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High-frequency expansion of the plasma dielectric tensor
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%'e derive high-frequency sum-rule expansion for the transverse elements of the plasma dielectric
tensor. The correlation contribution to the m sum-rule coefficient has a sign opposite to that of
the longitudinal element. In addition, photon contributions add to the coefficient.

I. INTRODUCTION

High-frequency exact "sum-rule" expansions of linear-
response functions, originally formulated by de Gennes, '

have proven to provide an extremely powerful avenue
both for developing approximation methods and for
checking their consistencies. de Gennes s original expan-
sion, valid to order co for classical equilibrium systems
has been extended up to order co, both for neutral and
charged systems. At the same time, high-frequency ex-
pansion methods have been formulated for a variety of
systems: the degenerate electron gas, spin systems, two-
component plasmas, and the two-dimensional classical
electron gas.

As far as classical plasmas are concerned, the existing
results pertain to the longitudinal density-density response
functions. This latter, however, is only a part of the total
linear-response function which is represented by the
dielectric tensor. In an isotropic system the dielectric ten-
sor has two independent elements, the longitudinal and
transverse (with respect to the wave vector k) elements.
Thus, in order to assess the high-frequency behavior of
the complete dielectric tensor, one has to complement the
existing information with the analysis of the transverse
element.

In an anisotropic system, in the presence of an external
magnetic field, the situation is more complicated. The
dielectric tensor now has six independent elements. Also,
the relationship between the elements of the external and
current-current response function elements (for which the
analysis can be directly performed) and the elements of
the dielectric tensor become quite involved. Finally, the
appearance of an additional characteristic frequency, the
cyclotron frtxluency, renders the structure more complex.

The present series of papers, in which this paper is the
first, is devoted to the study of the high-frequency
behavior of the full dielectric tensor. This paper deals
with the isotropic situation. The high-frequency expan-
sion is carried out to O(co ) and it reveals a drastic
difference between the correlational contributions of the
longitudinal and transverse elements. The method of
derivation is similar to the standard approach' and relies
heavily on the Hamiltonian formalism. In order to
describe, however, the transverse interaction, the particle
Hamiltonian has to be enlarged to include the photon de-
grees of freedom. Thus, inevitably, a further important
new feature emerges: In addition to the particle contribu-

tion to the sum-rule coefficients, the photon-gas, coex-
istent with the high-temperature plasma, generates its own
contribution. The precise evaluation of this contribution
is hampered by two circumstances. The first is the well-
known classical ultraviolet divergence which requires that
even within the framework of a classical theory one
describe the photons via the quantum Bose-Einstein dis-
tribution. The second difficulty arises from the fact that
the equilibrium description implies the existence of one
single temperature for the combined particle-photon sys-
tem. Such an equilibrium, however, seldom prevails in
any but astrophysical situations. Thus an ad hoc, al-
though reasonable, approximation —described in Sec.
II—is used to decouple the photons from the particle sys-
tem.

In Sec. II of this paper we present the general relation-
ships (valid for anisotropic situations as well) between the
external or current-current response function sum-rule
coefficients and those of the dielectric tensor. Then we
calculate the exact co sum-rule coefficient for the trans-
verse element. In Sec. III the long wavelength limit of the
result is calculated and the possible implications for the
dispersion relation of transverse plasma modes is dis-
cussed. In the Appendix the details of the rather lengthy
algebra leading to the results of Sec. II are presented.

n =kc/to,
kk
k

T=1-
The significance of expressing a through a in (1) lies in
the fact that a(k, co) possesses the well-known high-
frequency sum-rule expansion

a (k to) = —g
l odd

a (k, to) = —Q
l=2
l even

(3)

II. TRANSVERSE SUM RULES

The complete dielectric tensor e„„(k,co) or the complete
polarizability tensor a„„(k,to), are expressible in terms of
the corresponding "external" quantity a&„(k,co) as

a=a(h —a)
6=1—n T,

33 604 1986 The American Physical Society



33 HIGH-FREQUENCY EXPANSION OF THE PLASMA. . .

where the superscript H stands for "Hermitian part of'
and prime and double prime designate "real part of" or
"the imaginary part of," respectively. The Q coefficients
are calculated from the relation

The third moment is given by

ld
A~i "(k)=—4mep (jg(r)ji', (0)), o

obtained through the routine derivation from the
fiuctuation-dissipation relations. Thus the high-frequency
expansion of a(k, co) becomes similar to that of a(k, ai) as
given by (2) and (3), with Qi+i(k) replacing the corre-
sponding Qi+i(k) —s. The relationships between the two
sets of coefficients up to 1=6 are given by

4ne P g ((v;"v,"+k k~u; vt'u&~uj".

I,J

—ik v; ugu J+ik u;"u u ).
—lk'(xi —x )

)Xe

Q2 ——Q2,

Q4 ——Q 4
—Q2.Q2

Q3 ——Q3,
A A

Q5 ——Q5 —Q3 Q2 —Qp Q3
A A A

Q6 ——Q6 —Q2 Q4 —Qg Q2 —Q2 T Q2n
A A

Qp ——Q7 —Q3 Q4 —Q4 Q3 —Q3 T Q2n

—Q, T Q,n +Q, Q, Q, +Q, Q, Q,

+Q3 Q2 Q2 .

As discussed in the Introduction, the Hamiltonian ap-
propriate for the description of the interaction of the plas-
ma with the transverse electromagnetic field must include
the photon degrees of freedom. Thus we have

H =—g u; + —,
' g V(x; —x& )

I l,J
i+j

+ —,
' g(eq. e q+q c aq a —q)

q

The four terms in the parentheses can be reduced by a
series of manipulations based on the canonical equations.
Details of the calculation are given in the Appendix. The
presence of the photon degrees of freedom a~q, e~q now
leads to the appearance of averages of field coordinates of
the type (aqa" q) and (eqe" q). In strict thermal equi-
librium such terms are easily expressible in terms of the
inverse temperature P. Nevertheless, the attainment of
strict thermal equilibrium in any but astrophysical situa-
tions is not to be expected: the photon mean free path is
simply too long for photons to become thermalized. In
order to describe such a situation without abandoning the
framework of equilibrium statistical mechanics, we will
introduce two distinct, particle and radiation, tempera-
tures represented by P~ and P„respectively, for the sys-
tem. A further problem that arises from the evaluation of
field coordinate averages of the type quoted is that when
such averages are evaluated classically, a summation over
the possible q modes of the electromagnetic field gen-
erates divergent integrals, in agreement with the classical
ultraviolet divergence of the electromagnetic field energy.
Thus such averages have to be evaluated quantum
mechanically even in the framework of a classical theory,
such as the present one. Introducing

with

v; =—p; — V'4n /V g—a e
f72 Pl q

l
~q q+2 COq

6)q =QC
(10)

We now turn to the calculation of the frequency mo-
ments (up to 1=4). Without external magnetic field the
system is isotropic and a is diagonal. Consequently only
Q2 and Q4 survive; moreover, in a coordinate system in
which k=(00k) one is left only with the II „"=0„and
Q „elements.

The first moment is trivial,

4m.e
&""(k)= ' (jg(0)j" (0) )

as a new set of coordinates with the polarization vectors
e~q', and identifying

i i+ i
nq =Cq Cq

as the equivalent of the photon number operator, one
evaluates averages by setting

1(,) —
p

e —1

The results of the lengthy algebra displayed in the Appen-
dix can be summarized as
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0""(k)=co4 0

r

qp qv k"k" Pp „krak'
(Sg q

—Sq)+ + P'"—
~ n(cog)%cog,

T

k2 k "k" „k"k"
+ ~

'
z + ~"-

k k
P'"—

z SI, qn(coq)fico+,
Pp 1 „q"q"

q~

+4 —g "
n (coq)free+„

Pr inc q

(13)

(13) above, as it stands, is not acceptable: in the k~0 limit no difference should exist between the longitudinal and
transverse elements of 0~q". The offending term, violating this requirement is

4 k„k. IBp „k&k"
coo + P'"—

k P, k

We argue that in this limit the distinction between particle (longitudinal) and radiation (transverse) temperatures is mean-

ingless: thus we treat Pr as a k-dependent quantity, such that P„(k~0)=Pz, while P„(k&0) is not affected by this
condition. We also drop the last term, which is manifestly of the same order as relativistic corrections not considered in

the present derivation. Equation (13) so modified, now becomes

k
Q4 (k) a)0 P + T$ [f(xg) 1]+ (3L++Tf )+ QLq (Sg q Sq)+ g Tq Sg qf(xq)

K

k"k'
k2

(14)

xg ficoQ——„,
f(x)=

eX ]

III. LONG-WAVELENGTH LIMIT

The long-wavelength (k~O) limit of (13) illuminates
the substantial difference between longitudinal and
traverse sum rules. First we consider the photon indepen-
dent terms, i.e., the ones that survive in the P„~oo limit.
The correlational term

4
coo ~o
& gL"q'(S„q —Sq)=— g(Lf" q

yields the well-known longitudinal

4 gk 2

]s ~0 2 PpEcorr
K

and the new transverse

04 (k)=~t 1+ (3+ &)PpEoo~)
K

P. n' 1

k+ ~ (4G, +G~)
30m'

k2
fl 4'«) =~o 1+ (1 &s PpEoo~)—

K

p m 1

P'nA c 15 3H

k
2 (G(+2Gq)

15m

(18a)

(18b)

2 gk
~0 2 Pp Ecofr

K
(17)

expressions, where E„ is the (negative) correlation ener-

gy per particle. There are, for obvious reasons, no off-
diagonal elements. The difference of sign between (16)
and (17) should be noted

Combining (16) and (17) with the photon-related terms,
one obtains the complete k ~0 expressions,

with

Go ——f dxx f(x)ngq,

G) ——J dxx f(x)— ngq,
q Bq

2

Gz ——I dxx f(x) ngq .
aq2

(19)

The high-frequency sum-rule expression, apart from
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providing an exact relationship which can serve as a stan-
dard against which approximations can be evaluated, can
also be regarded as an approximate expression for
response functions in the frequency domain where using
the expansion is not well justified. In particular, it can be
used for the analysis of collective modes in the long-
wavelength limit. Even though there is no a priori reason
for the expansion to be convergent in that frequency
domain (and we have argued elsewhere that the expan-
sion is indeed not convergent), there is empirical evi-
dence ' indicating that terminating the expansion of the
04 term and using the resulting expression to represent a,
yields a qualitatively correct and quantitatively reasonable
result for plasmon dispersion. Adopting this philosophy,
we can now estimate what novel physical effects are
described by the expressions (18a) and (18b).

Using (18a) in conjunction with (5), the dispersion rela-
tion

The ensuing photon frequency can be written as

co (k)=c00 1+C(y,P„)+AT(y,P, ) +k c (25)
K

with

K
AT(y, P, ) =1 „—Pp—E,.„+ (6, +26, ) .

15m

In contrast to the effect of correlations on longitudinal
plasmon dispersion, here the correlations are seen to fur-
ther enhance, rather than to reduce, the positive thermal
dispersion. If one argues that the explanation of correla-
tional effects on dispersion can be sought in the system
for strong coupling trying to emulate the mode structure
of a Wigner lattice, this result is not surprising, since the
high-frequency transverse phonons, in contrast to the
longitudinal ones, do exhibit a positive dispersion.

e33(k,m) = 1+cc33(k,co) =0 (20) ACKNOWLEDGMENT

determines the behavior of longitudinal plasmons. Writ-
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co (k)=coo 1+C(y,P„)+AL(y,P, )

one finds

(21) APPENDIX
In this appendix, we give details of the derivation lead-

ing to (13). Consider the four terms in (9):

and

~L(y~Pr }=3+ , s PpEcorr—

PpK
3 3 (461+62)

3077 plack C

r

+
„nA3c ' 15 3n'

(23)

(0~4")n ——
4me 8

f,J

4me

I,J

4me
(0~"),= (v", v ,"e'

v

(A 1)

For P, '~0 AL is known to change from positive to
negative values for y)y, „,. While according to (22)

y,„,~ —', , both molecular dynamics computer results"
and recent more sophisticated theoretical results' indicate
an actual y,„,=45 value. The effect of finite radiation
temperature is manifested through 60, 61, and Gz, for
all situations but the combined occurrence of strong
enough coupling to induce oscillations in g& and extreme-
ly high radiation temperature causing the photon thermal
wavelength to become shorter than the interparticle spac-
ing, it is expected that Go &0, while 6& ~ 0, G2 & 0; how-
ever, even for 60 ~0, the n /15 term is expected to dom-
inate. Thus finite radiation temperature results (i) in an
upward renormalization of the plasma frequency from coo
to coo(1+ —,'C), and (ii) in a reduction of the negative
correlational effect on plasmon dispersion for finite k. It
should be kept in mind, however, that under normal con-
ditions both of these effects are very small; some numeri-
cal values wi11 be given in a separate publication.

Turning now to (18b), in conjunction with (5} it deter-
mines the behavior of transverse photons through the
dispersion relation

4me
4 ~v ——1 U;UJ UJe

l,J
Since U"; is

1
UP

P?l
+A, Qe~qe '+iAv; gql', aqe

l q

—iXv, gq a e""' (A2}

with

g V(x~ —x„),
m, n

PN +Sf

A, =+4me /V,
(A3)

1 8@ B@ —;at,, —,, ))4 I, 11 em' &;, cix/' Bx;"

(0~4")t consists of 4X4 terms which we label as (0~4")&»,
(QP4")),p, . . . , (0~4")t~. Then

equi(k,

co)—:1+ccii(k, co)=n (24) lc =4me nP .
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But

aa
ax~

aB az
axj axj

(AS)

The derivatives of E can be evaluated with the aid of

q

which further splits (Q p4"), „.The usual procedure" al-

lows one to evaluate averages of the type (A(aH/ax~"))
as

(A6)

As a result, only the first two terms in (AS) survive: the
third term averages out to zero, since v~ and aq are un-
correlated (note, however, that p and aq are not) and the
last two terms cancel each other. The remaining terms
[say (Qp4")7 ii and (Qp4")i »bj can be evaluated in the
same way as in the case of the conventional longitudinal
sum-rule calculations

Introducing the notation

—ik(x —x )

E,J. ——e (A7)

the repeated application of (A5) and (A6) transforms
(Q","),„into

K 1 a'4
(a4 )l, li.=,~ —g E;,)m pp ~J aXpaXJ

4 1 qIq, kl k"
=co()—g, (5k q

—5q)+co()
q P k

2 a'E,

L

)4y K 1 a ~(J(Q"")4 t, lib 2p2 p( (~ p~ )f,J

(A10)

(Bx Bxx) (AS)

4.
Np k"k "ngk
k

4

2
—g 2 n(Acoq)ficoq .

me2 &
q

q2
(Al 1)

Next we consider (Q 4")i 22.

202
IC n, ~ ~(» iqx,. ipx —ik(x, .——))x.

4 )p2= 2 ~ Z, eqe pe e eNm, q

=co,'l3, —g &e,"e ,"&(S„—,+X5k, )

q

happ
—g &"—

2 5k qn(tiicoq)Acoq+ ()Pp
5"" —(~k)~k . (A12)

Furthermore, (Q 4")i 33 becomes

K A,(~P&s K ~ ~ I a p p " a )S iqx,. ip xik. (x—;—.x))
2 Z ~xU UJq p aqa e 'e 'e

gq)'q"(aqa q) .
Xm (A13)

Similarly, (Q 4")i 44 yields

(Q 4")(,44=
4

n(ficuq)fico
mc & q2

(A14)

As to the cross terms, (Q4")i 34 —(Q4 )i 43 —0, because of the appearance of T I- products (Q~a )i, )3 and (Q f"), also'
»»», » c» be seen writing, e.g. , (Q 4")i (3, in the form, where B~"and D below are independent of the velocities:
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~(i}4 „) z BH BK
p J ~J

g (5;,5 "D m—g~ g5; 5~'UgufDBJ")
p i,j PS

g [5~ mp—p(v,('v; )](DB;;")

(A15)

(04"), ,4 vanishes for the same reason. Finally the cross terms (0 &')& 2&, (0 4")& z3, and (0 4")& 24 are all equal to zero be-

cause of the presence of the uncorrelated eq contributions.
The calculation of II is quite simple:

K
0

(Q~~")»=—g k k~(, v; v,~v('vie ' ' )
i)J

2
=—g(k k~[(1—5;, )5 "5~( "')']( ' ' )

i%J

+5;, t [5""5~(1 —5 ")+(1 51'")(5'"—5++5 "5~")]

X (v" ) +5'"5 ~5 "(v" ) I ) (no summation over IM, v)

4

(k"k "ng~+k 8'"+2ki'k") .
K

(A16)

Finally we turn to III and IV:

K(0~4")„,= i Qk'—(v;—vt'v "e ' ' '' )
/, j

K

Nm

K —ik(x —x )l J

(A18)

p p „ iqx —ik(x; —x )+ UJ q aqe je
q

(A17)

The four terms in III we label as (0~4')»& ~, (0~4")»& z,
(0~g")»t 3 and (0 ~4")&» 4, respectively. It is not difficult to
see that only (0~4")t», survives the averaging. (Qq")t»2
vanishes because of the presence of the uncorrelated ez
contribution, while (04")»t 3 and (0&"),» 4 vanish due to
the odd velocity moments. Rewriting now (0~4")»t

~
as

one can easily convince oneself that the second term in
(04"")»t

&
also ~anishes because of the odd velocity mo-

ments. The first term also leads to odd velocity moments,
except for one contribution which yields

K
2

2 v (7 i k(xjxj)(04")»t
&

——— gk k "(1—5; )(v; vie ' ' )
Nm pq

QPO
kI'k "ngk .

IV provides an identical contribution. Combining now
(A10)—(A14), (A16), and (A19), one obtains the result
quoted in (13).
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