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Superimposed renewal processes:
A new method of superimposing a Poisson distribution with periodic pulses
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In this paper a new kind of superposition which mixes a dead-time-distorted Poisson process with
periodic pulses is extensively described. The two original sequences are assumed distorted separately
by insertion of proper dead times and are then subsequently superimposed: this method allows one
an exact theoretical treatment valid in general for arbitrary values of the parameters. This tech-
nique and the relative formulas have been subjected to experimental check. The excellent agreement
between theory and experiment supports the reliability of the method when it is applied to dead-time
measurements.

I. INTRODUCTION

For a Poisson statistical process developing in time, the
most direct consequence of the presence of dead time is in
general the modification of the distribution of time inter-
vals between successive pulses. A vast literature can be
found on problems related to dead-time-distorted Poisson
processes involving both one channel (e.g. , counting rate
and losses' experimental distribution ) or two channels
(e.g. , coincidence measurements, pulse-height convert-
ers ' ). As is well known, the theory of renewal process-
es" has played the predominant role in explaining these
problems. However, the superposition of renewal process-
es having the simple Markov property does not produce in
general a new simple Markov renewal process: for this
reason the superposition of a Poisson sequence on periodic
pulses, when the whole train of pulses is dead-time distort-
ed' (i.e., distorted after the superposition), is not suscepti-
ble to an exact theoretical analysis. In this case only ap-
proximate formulas or Monte Carlo simulation may give
the appropriate solution. '

In the present paper we propose a new method of super-
imposing a Poisson distribution on periodic pulses: the
two original sequences are assumed distorted separately by
a nonextended dead time and then superimposed; this fact
can cause only a lengthening of some pulses but no change
in the relative arrival times between distorted random
pulses. Exact theoretical calculations have been per-
formed, as we shall discuss in Sec. II. In order to test the
resulting formulas, measurements have been done for dif-
ferent values of the parameters, obtaining an excellent
agreement between theory and experiment, as shown in
Sec. III. Finally we suggest a possible application of our
method for dead-time measurements.

II. THEORY AND CALCULATIONS

First of all we recall that a Poisson sequence of pulses
developing in time is a simple Markov renewal process: in
fact the random variables representing the waiting times
between successive pulses are mutually independent with a

common exponential distribution. Moreover, as for any
exponential distribution, this distribution has the simple
Markov property: the residual lifetime is unaffected by
the past and has the same distribution as the lifetime it-
self"

%hen a pure Poisson process, with a rate a, is distorted
by a dead time r of nonextended type, pulses with width
~ are distributed with a mutual relative arrival time
represented by a stochastic variable Uk whose density can
be written as

—a(uk —r)
ue uk &~, k &1.

The entire sequence is a convolution with a probability
density:

pg ——g 5(B to nT)— —
n=0

i.e., a sum of 5 functions starting at the time 8=to at
which the pulser is switched on. If these pulses are pro-
cessed by a device introducing a width r& and afterwards
are superimposed on the distorted Poisson train previously
described, it is clear that there is no interference between
the two distorted processes. In fact this kind of superpo-
sition has the following effect: when two or more pulse of
the two sequences overlap there is a change of the height
in the overlapping region and a possible increase of the
length of some pulse (see Fig. 1) when a pulser (random)
signal arrives within and extends beyond the width r (ri)
of a random (pulser) pulse. The change in the height is ir-
relevant for our purposes: the important feature being
that no pulse has been canceled by this superposition so

u =uo+u~+. . . +uk+ +u &ms, m &0

(& ~&) & + e
—a(u mr)—(u —mr)

m!

where uo is the waiting time of the first pulse from an ar-
bitrary time origin.

Let us consider now a train of periodic pulses with
period T. Its density can be written as
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FIG. 1. Sk~ . etch of possible pulse sequences showing typical
situation in which the pulser signal (dashed) is alive (PSA) or
dead (PSD). For the sake of clarity, the PS (width ~ ~) has been
drawn higher than the random pulses (width ~).
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that the random relative arrival times remain unchanged.
owever, from an experimental point of view any

lengthened pulse will be detected by a sealer as a single
count. So we shall calculate the total experimental rate
under the previous conditions which can be done exactly.

ith the obvious condition T g~i, let us consider an
interval T between two pulser signals (PS's) arriving at t
and t + T, respectively (Fig. 1). The PS at t will be con-
sidered "alive" if it can be registered by a sealer: in this
case no random pulse arrives in an interval r before t.
Otherwise the PS will be "dead, " i.e., it has prolonged a
previous random pulse, and cannot be registered. %e dis-
cuss separately these two cases: pulser signal alive (PSA)
and pulser signal dead (PSD).

A. PSA

As previously outlined, in this case the PS arriving at t
is alive; this means that (i) there is no random pulse be-
tween t rand t and—(ii) in the interval T the counts reg-
istered will be due to the random pulses which do not
overlap the PS plus one single count due to the pulser sig-
nal.

We shall calculate now the mean counting rate. This
will be done in the following three steps. The first step is
the determination of the probability density of the residu-
al waiting time y of the first random pulse not overlap-
ping the end r( of the PS. This in turn requires, of course,
t e knowledge of the random sequence within r(. The
second step shall be the convolution of this density with
the density of the successive random sequence up to t + T;
the third is the integration of the final density between 0
and T —~1 and the consequent sum to get the mean value.

%e explain now in more detail the previous points. The
residual waiting-time density for the first r d 1

ar"ter T is 11 14
ran orn pu se

TIME t (ms)

FIG. 2. Plot of the probability p that a PS arriving at time t
will be alive if the random sequence is switched on at the instant
t =0. As can be seen the stationary state is reached faster when
the rate a is smaller. Its asymptotic value is (1+a~) '. Values
of the rate a are in ms ', of the width ~ in ms.

M

ppsz(x)=e g g +,(t (r(r)—,

M the integral part of t/r,
i.e., the product of the probability

M

p = g g~+((™)
rn =0

that a PS be alive times the density ae ™of the follow-
ing random pulse.

If l pulses of width r enter the PS time width r„ the
density of the variable"' z =x+x + +X1 ''' +XI 1S

PSAf(+ ( (z) =pg(+ ((z —lr), z )lr, 0 & l &I
L the integral part of r(lr .

We call this sequence of pulses "sequence z." The proba-
i ity distribution of the residual waiting time y can be

now evaluated:

7'I +P L
&(W, &y)=p J g, (s)ds+p g g(+((z lr)dz — g (s)ds

l=0 7
I 7 Z 1

L ] 71 —V—Z+g
+p Z, g, +,(z lr)dz I g—( )d

where the first inte ral re resents hg p t e contribution with no random pulse within ~ the
tion due to pulses of the sequence z 1 t 1

' 'd
e wi in ~&, t e second integral is the contribu-

crossing the end of the PS.
nce z comp ete y inside ~&, and the third is thet 'd, '

contribution with a pulse of the sequence z

The derivative with respect to y of the inte rais (1) ives t
Fig. 1)

gra s gives the probability density of y which, convoluted with (see
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TABLE I. Theoretical and experimental values of the parameter p, in the stationary state, for the in-
dicated rate a (ms '

) and width v (ms).

p theor 0.33

a=4
x= 1

0.20 0.11 0.077

pexpt 0.50+0.002 0.33+0.002 0.20+0.00 1 0.1 1 +0.001 0.076+0.00 1

~ =3'i+72+ ' ' +3'

integrated in the interval 0 to T ri —and averaged, gives after easy calculation the following mean rate in the interval T:
%+1 n +) L+1

It ps~ =p(e '+0)+p Q F.(b. -i) g gt«i-i)
=1 1=1

$+1 L+1 1

+p g (n+1) F„+I+i(aL +b„)+—g g [gt „+,(at)F„+„(b„ i) gt +—i(at—i)F„+—„(b„))
n =1 a 1=1 +=1

(2)

where

a1 =—V1 —l~,

e
—ab, L+,

g gt+i(at i) if T&ri+r
4'

b„=T —ri nr, —
L+1
g [Gt(at i) Gt+i(—at+ho)] if T &ri+r
1=1

with

N the integral part of (T r, +r) jr,—

L the integral part of rior,

F„(s)=G„(s) G„+i(s —r)—,

also for ri & r and does depend on t through the factor p.
If the process is old enough, i.e., in the stationary state,
the factor p has already reached its saturation value. '

In Fig. 2 we show a plot of p against t to give an idea
of the dependence of this saturation value on the rate a.

B. PSD

G„(s)=1—e ' 1+ +QS (as)"
]T (n —1)!

the modified incomplete I function. " G„(s)—=0 if s ~ 0.

x'
gk+, (x)=ak+' e ", x &0, k &0k!
gk~i(x)=0 if x &0.

The previous formula (2) gives the mean number of
counts (PS included) in the interval t to t+ T. It is valid

I

In this case the PS at t is dead, i.e., it cannot be counted
because of a random pulse arriving between t —r and t,
which covers the leading edge of the PS constituting its
long tail. On the other hand no contribution of course
can be due to the sequence z falling within ri, the only
counts detectable being those of the random pulses (not
overlapping ri) which fall between t + r, and t + T.

We shall distinguish the following two subcases: (i)
r, & r, (ii) r i & r

In the first one, (i) r, & r, a procedure analogous to that
of the previous section gives, in the interval T, the follow-
ing rate:

%+1, 3f +1
~psD= g g —[g +,(t +r, ) —ea g +i(t )][F„(b„ i) —F„+,(b„)]

+ 2 [g —+l(t +ri)F. .(b. i) —g „(t )F„„(b„+r))
v=1

+ g [gyp' «+i(t~)F„+„+i(b„+ri)—g~ „+i(t~+ri)F„+„+i(b„)]
@=1

+nF„+~+i (b„+t~+ r, ) U(t~+ &+ ri ) +nF„+I+2(b„+t~+ i +ri )U(tm+ i+ ri )
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where

tm —t —ms,

1, x&0U(x) =

U(x)=1 —U(x) .

(ii) ri ~ r. Following the same three-step procedure of Sec. II A we get for the mean rate in the time T:

%+1M+1L+1 m

RpsD = g g g g 2 [g —+1(r )gl+ (al —1) g —+1(l —1)gl+ (al)F (b —1)
n=l m=1 /=1 v=1 O

1+v
+ Q g 2

[g' —+1(rm)gl+ —~1(al)~ + (b —i)
H, NS, I, V i = 1

gm —v+ 1(rm )gl+v —i+1(al —1)Fn+i(bn )

+1(t 1)gl ~„ i ~ 1(al+1)F„+,(b„ 1 )

+g +1(i 1)gl+„;+1(al)F„+;(b„)]

I+M+1
+ g gl+M ~1(rM+I+rl)~n(bn 1)+ g [gl+M;+2(tM+1+al )Fn+i (bn —1)

nI ~ i=1

gl+M —i +(2rM+al)+n+i(bn)]

+ y [g /1(r )I'. , L l(al. +b, ) g, (t — )F„, (a +b„)]
n, m, v

+ g "[FL+M+n+1(tM+aL+b )Un(rM+aL+1)+~L+M+n+2(rM+aL+1+bn) U(rM +aL+1)]

with the previous meaning of symbols.
Notwithstanding the apparent complexity, the final re-

sult can be easily calculated in any computer, being a sim-
ple combination of g functions.

We observe that, in this second case, the final formula
depends on r in a more complicated form than before.
However the final expression can be computed in the sta-
tionary state, which from an experimental point of view is
the most meaningful one. In Figs. 3 and 4 are shown the
Plots of the contributions Rpsz/P and RpsD against ri for
some values of the parameters a, r. In Table I values for
the parameter p are reported for the stationary state. Fi-
nally we show in Figs. 5—7 the total rate in the interval T,
i.e., R =Rps~+RpsD against r for some values of a and

71 ~

III. EXPEREMENTAI.

In order to check the previous calculations we have per-
formed several measurements with the apparatus shown
in Fig. 8. We have been able to verify separately the PSA
contribution and PSD using a new experimental method
described in Ref. 16. We recall briefly the principle of
operation of such a method. Pulses from a photomulti-
plier coupled with a plastic scintillator detecting the y ra-
diation of a Na source are sent through a single-channel
analyzer (Canberra 2035A) to a dual-gate generator

I

(DGG) (Le «oy 422) which introduces the required
width r (dead time of nonextended type). Another DGG
processes the periodic pulses of a pulser set at a given
period T, introducing a dead time r, & T. Afterwards the
two sequences of pulses are mixed together and the final
s~q~~~~~ feeds a Camac multichannel sealer (MCS) (Le
Croy 3521) with a presettable dwell time per channel as
short as 1 ius, interfaced with a programmable Le Croy
system 3500 M. The MCS provided a 100-MHz input
rate capability of less than 5 ns interchannel dead time
and its dwell time was controlled by the computer of the
Le Croy 3500 M system. Facilities for data acquisition,
display, storage, analysis by software and input and out-
put allowed automatic data handling. To discriminate the
two contributions, PSA and PSD, obtained theoretically,
it was enough to choose the dwell time d of the MCS in
such a way as to satisfy the relations ad «1, T =kd,
~=k'd with k, k' integers. Under the previous conditions
the MCS can accumulate only one count into the channel
corresponding to the leading edge of a pulse and zero in
the other channels covered by the pulse length. Identify-
ing first, with the pulser alone, the MCS channels corre-
sponding to any PS we are able to determine by software
if, in the experimental spectra, a pulser signal in the
mixed sequence will remain surviving or if it will be
covered by a preceding pulse of the random sequence.
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Automatic analysis of the spectra by the computer of Le
Croy 3500 M allowed the separations of the intervals and
the counting of the experimental rates.

In Figs. 3 and 4 are shown the experimental results ob-
tained for a few values of the parameters a and v. against

Values of the parameter p are reported in Table I to-
gether with the experimental data.

The present method of superposition can be applied to
dead-time measurements. In fact looking at the nomo-
grams shown in Figs. 5—7 where the total rate of count-
ing is plotted against v, it is clear how a precision mea-
surement of dead time can be made. It is enough to mix a
random sequence of known rate a processed by an ap-
paratus of unknown dead time ~ with periodic pulses of
given frequency and width. The final total rate measured

with a sealer will give the required ~ by the corresponding
crossing with the proper curve. Several checks can be
done, of course, by varying for instance a and/or ~&. The
excellent agreement between theory and experiment sup-
ports the reliability of the present method and also affords
direct evidence of the distorted Poisson distribution.
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