper as a practical method for
amplifying small signals.

With y, a, P, and A held constant, and 5=0, the parame-
ter Q was increased until a period-doubling bifurcation
occurred at A.o——A, According to the calculations of Sec.
III, for Ao slightly less than A,„, the system should be very
sensitive to modulations of A, near frequencies
Q=(n+ —, ko, where n is an integer. For small modula-

tion input amplitude 5, the observed power spectrum
should follow Eq. (3.28) and Fig. 3.

Figure 6 shows the output of a spectrum analyzer when

the modulation frequency Q was close to 3'/2 and illus-

trates a number of qualitative features. The input power
level is —50 dB, while the output power level at this fre-
quency is —25 dB, yielding a gain in power by a factor of
about 300. This represents a relatively modest amplitude
amplification, roughly by a factor of 17. As expected, the
input at the single frequency Q gives rise to a series of
pairs of lines, centered at co/2, 3'/2, 5'/2, etc. , but no
lines near integer multiples of co. Finally, the partners
within each pair of lines have nearly equal amplitude, in
reasonable agreement with Eq. (3.28), which predicts ex-
act equality.

To make a more quantitative check, we varied the
modulation frequency Q, and measured the output at Q,
generating the frequency response curves shown in Fig. 7,
for three different values of Ao & A,,—that is, for three dif-
ferent values of bifurcation parameter e. The normalized

response, plotted on the vertical axis, is given by the
square root of the power spectrum S(Q) and is normal-

ized to the input amplitude 5. Consequently, the vertical
axis of Fig. 7 gives directly the factor by which the input
signal has been amplified. The horizontal axis gives the
relative frequency E=Q ——', , where time is rescaled so
that co = 1, as in the calculations of Sec. III.

The solid lines appearing in Fig. 7 represent Y fits of
the data to the square root of a Lorentzian, as predicted
by Eq. (3.28). As expected, the response curves sharpen
and grow as the bifurcation point is approached. Quanti-
tatively, the height-width product of these curves should
be independent of e: We find products of 0.154, 0.150,
and 0.146 for the circles, squares, and triangles, respec-
tively.

In summary, the analog simulations agree quite well
with the calculations of Sec. III for the period-doubling
bifurcation. A more complete examination is in order, of
course, but the few results presented here give us confi-
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FIG. 4. Predicted power spectrum S(co) for a periodically
perturbed system near the onset of a Hopf bifurcation, as given

by Eq. (3.37}.
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FIG. 5. Summary of the frequency response properties, valid
for all four cases of Sec. III. Re@i governs the size and shape of
the Lorentzian response curve, while Impi determines the posi-
tion of the pairs of spectral lines induced by the modulation.
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FIG. 6. Measured power spectrum of an analog simulation of
the Duffing oscillator Eqs. (4. 1} and (4.2), near the onset of a
period-doubling bifurcation.

be low-dissipation and low-noise instruments. Curiously,
it has been due to poor noise characteristics that the
Josephson paramps thus far have failed to become useful
devices, despite the fact that good signal gain has been
achieved. ' ' The origin of the high-noise levels has re-
ceived much attention, ' ' and although several sugges-
tions have been forwarded to explain the phenomenon, it
is fair to say that the problem is not yet solved. In what
follows, we do not address this very interesting problem.
Rather, our point is that the signal gain which has been
reported for this device is intimately linked to the pres-
ence of dynainical instabilities nearby in parameter space.

We should point out that a number of different amplif-
ier schemes have been studied which employ one or
several Josephson junctions. Here, we focus on the single
junction devices, which may be operated in two different
modes. The first mode —given the colorful name
SUPARAMP (superconducting unbiased parametric am-
plifier) by Feldman et al. ' —obeys the circuit equation

P+yP+sin((}=A cos(cot)+5cos(Qt+g), (4.3)

dence that the theoretical predictions are sensible. Along
these lines, we should point out that an independent mea-
surement of the bifurcation parameter e would allow a
more stringent test of predictions like Eq. (3.28), enabling
the scaling of the height and the width —rather than the
height-width product —of the response curves to be tested
independently. The direct measurement of e is possible—
even though its value is only implicitly determined from a
knowledge of the actual parameters appearing in the
governing evolution equation —because it is directly relat-
ed to the relaxation time of the system subject to an im-
pulse perturbation (see Sec. II). This fact was exploited
successfully to measure e in experiments testing the effect
of random noise on voltage-driven p njunctio-ns near the
onset of period-doubling and Hopf bifurcations. i

B. Josephson-junction parametric amplifiers

We have seen how, near the onset of some simple insta-
bilities, any dynamical system can act as an amplifier of
small coherent modulations. The following question im-
mediately arises: Can this notion be exploited for any
practical applications? The purpose of this subsection is
to suggest that there already exist examples of such ampli-
fiers, which have been studied extensively in the physics
literature ' These devices are known as Josephson-
junction parametric amplifiers (paramps).

The main thrust of the calculations of Sec. III is that a
system's characteristic sensitivity to coherent modulations
depends only on the type of instability encountered and is
wholly independent of the physical details of the system.
The original idea to use a device based on the Josephson
junction as an amplifier was motivated by two features.
First, the natural oscillation frequencies for Josephson
junctions are in the range 10—100 GHz, where useful am-
plifiers have been difficult to realize. (Currently, devices
known as superconductor-insulator-superconductor mix-
ers are the best amplifiers in this frequency regime. )

Second, as superconducting devices they were expected to

where P is the phase difference between the macroscopic
wave functions across the junction, so that p is propor-
tional to the voltage across the junction. The signal am-
plitude 5 is small, and gain can be achieved provided the
signal frequency Q is close to the pump frequency co. Be-
sides the peak at co, the output power spectrum shows a
sizable component at Q and at the "idler" frequency Q',
given by

0+0'=2' . (4 4)

The second mode of operation includes a dc bias, so
that

0+0 =N . (4.6)

The conditions (4.4) and (4.6) have inspired the designa-
tions of four-photon paramp and three-photon paramp,
respectively.

Let us focus first on the three-photon mode. An ana-
lytic theory has been worked out by Soerensen et al.
Based on a direct (though approximate) analysis of Eq.
(4.5), they showed that the condition for infinite gain in
the limit Q=col2 (i.e., zero detuning) was equivalent to
the condition for the onset of subharmonic oscillations of
the unmodulated (5=0) system at half the pump frequen-
cy. That is, maximum gain coincided with the onset of a
period-doubling bifurcation. Experiments with real junc-
tions and analog simulations' have supported this:
Indeed, the appearance of subharmonic oscillations "is a
useful means of showing that the maximum gain condi-
tion has just been passed. "'

A glance at Eq. (3.28) shows that this is just what one
should expect, regardless of the details of the governing
equation. [This is of some significance since Eq. (4.5) is a
somewhat simphfied representation of the actual paramp

P+yP+sin4 =A cos(cot)+B+5cos(Qt+g) . (4.5)

Despite the obvious similarity between Eqs. (4.3) and (4.5),
high gain is not achieved via condition (4.4); rather, the
biased mode has achieved gain with Q =co/2, so that
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dynamics, neglecting, for example, the quasiparticle con-
tribution and the presence of additional tuning circuits
employed in coupling in the external signal. ] Without
passing to the limit b, =0 (corresponding to Q= co/2), it is
still true that maximum gain occurs at the bifurcation
point a=0. Taking both @~0 and 5~0 results in the
"infinite gain" of Soerensen et al.

Turning next to the unbiased mode [Eq. (4.3)], we
deduce from condition (4.4) that the system must operate
near a saddle-node bifurcation [see Eq. (3.6) and Fig. 1] to
achieve good gain. Indeed, Chiao et al. reported the oc-
currence of what they termed a "phase instability" in the
dynamics of their microbridge SUPARAMP's. ' In fact,
we can deduce something else about the dynamics of the
unbiased system. Note that Eq. (4.3) has the symmetry
discussed in case two of Sec. III. However, Eq. (3.18a)
shows that the experimentally achieved condition Q=co
(= —,

' for the time scaling used in Sec. III) will not result

in high gain, so that the amplifier is not near the onset of
a symmetry-breaking instability. Consequently, in order
to reach a high-gain region of parameter space for Q =co,
the system must first undergo a symmetry breakin-g bifur
cation as A is increased from zero. That this is so would
be very easy to check experimentally —the signature of a
symmetry-breaking bifurcation is the appearance of even
harmonics in the output power spectrum.

Recapping, the gain achieved in the three-photon,
biased mode is due to the presence of a nearby period-
doubling instability, while the success of the four-photon,
unbiased mode is due to the presence of a saddle-node bi-
furcation.

As a further conclusion, we note that the unbiased sys-
tem governed by Eq. (4.3) could be successfully operated
in the three-photon mode, where Q =co/2: After all, it is
well-known that the governing equation (with 5=0)—
which is just the equation of motion for the driven,
damped pendulum —has solutions which undergo period-
doubling instabilities' ' ' (though only after the
symmetry-breaking bifurcation has occurred ' ). Conse-
quently, if the parameters are tuned so that the system is
near the onset of a period doubling, the same analysis of
Sec. III, case three applies just as it does for the biased-
junction mode.

C. Virtual Hopf phenomenon and tunable resonances

We have seen that, in order to achieve large amplifica-
tion factors, both the bifurcation parameter e and the de-
tuning frequency 6 must be small. One ramification of
these conditions is that the range of input frequencies Q
that are significantly amplified may be very small. Near a
period-doubling instability, for example, the system acts
as a small-signal amplifier for only the sequence of nar-
row windows centered at Q =n+ —, and of width of order
e. Indeed, the higher the gain is made (by reducing e), the
narrower these windows become (see Fig. 5).

Happily, this situation can be overcome in a large class
of systems, so that all frequencies can be amplified. This
relies on the occurrence of the virtual Hopf
phenomenon: ' In msence, this phenomenon allows the
centers of the resonance curves to be continuously tuned,
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FIG. 7. Amplitude response V(co) vs signal detuning fre-
quency 4, for an analog simulation of Eqs. (4.1) and (4.2). Data
shown for three different parameter values, just before the onset
of a period-doubling bifurcation. The circles, squares, and tri-
angles correspond to successively smaller bifurcation parameters

»li kl =2~Repk,

arQLk =2p' Impk

(4.8)

(4.9)

so that a bifurcation occurs when (at least) one of the pk
exits the unit circle. A period doubling corresponds to
pi ———1, while a Hopf bifurcation corresponds to a
complex-conjugate pair p&,p2 with modulus unity.

To fix ideas, consider the driven pendulum equation

8+ye+aPosin8=A cos(cui) .

Figure 8 depicts the behavior of the multipliers between
successive period doublings, as the driving amplitude A is
increased. This system has two Floquet multipliers,
which are either both real or a complex-conjugate pair. In
the latter case, the pair must lie on the circle

while their width remains narrow. We now give a brief
review of the virtual Hopf phenomenon and then discuss
its potential advantages for small-signal amplification.

The virtual Hopf is a particular kind of noisy precursor
of period-doubling bifurcations, which occurs when the
Floquet multip!iers pk, which are related to the Floquet
exponents pk via the formula

Pk =e (4.7)

behave as in Fig 8. (Th.e Floquet multipliers are simply
the eigenvalues of the linearized Poincare return map. )

This behavior must occur, for example, between succes-
sive period-doubling bifurcations in all purely dissipative
second-order nonautonomous and third-order autonomous
systems, a class which includes the driven Duffing oscilla-
tor, the driven pendulum, and the Lorenz equations.
From Eq. (4.7), we have (taking T =2m )
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V. AUTONOMOUS SYSTEMS

{b)

(c)

Re p.
We return now to the problem of small modulations of

autonomous dynamical systems. %e consider the same
classes of codimension-1 bifurcations as in Sec. III and
derive the expected power spectra S(to). As will be
shown, the form of the resulting power spectra for per-
turbed autonomous systems is substantially the same as
the corresponding spectra for driven systems: The major
differences are summarized at the end of this section.

From a computational point of view, the difference in
autonomous systems is the necessary existence of the zero
Floquet exponent pz, so that any approximation to the
full response rl given by Eq. (2.22) must include the
k =N term in addition to the term(s) corresponding to the
near-critical exponent(s). In fact, we can write

rl (t)=rl (t)+rl„'(t), (5.1)

(e)

where j~ is the contribution due to the near-critical ex-
ponents already computed in Sec. III, and g' is the k =N
term of Eq. (2.22):

t
'q' (t) =&Ptv (t) f g qNt(t')At(t') cos(Qt')dt',

0

FIG. 8. Behavior of the Floquet multipliers [Eq. {4.7)] during
the virtual Hopf phenomenon.

(5.2)
where PN and qnt are 2m-periodic functions of time. In
all cases treated below except one—the parametrically
modulated pitchfork bifurcation —the term in parentheses
is 2m periodic,

(5.3)

which is a circle of constant radius lying inside the unit
circle. During the sequence Figs. 8(b)—8(d), the multi-
pliers stay the same distance from the unit circle,

so that Eq. (5.2) becomes

rt' (t)=5P„(t)ga„' f e'"'cos(Qt')dt'. (5.4)

0(argy~ & m' . (4.13)

(4.12)

while they slide continuously from the positive to the neg-
ative real axis,

gqnt(t')A{(t')= g ct B'
e'"'"

I n odd

(5.5)

For the parametrically modulated pitchfork case, the
AI(t') are 4n. periodic and symmetric, so that

From Eqs. (4.9) and (4.13), it follows that b =Imp& may
be continuously tuned from 0 to —,', while Eqs. (4.8) and
(4.12) imply

and Eq. (5.2) instead becomes

ri (t)=5P& (t) g a'„ f e'"'~ c 2(oQst')dt'.
n odd

(5.6)

Rep) ———y/2 (4.14)

so that the bifurcation parameter e= —Rep, remains con-
stant. Comparison with Fig. 7 shows that the centers of
the corresponding resonance curves may vary continuous-
ly over all frequencies, while the shape of the curves is
fixed.

Fortuitously, this example has the additional property
that the shape and the center of the resonance curues are
independently and directly tunable during Figs. 8(b)—8{d).
Ordinarily, since the values of the Floquet multipliers are
only implicitly determined by the parameters appearing in
the governing dynamical equation, varying any one pa-
rameter changes both the real and imaginary parts of the
pk. But for Eq. (4.10), e depends directly on y [via Eq.
(4.14)] during the virtual Hopf sequence, while A controls
the continuous variation of b.

We now proceed to the case-by-case derivations of the re-
sulting power spectra, based on Eqs. (5.1), (5.4), and (5.6).

A. Case one: Saddle-node and transcritical bifurcations

i(n —Q)t
1 p , e

lm 2 ~ Nm g +n ~ +c'c'
n i n —Q)

(5.7)

and under the near-resonance condition (3.6), this reduces
to

1

9m 2 ~~Nm
CK ek &k+c.c. +5I'z Re

zh
e

(5.8)

The contribution 71~ to the full response g~ was com-
puted in Sec. III and is given by Eq. (3.7). From Eq. (5.4),
the autonomous contribution is
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Notice that the first part of this may be combined with

the expression for g, Eq. (3.7). Introducing the Fourier
series (3.8) and

under inversion of x, while others are even. For example,

in the Lorentz equations '
x =o(y x—)=F„,

PN (t)= QPje'~',
J

(5.9)
y =px —y —xz =Fy (5.17)

the full expression for i) becomes, from Eqs. (3.7), (5.1),
and (5.8),

rl~(t)= g gje' + "+cc . +TP~~(t),
J

where

(5.10)

1 pj& k pj'& —k

2 e+ib, id,
(5.11)

and

&kT=5 Re ih
(5.12)

The last term in Eq. (5.10) has the same period as the
basic oscillation xo and merely serves to renormalize the
strength of the 5 functions in the power spectrum at
to=0, 1,2, . . . . We note that this effect is independent of
the bifurcation parameter e. Aside from these integer-
frequency contributions, the power spectrum becomes

S (co)= g ~ gj ~
[5(to —j—b, )+5(~o—j+b)] .

J

The coefficients
~ gj ~

are not simply Lorentzian func-
tions of e and 5, but are somewhat more complicated.
After some algebra, one finds

I pjt k ~

+2Re(pj& —kp jtzk)—
2 52

J 4 62+52

z = —Pz+xy =F, ,

the relevant symmetry is

Fi(x,y, z) = F„(——x, —y,z),

F~(x,y, z) = F~( ——x, —y,z),

F,(x,y, z) = +F,( —x, —y,z),

(5.18)

so that the modes x and y have an odd parity, while z has

even parity. Consequently, if one observes the evolution

of either x or y as a control parameter is varied, then a
symmetry-breaking bifurcation may occur.

If the perturbing modulation is additive, the auto-

nomous contribution i)' is again given by Eq. (5.4), while

is given by Eq. (3.19a). The appropriate condition on

0 is Eq. (3.18a), which leads to

&k
rj' = , 5P~ .—(1—e ' ')+c.c. (5.19)

I I

+ —5 . + . e' ' +c.c.k J+ k i(j +adjt

e+Eb EA

Introducing the Fourier series (5.9) for Pz~, Eqs. (5.19)
and (3.19a) combine to yield the full response

Pj tZ«—5+ e"'
2

26'
+ Im(P a«P'tz' k )

hb, +e)

I pje
'

« I'
+2

(5.14)

B. Case two: Pitchfork bifurcation

In Sec. III the symmetry considered was one in which
the vector field F of the unperturbed system satisfied

F(x, t) = —F( x, t+ T/2), —

where T was the period of F. For autonomous systems,
F is independent of time, so that we consider instead the
situation where

F(x)= —F( —x) . (5.16)

Indeed, the relevance of this analysis is easily extended to
the case where only some of the components of F are odd

As a check, we do recover the nonautonomous result (3.9)
by taking the primed coefficients equal to zero. Although
a piece of Eq. (5.14) has the Lorentzian form, there are
additional pieces having different behavior, which become
particularly important for small h.

(5.20)

Recalling that our scaling of time is such that the basic
symmetric oscillation xo is 4~ periodic, so that the unper-
turbed spectrum has spikes at ~= —,, —, , —,, . . . , we see

that the response Eq. (5.20) does not contribute power to
these frequencies. In this regard, the (autonomous)
symmetry-breaking instability differs from the other
codimension-1 bifurcations considered in this section:
The presence of the zero exponent does not serve to renor-
malize the spikes of the unperturbed oscillation, but rath-
er gives rise to the new lines at co=0, 1,2, . . . . Aside from
these, the power spectrum is

S (co)= —,5
Pj& kPj & k— —

@+i' i 5

X [5{co—j—b, )+5(co—j+b, )], (5.21)

so that the strengths of the lines at m= j+6 are no longer
Lorentzian functions of e and 5, as they were for the
nonautonornous case.

Turning next to parametric modulations, we have in-

stead of Eq. (5.4) the expression (5.6) for rj', and the
near-resonance condition is now [see Eq. {3.18b)]
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Q= —,'k+6„k odd. (5.22)

Substitution of Eq. (5.22) into Eq. (5.6) yields precisely the

same result, Eq. (S.19), as for the additive modulation (but

with ai, replaced by a i, }. Combining this with Eq. (3.19b)
for q, therefore, yields the same power spectrum S as

Eq. (5.21).

lm 5PNm

I

—i(,b+h)t+c c—i (b+b, )

Elk

i (b+b, )
(5.28)

Combining this with Eq. (3.35) yields a total response rj
of

C. Case three: Period-doubling bifurcation

This time q is given by Eq. (3.26) and the autonomous
contribution rj' by Eq. (5.4}. Upon performing the in-
tegral in Eq. (5.4), we have

I

j —k j —k i(j+b+s, 'n
+C.C.

i(b+b, ) e+ib,
i(,n —A)t

1 , e
m 2 5PNm g Qn ~ +C'

i n —Qn

(5.23) (5.29)

while the near-resonance condition on Q is [see Eq. (3.25}]

Q=k/2+6, k odd . (5.24)

Q=k+6, (b, (
((1. (5.25)

Again, however, this contribution is independent of e:
Indeed, this resonance effect aluxtys exists for autonomous
systems, even far from an instability, since it depends
purely on the zero exponent pN. This phenomenon is ir-
relevant to a discussion of systems' properties near the on-
set of bifurcations, so we pursue this point no further.

D. Case four: Hopf bifurcation

In this final case, rj was computed to be that given by
Eq. (3.25), while evaluation of the integral appearing in
Eq. (5.4) leads to

i[n —O)t
1 e

'gm —
2 5PNm $ Qn . +C.c.

i n —Q)
(5.26)

As in Sec. III, the resonance condition is

(5.27)

where b is the imaginary part of the near-critical Floquet
exponents, so that

Observe that none of the terms appearing in Eq. (5.23) in-

volves a small denominator —unlike g for —the condi-
tion (5.24); consequently, the autonomous piece rjm leads
to only a minor correction to the spectrum found in the
nonautonornous case. Clearly, the contribution g' leads
to relatively weak additional lines at frequencies co=n+b
(as well as a slight renormalization of the basic lines at
co=n), the strength of these new lines being independent
of the bifurcation parameter e, and largely independent of
the detuning 6, as well.

We note in passing that g' can give a large
contribution —while rj becomes relatively insignif-
icant —for a resonance condition different from Eq. (5.24),
namely

where we introduced the Fourier expansions (3.36) and
(5.9) for P, (t) and PN (t), respectively

The first term in Eq. (5.29) leads to the by now familiar
e-independent renormalization of the integer-frequency
lines in the power spectrum due to xo. Aside from these,
the power spectrum is

S(co)=—,'5 g +Q2

x [5(co j b+—5—)+5(co j+b —b, )—]

2

Pj & kPg'ct —k-+ —5
i (b +5) @+i',

x [5(cu j b b, )+—5(—co—j+b+i5—)] .

(5.30)

Consequently, half of these lines have precisely the same
Lorentzian dependence on e and b, as for the nonauto-
nomous case, while the strength of the other half have a
somewhat more complicated parameter dependence.
However, unless b is very small —wf the same order as the
small parameters e and 6—the deviation of Eq. (5.30)
from the nonautonomous result (3.37) is minor. Finally,
one may wonder why it is that the lines at co=j +(b +3,)
have corrections due to the zero exponent, awhile those at
io=j +(b —5) do not. The reason is that the modulation
was chosen to be at the single frequency Q, and this can
be tuned to be near either co=j+b or co=j —b; conse-
quently, only half of the spectral lines are affected.

E. Summary

We take time out to summarize the results of this sec-
tion. Comparing the calculations for autonomous systems
with the corresponding cases for nonautonomous systems,
we find that the extra contribution due to the zero ex-
ponent pN has two effects. First, in all but the pitchfork
case, the strength of the integer-frequency spikes due to
the basic oscillation xo are renormalized. This effect is in-
dependent of the bifurcation parameter E, but does depend
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on the detuning parameter b, . Second, the strength of the
modulation-induced lines are no longer I.orentzian func-
tions of e and 6; in the Hopf case this is so for only half
of the lines, the other half remaining unchanged from the
nonautonomous result. However, for the pitchfork and
period-doubling cases, as well as the Hopf case provided
the Hopf frequency b is not as small as e and 5, this devi-
ation from a Lorentzian dependence on e and 5 is rela-
tively small, so that the nonautonomous behavior nearly
matches the autonomous results.

VI. DISCUSSION

The theory developed in this paper is based on a num-
ber of approximations, so it is worthwhile to pause and re-

flect on how these affect the range of validity of the re-
sults. First, the bifurcation parameter e is assumed small
enough that a single Floquet function Pk dominates the
dynamical response. This enables us to find a form for
the power spectrum S(to) that depends solely on the class
of the bifurcation encountered, and these classes are rela-

tively few in number. Second, the perturbation amplitude
5 is supposed small enough that the linearized Eq. (2.8) is
sufficient to capture the important dynamics. For larger
perturbations, one would expect the nonlinear terms to
give significant corrections to the theory developed here.
One interesting effect for larger 5 that has been observed
in period-doubling systems is to shift the bifurcation point
of the unperturbed system. In contrast, the linearized
theory takes the basic oscillation xo to be unchanged by
the modulation, so that the onset of the dynamical insta-
bility is likewise unchanged. Recently, a theory has been

developed for periodically modulated nonautonomous sys-
tems near the onset of period-doubling instabilities which
explains the shifted bifurcation point, as well as predicting
a number of other curious nonlinear effects. Finally, en-

trainment (or frequency locking) is another effect that is

beyond the scope of the theory presented here. This can
occur for larger 5 in modulated autonomous systems and

corresponds to a change in the frequency of the basic os-
cillation xo due to the presence of the nearly resonant per-
turbation.

Despite the above limitations, the linearized theory
seems to explain the basic features of small-signal amp1ifi-
cation near the onset of simple bifurcations. This amplifi-
cation can be quite substantial when the detuning 6 of the
modulation is small. The most important feature of our
analysis is that the amplification effect follows from pure-
ly dynamical considerations, regardless of the physical de-
tails of the system. Moreover, the derived results depend
only on the type of bifurcation involved, which requires
only the broadest, most general kind of dynamical infor-
mation. For example, one may readily locate parameter
values for period-doubling and Hopf instabilities in an ex-
perimental situation, even without knowledge of the
govermng dynamical equations.

Owing to the general dynamical nature of this amplifi-
cation mechanism, one is free to choose physical realiza-
tions that provide additional advantages: The Josephson-
junction paramps are attractive because they operate in an
interesting frequency range and, as superconducting sys-
tems, are low-dissipation devices. Finally, as was shown
in Sec. IV C, certain detailed dynamical properties might
also prove desirable: The existence of the virtual Hopf
phenomenon can greatly extend the frequency range over
which small-signal amplification can be achieved.
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