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Nonlinear ultrasonically induced birefringence in gold sols:
Frequency-dependent diffusion

H. Daniel Ou- Yang, Richard A. MacPhail, and Daniel Kivelson
Department of Chemistry, University of California, I.os Angeles, California 90024

(Received 13 May 1985)

Ultrasonically induced birefringence has been used to study coupled translational and rotational
motions of large (100-nm) nonspherical colloidal gold particles in fluids. The effect is nonlinear in
that the induced birefringence is quadratic in the ultrasonic amplitude. A theory is developed to ex-
plain the dependence of the observed signal on concentration, viscosity, temperature, particle size,
and on the ultrasonic intensity and frequency. This enables us to determine the frequency depen-
dence of the viscous drag on the translational motion of nonspherical Brownian particles.

I. INTRODUCTION

Optical anisotropy may be induced in an initially iso-
tropic liquid consisting of nonspherical molecules by
orienting the molecules with ultrasonic waves. ' In this
paper we report a study of ultrasonically induced
birefringence in gold sols. Our analysis yields information
concerning rotational and frequency-dependent transla-
tional motions of large nonspherical colloidal particles, as
well as the nonlinear coupling of these motions to each
other.

Early ultrasonically induced birefrin~ence studies have
been reviewed by Hilyard and Jerrard. For neat liquids
composed of small nonspherical molecules, the ultrasoni-
cally induced birefringence is well described by linear
theories in which the molecular orientation couples to the
velocity gradient of the ultrasonic wave. 's These theories
predict, in accord with observations, a birefringence
which is proportional to the ultrasonic frequency, to the
solvent viscosity and to the square root of the ultrasonic
intensity.

In colloidal suspensions of large nonspherical particles,
the ultrasonically induced birefringence is very different
from that in neat liquids. Oka suggested that in a col-
loidal suspension of rigid particles the coupling between
the ultrasonic wave and particle orientation should be
dominated by a sound-pressure mechanism, s as in the
Rayleigh-Disk problem. '2 The predicted induced
birefringence is then nonlinear, i.e., proportional to the
square of the amplitude (A} of the ultrasonic wave, but
independent of the ultrasonic frequency (0) and solvent
viscosity (g). Few ultrasonically induced birefringence
experiments have been carried out to date on colloidal sys-
tems. Jerrard's measurements on bentonite suspensions
indicated a birefringence which is indeed proportional to
the ultrasonic intensity, but one that increases with in-
creasing ultrasonic frequency. Lipeles and Kivelson ex-
amiried gold sols and concluded that the birefringence had
a large component proportional to the ultrasonic intensity,
but their data were not sufficiently reliable to provide in-
formation on the frequency dependence. We have mea-
sured the "nonlinear" birefringence induced in gold sols as
a function of ultrasonic intensity and frequency, as well as

the viscosity, temperature ( T), particle size, and volume
fraction (C„). The gold sols are composed of disks with
radii a small compared to both the light and ultrasound
wavelengths. Oka's theory successfully explains the
dependence upon ultrasound intensity, but fails to account
for the observed dependences on ultrasonic frequency, sol-
vent viscosity, and particle size, and it predicts the wrong
sign for the birefringence of metallic particles.

We have developed a modified version of Oka's theory
in which the viscous drag of the solvent on the transla-
tional motion of the suspended particles is incorporated.
Comparison of our data with the predictions of this modi-
fied theory suggests that the frequency dependence of the
translational diffusion is responsible for the observed fre-
quency and viscosity dependence of the induced
birefringence. We have explained the observed sign of the
birefringence in gold sols by modifying the Peterlin and
Stuart theory'3 for the optical anisotropy of an aligned
particle.

II. EXPERIMENTAL

Although the measurement of birefringence is concep-
tually simple, a number of experimental features require
special attention. The detection system has to be very sen-
sitive and capable of distinguishing a nonlinear
birefringence (proportional to the ultrasonic intensity A }
from a linear one (proportional to the amplitude A).
Since we wish to know the relationship between
birefringence and both ultrasonic intensity and frequency,
it is necessary to measure the absolute ultrasonic intensity
(at each frequency) at the exact region in the sample
where the light beam and the ultrasonic wave intersect.
Because the ultrasonically induced birefringence from di-
lute solutions of suspended particles is very small, care
must be exercised to reduce parasitic effects, such as the
induced birefringence in the solvents or in the optical ele-
ments, which may xnask the desired signals. Heating and
streaming may occur due to absorption of the sound wave.
More importantly, the loss of light due to diffraction by
sound-induced density waves (Debye-Sears effect) can
complicate the analysis of the data, and ultimately limit
the sensitivity of the experiment. Experimental details are
given in Ref. 14.
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1.2A. The gold-sol samples
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The gold sols are aqueous solutions of rigid submicrom-
eter gold disks. Since the optical properties of the gold
particles are very different from those of the solvent, the
induced birefringence is large. The sols were prepared
from analytical grade gold chloride (HAuC14. 3H20) crys-
tals, purchased from Matheson, Coleman, and Bell
Manufacturing chemists, according to the procedure of
Turkevich et al. ,

' ' and were brownish red, transmit-
ting blue light. The sol was concentrated by gradually
boiling off the water; however, all samples were quite di-
lute since prolonged heating or vacuum distillation ended
in precipitation. The concentrations of the samples were
determined by turbidity measurements. ' The volume
fraction of the suspended gold-disks varied from
0.4&& 10 6 to 1.6&(10 for different samples, correspond-
ing to average distances between particles of 50—80 )um,
at least 100 times the particle size. Our systems were
indeed dilute.

Estimates of the particle sizes were obtained by assum-
ing that the relaxation of the induced birefringence fol-
lowing an ultrasonic pulse is due to the particle reorienta-
tion. For an infinitely thin disk, Perrin' showed that
under "stick" boundary conditions the orientational relax-
ation time r is given by
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r= 16mrla /9kgT, (2.1)

where ka is the Boltzmann constant. Mean particle radii
a determined by equating r to the observed birefringence
relaxation were in reasonable agreement with the results

from electromicrograph experiments. " By slightly vary-

ing the amount of chlorauric acid used in the gold-disk
preparation, we obtained samples with mean gold-disk ra-

dii increasing from about 100 to 400 nm. The electromi-

crograph results suggest that the ratio of disk diameter to
thickness is about 10:1.

our analysis indicated that both the relaxation time ~
and the birefringence signal are proportional to a . This
suggests that our experiments selectively detect the larger
particles, so that the particles sampled have relatively nar-

row size distributions. This conclusion is reinforced by
the good one-exponential fit of the transient rise and de-

cay processes as indicated in Figs. 1(a) and 1(b). Though
the electromicrograph results indicate reasonable mono-

dispersity, we noted a decrease in the measured ~'s with
time (see Fig. 2), presumably because the larger particles
were settling out of solution.

alloy conducting electrodes. The diameter (0.8 cm) of the
positive electrode defined the ultrasonic beam.

The laser beam and ultrasonic waves intersect in the op-
tical chamber, which contains approximately 18 ml of
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8. The acousto-optic cell

The cell was composed of three major parts: the ul-

trasonic transducer chamber, the optical chamber, and the
absorption chamber. Temperature was controlled by cir-
culating thermostatted fluid in the brass wall (see Fig. 3).

The transducer chamber was at the bottom to guarantee
good contact between the transducer crystal and the sam-

ple sitting above it. The ultrasonic transducer was an x-
cut quartz crystal with coaxially coated gold-chromium

1 2 3 4 5
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FIG. 2. Relaxation time r vs g/T. Measurements were made
first by cooling and then heating the sample (the numbers indi-
cate the sequence of data points). The large scatter of the data
points at low g/T indicates precipitation of some of the larger
gold sols during the measurement cycle (about 4 h).

FIG. 1. (a) Representative positively biased birefringence
spectrum for a gold sol of particle size 145 nm generated with 7
ms ultrasonic wave pulses. (b) Negatively biased birefringence
spectrum for the same sample. The vertical axes are propor-
tional to the birefringence signal. The deviation of the data
points from both fitted curves indicates that the particles were
not completely monodisperse.
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where Io and I~ are the light intensities measured in the
absence of the ultrasonic wave when the analyzer is paral-
lel and perpendicular, respectively, to the incident laser
beam, b,g and P are the phase retardations caused by the
ultrasonically induced birefringence and by all other
sources, respectively. The phase retardation b, P is related
to the induced birefringence b, n by

(2.3)
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where d is the distance the light travels in traversing the
sound wave, and Q the optical wavelength in vacuum.

In our experiment the phase retardation P can be varied
by adjusting a quartz waveplate. Since b,p in our experi-
ment is of the order 10 rad, we can adjust p such that
2P p& b.g, while keeping the total phase retardation
hf+P much less than one radian. We can then neglect
(hP) in Eq. (2.2), and the induced birefringence signal I,
is thus given by

I, = [(b,p)p(Ip Ib )]/2—. (2.4)

CRYSTAL

TO HIGH
VOLTAGE pf

FIG, 3. The acousto-optic cell. The cell is composed of three
major parts: the ultrasonic transducer chamber, which houses
an x-cut quartz crystal, the optical {sample) chamber, and the
absorption chamber. Thermostatted fluid circulates in the brass
wall.

C. Birefringence measurement

In an ultrasonically induced birefringence experiment
one measures the difference, b,n =n„n„, of the —indices
of refraction along the direction of ultrasonic wave propa-
gation n„and perpendicular to it n„. The incident light
(along z} is linearly polarized at an angle of 45' from the x
direction, and the analyzer (a Gian-Thompson prism) is
set perpendicular to the incident polarization. Since the
overall phase retardation due to the birefringence is much
less than 1 rad, the intensity of the transmitted light is
given byI '

I=(Ip lb)[(&p)'+2(&f)13—+13 ]/4+Ib, (2.2}

sample fiuid. Strain birefringence in the windows was
minimized by cementing the microscope coverglass win-
dows with flexible silicon rubber. The birefringence in-
duced by ultrasonic waves in the pure solvent and in the
optical windows was negligible.

The absorption chamber was at the top and contained a
thin porous Teflon cone. The upcoming sound waves
were deflected and absorbed in this chamber; therefore, we
had "pure" traveling waves. This could be checked by
looking for the Debye-Sears diffraction (see later) pro-
duced from the reflected ultrasonic pulses. To avoid dif-
fraction of sound waves from bubbles, most air bubbles
were excluded, and any left rose above the laser beam.

D. Debye-Sears effect and ultrasonic intensity
measurement

%e need to measure the ultrasonic intensity at the pre-
cise volume element in the sample which gives rise to the
ultrasonically induced birefringence. This can be done by
studying the light diffracted from the "density grating"
induced in the sample by the ultrasonic wave (Debye-
Sears effect ). We obtained this information without
disturbing the birefringence measurement by utilizing the
rejected beam from the analyzer Gian-Thompson prism.

Since the speed of sound V, is much smaller than that
of light, the refractive index variations constitute a sta-
tionary diffraction grating. Raman and Nath obtained an
expression which relates the light intensity I of the
mth-order diffraction line to the ultrasonic amplitude
g.23,24

I =BE~(bA ), (2.5)

where 8 is a constant, J is the Bessel function of order
m, b has the form

We label this procedure "biased" birefringence detection.
If b,g is linear in the ultrasonic amplitude A, it is oscilla-
tory with the ultrasonic frequency 0, while if it is "quad-
ratic" in A, it contains a dc term as well as a term that os-
cillates with frequency 2Q. In our experiment b,g is aver-
aged, and only the dc quadratic component is detected.
Thus we experimentally discriminate against any linearly
induced birefringence and measure oniy birefringence from
nonlinear effects.

The ultrasonic waves were pulsed at a low repetition
rate (4—30 Hz) to reduce ultrasonic heating and stream-
ing, but the pulse length (5—30 msec) was kept long
enough to allow the transient birefringence to reach its
maximum. By choosing the bias such that P=(1&/lp)'~2,
we maximized the signal-to-noise ratio. ' The rather
"noisy" transient birefringence signals were digitized and
sent to a DEC LSI-11/23 laboratory computer for signal
averaging (100—2000 scans).
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III. THP.ORY

Nonspherical particles or molecules in a liquid can be
oriented by ultrasonic waves, and the liquid then becomes
birefringent. The birefringence induced in the gold-sol

sample is proportional to the mean orientation Q, the op-
tical anisotropy AG, and the volume fraction C„of the
particles:3'~

po is the mass density, and no the refractive index of the
medium. In our experiinent d =0.8 cm, ko ——4.88 X 10
cm, no 1.3——3, V, =1.5 X 10 cm/sec, and pa=1.0 g/cmi;
it follows that b=2.88 (cm /W)' . By fitting the mea-

sured Ii/Io to the calculated values of [Ji(x)/Jo(x)], we

obtained the ultrasonic intensity A /2. In our experi-
ments the ultrasonic intensity is less than 0.2 W/cm . Ul-

trasonic frequencies used were odd harmonics from 3 to
19 MHz.

Oka neglected all interactions among col1oidal particles,
a reasonable assumption in dilute solutions, and also as-
sumed that the suspended particles were monodisperse,
rigid thin disks. He obtained the distribution of particle
orientations for particles subjected to a torque M o'i

[ M [
=—(1/3)poa' [ V„~ isin28 (3.5)

Q = 4'5 (pou'
I V. I

'/ka T) (3.6)

The relative velocity V„can be related to the fiuid veloci-
ty vby

V, =fv, (3.7)

where a is the disk radius, po the density of the solvent,
V„ the velocity of the fiuid relative to the disk, and 8 the
angle between the normal to the disk and the direction of
sound. The negative sign indicates that the torque tends
to diminish e. If the ultrasonic perturbation is weak, such
that its energy is small compared with the thermal energy
AT, then the mean orientation of the particles is given
approximately as

b, n =(2ir/no}(b, G)QC„. (3 1)

In isotropic solvents, b,G is a function of both the shape
and dielectric properties of the suspended particles. By an
extension of the theory of Peterlin and Stuart, ' we have

shown that the complex optical anisotropy for a
spheroid' is

where

(3.8}

and A is the ultrasonic amplitude. For a disk in an ideal
fiuid, one without viscosity, it is found' that

G=
(e eo)—(Ni —N3)

(3.2)
[47reo+ (E—60)Ni ][4ir' e'p+ (e' —Eo)N3]

f= (p po) /[p+ po—(40/3') ), (3.9}

Ni+N2+N3 ——4m' .

For an oblate spheroid,

Ni ——4m(1+a )(1—a cot 'a)

(3.3)

(3.4)

with a=c/(a2 —c )'~, where a and c are the semimajor
and semiminor axes of the oblate spheroid, respectively.
We shall assume that b G for a disk is similar to that for
an oblate spheroid.

A. Theory of Oka

where e and eo are the dielectric permittivities of the
suspended particle and the solvent, respectively. The N's,
are shape factors along the principal axes of the spheroid
for which Ni ——Nz, and obey the sum rule hn =(4mai/45kjiTV, )(AG/no)C„f A (3.10)

Oka made use of Peterlin and Stuart's' expression for
bG, which is that given in Eq. (3.2) but with e=n and
eo no, fo——r an 'oblate spheroid this leads to a negative b,G,
and therefore a negative birefringence. However, for con-
ducting particles, both e and b G are complex and the real
part of EG may be positive, ' which leads to a positive
birefringence, as observed for our gold sols. The imagi-
nary part of EG corresponds to dichroism and will be dis-
cussed later. Comparisons between the predictions of
Oka's theory and the experimental data are given in Table
I.

where p is the density of the particle, and po the density of
the fluid. For low ultrasonic intensity, it then follows
from Eqs. (3.1) and (3.7)—(3.9) that

Oka assumed that because of the radiation pressure re-
sulting from the passage of ultrasonic waves, large disk-
like colloidal particles (with radius much smaller than the
ultrasonic wavelength) are subjected to a turning torque
that tends to align the particle with the disk axis along the
direction of the ultrasonic beam. This theory is closely
related to the Rayleigh-Disk problem, ' and is a conse-
quence of the Bernoulh effect. ' Since the radiation pres-
sure is a second-order nonlinear effect, the torque, and
thus the resulting potential energy have a component at
twice the ultrasonic frequency 0 as well as s dc com-
ponent; ' Oka focused on the latter.

B. Modifications of Oka's theory

In Gka's theory the torque exerted on the disk is ob-
tained by solving Euler's equation in a spheroidal coordi-
nate system subject to appropriate boundary condi-
tions. ' ' Euler's equation holds when the Reynolds
number of the fluid system, R =Up~/q, is much larger
than 1, i.e., for ideal fluids. But in our experiments the
translational Reynolds numbers are of the order 10,and
the effects of fiuid viscosity cannot be ignored. For this
case, one could obtain the torque M on the particle by
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TABLE I. Comparison of Oka's theory with experimental data.

Oka
Petralia

(Ref. 25)

Experimental data
sherrard' Lipeles
(Ref. 6) (Refs. 5,14) This work

Sols
Shape

A dependenceb

Sign of An

0 dependence

g dependence
An /a as

function of a

disk

none
none

no

~2O»
needle

A
+C

yes
?

Bentonite
plate

A
CP

yes

?

Gold
disk
A
?d

yes

yes
?

Gold
disk

+d
yes
yes

yes

Although Jerrard did not report the sign of the birefringence induced in bentonite sols, his discussion
suggests a negative sign.

A, acoustic amplitude; hn, birefringence; 0, acoustic frequency; q, solvent viscosity; a, particle size.
'Nonconducting.
dConducting.

solving the full Navier-Stokes equation, but this would be
a difficult task because of the coupling between the rota-
tional and the translational motions of the particle.

Fortunately, the problem can be greatly simplified be-
cause the time scales of the particle's rotational and
translational motions in the ultrasonic wave are so dif-
ferent; in our studies the period of the oscillatory transla-
tional motion is of order 10 sec, whereas for the rota-
tional motion it is of order 10 sec. During one cycle of
the ultrasonic wave the particle hardly rotates, and one
can make an "adiabatic" approximation' for the
particle's orientation. To do so, one first calculates the
translational velocity of the particles in an ultrasonic wave

for a fixed orientation and then calculates the torque for
each orientation by treating the particle as a Rayleigh-
Disk. In this approach the torque on the particle is still
given by Eq. (3.5) and the velocity V„by Eq. (3.7), but the
function f in Eq. (3.9) is replaced by one that includes the
viscous effects on the translational motion of the particles.
However, although the translational motion of a Browni-
an sphere in a viscous fluid is well known, ' for a non-

spherical particle at an arbitrary orientation it is more
complicated, and further approximation is necessary The.
adiabatic approximation is valid when translational (or ul-

trasonic) frequencies Q are much higher than the reorien-
tational frequencies 1/r of the particles, which is the case
in our experiments.

C. Translation of a Brownian sphere
in ultrasonic waves

In studying the translational motion, we first consider a
Brownian sphere immersed in an oscillating fluid. %e as-
sume that the wavelength of the ultrasound is much larger
than the dimension a of the sphere, i.e., Q && V, /a, where

V, is the speed of sound. We let u(x)exp( —iQt) be the
velocity of the sphere and v(x)exp( iQt) the velocity o—f
the liquid flow far from the sphere, where both v(x, t)
and u(x, t) are referred to the laboratory coordinate
frame.

There are two forces acting on the sphere. The first is a

drag force due to the relative motion of the fiuid with
respect to the sphere; this force (stick boundary condi-
tions), as given by Masters and Madden in the frequency
domain, is

Fi ——g4[RL ](v—u),
where g is the Stokes drag coefficient, and

4[Rr ]=(I++Rt ) i (QRL—+yRL ) .

(3.11)

(3.12)

For a sphere (=6mila, y= —,'. The "librational Reynolds
number" Rr is defined as

Rr ——Q/I (3.13)

and the frequency of viscous translational response I is
given by

I =2g/a po. (3.14)

The equivalent result in the time domain is given by Lan-
dau and Lifshitz. The QRr terms in Eq. (3.12) come
from the interplay between inertial and viscous effects and
are closely related to the "long-time tail" behavior.

The second contribution to the force is, in the frequen-
cy domain, given by

F2—— i Qpgv, — (3.15)

where P is the molecular volume, which for a sphere is

P =(4m/3)a (3.16)

P —Po

p+i(g/PQ)4[Rt ]
(3.17)

This is the force that would be exerted on the sphere if it
were replaced by fluid with the same volume, in which
case it would move like the rest of the fiowing liquid.

The total force, F&+F2, on the sphere is equal to
+du/dt, which is —iQpgu in the frequency domain;
combining this equality with the expressions for F& and
F2 given above and the definition of f in Eq. (3.7), we
find
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Since f is complex, the translational motion of the particle
with respect to the fiuid has both in-phase and out-of-
phase components. 0. 8- SPHERE

IDEhL FLUIEl LIMIT

D. Translation of a thin disk

The coefficients of zero-frequency Stokes drag are 16'}a
and 32ga/3 for a disk moving in the direction of its axis
or perpendicularly to it, respectively; for a sphere it is
6nrla Ev.en for the special motion of a disk along a sym-
metry axis, for which there is no coupling between
translations and rotations, we do not know how to evalu-
ate the frequency-dependent drag coefficient, but we as-
sume that it is given by the appropriate zero-frequency
coefficient multiplied by the same frequency factor
4[Ri. ) applicable to spheres. Furthermore, since the
coefficient of zero-frequency drag differs by less than a
factor of 2 for motions along the principal axes, we as-
sume that the effective frequency-dependent drag coeffi-
cient for a disk is reasonably well represented by that for
motion along its unique axis. For a disk (with diameter to
thickness ratio of 10:1) moving along its unique axis, the
relative velocity V, is then given by Eqs. (3.7), (3.12},and
{3.17), with the factor f specified by

g= 16'}a,

{I}=ma /5,
(3.18)

(3.19)

(3.20)

The y for a disk differs from that of a sphere because the
"induced mass" is different; ' we obtained this value of
y by requiring that Eq. (3.17) reduces to Eq. (3.9) for a
disk in an ideal fluid.

E. Frequency c}ependence of the induced birefringence

The birefringence of a disk in viscous fiuid is given by
Eqs. (3.10} and (3.17)—(3.20). Note that the frequency
dependence of the birefringence comes from the disk's
translational motion, through Eq. (3.7). Since the
birefringence is proportional to

( U,
~

and thus to
~ f ~,

we examine the frequency dependence of f. We shall look
at the translational motion in a few limiting cases, which
are distinguished by the relative values of the frequencies
of the acoustic field Q, viscous translational relaxation I',
and reorientational relaxation 1/r of the particle. Note
that the acoustic frequency must satisfy the inequalities
V, /a ~&Q&~l/~; the first inequality ensures that the
acoustic wavelength is much larger than the particle size,
the second one is necessary for the adiabatic approxima-
tion to hold.

(1) In the high-0 limit, where Rr &&1, one obtains the
ideal fluid result given in Eq. (3.9). In this case the
birefringence is independent of Q, as indicated by Oka;
the particle cannot respond to the ultrasonic oscillation
and is, therefore, "pinned, " which enables a large torque
to develop.

(2) In the low-Q limit, where 1/7I « RL « 1, one ob-
tains

CL 0.6-
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UJ
0. 2-

C3
LLl
CL
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FIG 4. F«quency factor
~ f ~

' as a function of the libration-
al Reynolds number RL for a a sphere and b a spheroid of ma-
jor to minor axis ratio 10:1;p/po is 19.3.

f= —i(m/80)a (Q/rl)(p —po), (3.21)

IV. DATA ANALYSIS AND RESULTS

The ultrasonically induced birefringence of gold sols
was studied as a function of ultrasonic intensity, frequen-
cy, viscosity (temperature}, gold-sol concentration, and
particle size. In addition, the sign and relaxation of the
birefringence were examined. The results of our observa-
tions are as follows.

which is linear in ultrasonic frequency; this leads to a
birefringence b,n which is proportional to Q . The parti-
cle librates with the ultrasonic wave, thereby diminishing
the torque. A recent theory due to Ronis also predicts
the Q dependence, but it is applicable only in the very
low frequency regime, Qr«1, well below the range of
our experiments. For our experiments Av g& 1, and
0.1&RL &10.

In Fig. 4 we have plotted
~ f ~

against the librational
Reynolds number RL for both a disk and a sphere. The
figure shows that at very high librational Reynolds num-
ber both curves approach that for an ideal fiuid asymptot-
ically, but slowly. At low librational Reynolds number
the relative velocity, V„=fv, vanishes. At large RL
(large particle, low viscosity, or high frequency) inertial
effects dominate, as in the case of an ideal fluid. At low
&L, the viscous drag predominates and the particles move
along with the solvent, as in the case of molecules in neat
liquids. Thus one would expect the nonlinear effects to
dominate at high Reynolds number RL, while at suffi-
ciently low Reynolds number these effects diininish so
much that the linear effects dominate. One should note
that the amplitude of the relative velocity V, is dependent
upon the density ratio (p/po); in fact, one would not ex-
pect much relative translational motion for particles with
density close to that of the solvent. For gold sols,
(p/po)=19. 3, ' in which case

~ f ~
is large, and the non-

linear effect is relatively easy to observe.
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A. Induced birefringence

i. Sign of the induced birefringence

Equation (2.3) shows that the induced birefringence sig-
nal is proportional to bgP. Since we could vary the sign
of the bias P, we could determine the sign of the induced
birefringence. Two birefringence spectra, one with a posi-
tive and one with a negative bias, respectively, are illus-
trated in Figs. 1(a) and l(b). For all the gold sols exam-
ined we found the birefringence to be "positive, ' which is
consistent with our optical anisotropy calculation for gold
disks and the prediction that the disks are aligned with
the unique axis along the direction of sound-wave propa-
gation.

UJ

4—
LtJ

Cl

Lt
Ltj 2

CQ

RADIUS! 100ntn
X

S: 430
0 0

16

ULTRASONIC FREQUENCY (MHx)

2. Relaxation time and particle sizes

Both rise and decay transients of the induced
birefringence were fitted to a single exponential. The
analysis of these transients was discussed in Sec. II.

FIG. 6. Ultrasonic frequency dependence of the induced
birefringence in gold-sol samples of different particle size; here
the birefringence is plotted against the ultrasonic frequency at a
constant ultrasonic intensity. The graphs show that the fre-
quency dependence of the birefringence varies with particle's
size.

3. Ultrasonic intensity dependence

The birefringence was measured at fixed ultrasonic fre-
quency 0 as a function of ultrasonic intensity A . The
straight lines in Fig. 5 indicate that the induced
birefringence is proportional to the ultrasonic intensity, a
nonlinear effect, in agreement with early experiments and
the prediction of Eq. (3.10).

4. Ultrasonic frequency dependence

The induced birefringence was measured at different
frequencies (Q: 3—19 MHz) at a fixed ultrasonic intensi-

ty of 0.1 W/cm2. (This is not equivalent to fixed voltage
on the transducer. ) The same experiments were repeated
on samples with different particle sizes. See Fig. 6.

5. Particle size dependence

The radii of the disks were varied from 100 to 400 nm.
For each sample the induced birefringence increases

monotonically with frequency, but the functional depen-
dence upon frequency is different for each sample. See
Fig. 6.

6. Viscosity dependence

The viscosity of the gold sols was varied from 1.6 cp to
0.4 cp (Ref. 31) by changing the temperature of the sam-
ple (277—348 K). Because the solutions are dilute, the
viscosity of the solution was assumed to be that of pure
water. Figure 2 shows that the relaxation time of the
transient birefringence signal is proportional to ri/T, as
predicted by Eq. (2.1); this supports the view that the re-
laxation of birefringence is chiefiy due to the reorientation
of particles. In order to compensate for the I/kit T factor
associated with thermal randomization, see Eq. (3.6), in
Fig. 7 we plotted the temperature times the birefringence
against 1/viscosity; the plot shows that the induced
birefringence decreases with increasing viscosity.
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FIG. 5. Induced birefringence vs ultrasonic intensity for fre-
quencies of 5, 7, and 9 MHz, respectively. The straight lines
show that the birefringence is nonlinear in acoustic amplitude.
The different slopes indicate that this effect is frequency depen-
dent.
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7. Birefringenee versus librational Reynolds number

Since the viscosities and disk radii are known, we can
determine the characteristic frequency I =2q/a po for
each sample. %'e actually do not measure hn but the
quantity S, where

S=W [(Io Ib—)136f] . (4.1)

W is an instrumental factor; from Eq. (2.3) we see that S
is proportional to hn. We can write

S=K
i f(Rt )

i

where

Sm dAK= [W(Io Ib )a '—pC„lbG]
45K.oktt Tno V,

(4.2)

(4.3)

and f(Rt ) is given by Eq. (3.17). K cannot be accurately
evaluated because many of the factors in Eq. (4.3), partic-
ularly that in square brackets, can only be estimatixl. Of
greater concern is the fact that the quantities in square
brackets may vary from sample to sample. We have fitted
the proportionality constant K for each sample by means
of a least-square fit. The K's are, of course, different for
each sample. In Fig. 8, we have plotted the "experimen-
tal" S/K values versus the librational Reynolds number
RL. All the data points fall close to the "theoretical"
curve for disks given in Fig. 4 and Fig. 8.

bn can be estimated from Eq. (3.10) but the estimates
of b,G and C„are imprecise. On the other hand, we can
estimate hn by means of Eqs. (4.1) and (2.3), but the esti-
mates of p, Io Ib, and p—articularly the instrumental fac-
tor M are even more uncertain. The estimate of hn from
Eq. (3.10) is an order of magnitude larger than that ob-
tained by means of Eqs. (4.1) and (2.3). Typically in our
experiments the birefringence was in the range
10 —10

the latter converts linearly polarized light into elliptically
polarized light. Dichroism is related to the imaginary
part of the b,G in Eq. (3.2). We found the induced di-
chroism and other ORD's to be negligible; theoretical esti-
mates of the dichroism for gold disks suggest that it
should be at least 2 orders of magnitude weaker than the
birefringence for visible light. '

Though gold sols scatter visible light very strongly, the
light depolarization due to multiple light scattering
detected by our pulsed acoustic system should be much
smaller than the birefringence signal in our measurements
(by at least 4 orders of magnitude). '

V. SUMMARY

We have studied the birefringence is aqueous solutions
of dilute gold disks with radii ranging from about 100 to
400 nm and a thickness to diameter ratio of 1:10. The ul-
trasonic frequency was varied from 3 to 19 MHz, and the
dependence of the birefringence on viscosity and particle
size were examined. Though the sol solutions were not
monodisperse, our measurements on a given sample were
sensitive to disks with a relatively narrow range of radii.

A. Instrumental

Our acousto-optic system enables us to measure simul-
taneously the birefringence signal and the absolute ul-
trasonic intensity at the point where the laser light in-
teracts with the traveling acoustic wave. The "biased"
birefringence detection system discriminates against
linearly induced birefringence in favor of nonlinear sig-
nals, and allows us to tell the sign of the birefringence and
to maximize the signal-to-noise ratio. The pulse mode of
operation enabled us to check that none of the
birefringence was induced by a refiected wave.
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B. Other forms of optical anisotropy

Dichroism or other types of ORD (optical rotatory
dispersion) can be distinguished from birefringence by the
fact that the former rotates linearly polarized light, and

B. Experimental results

We find that the ultrasonically induced birefringence of
gold-sol particles in aqueous solution (1) has a positive
sign, (2) has a relaxation time which is linearly propor-
tional to sl/T, and is consistent with the rotational relaxa-
tion time of the disk particles, (3) is proportional to the
ultrasonic intensity A, (4) increases monotonically with
disk size a, (5) varies with ultrasonic frequency 0 —from
a quadratic dependence at low frequencies to no depen-
dence at high frequencies, (6) decreases with increasing
viscosity at a fixed temperature, (7) is described by our
theory [Eqs. (3.10) and (3.17)].

C. Theory

0. 0
10

Optical properties

L I BRAT I GNARL REYNOLDS NUMBE

FIG. 8. 5/E vs RL. The data here include those from Figs.
5 and 7. They have been scaled and fit to the theoretical curve b
in Fig. 4.

We have generalized the formula of Peterlin and Stuart
for the optical anisotropy of an oriented anisometric col-
loidal particle to include conducting particles, ' see Eq.
(3.2). This explains the observed positive birefringence in
gold sols.
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2. Hydrodynamic properties

We have developed a radiation pressure theory for the
birefringence induced by traveling ultrasonic waves,
which includes viscous effects on the translational motion
of the suspended particles. The birefringence due to radi-
ation pressure is nonlinear in that it is quadratic in the
amplitude of the ultrasonic wave. Our theory shows that
the frequency dependence of the translational motion, or
equivalently of the diffusion constant of the particles, is
responsible for the observed frequency dependence in the
birefringence. According to this theory, at very high li-
brational Reynolds number, the colloidal particles behave
like Rayleigh disks, and Oka's theory is recaptured; at low
librational Reynolds number, viscous effects dominate
and damp out the birefringence due to radiation pressure.
Consequently, at low librational Reynolds number the
magnitude of the nonlinear birefringence diminishes,
eventually crossing over to the regime where fluid velocity

gradients dominate and the birefringence is linear in
acoustic amplitude, as is the case for small molecules in
neat liquids. We note that while the diminution of the
nonlinear effect at low Reynolds numbers was observed in
this experiment, the crossover to the linear behavior eras
not obserued because our pulsed, biased detection system
specifically discriminates against the linear effect (see Sec.
II C). This study gives direct evidence for the presence of
a frequency-dependent Stokes drag on nonspherical
Brownian particles.
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