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A discussion is given of what it means for a coin toss to be random. To aid in that discussion, we
produce and solve numerically a physically realistic model of such a toss. The ideas we develop
should apply in a general way to other commonly used mechanical randomizers. The coin’s ran-
domness is determined by the nature of the basins of attraction of heads and tails. Although
mechanical systems are known which are intrinsically random, we conclude that the coin flip is not
among them. Rather, the effective randomness in practice is based on the magnitude of the scale of
the variation of the basins of attraction relative to the precision of the flipping mechanism.

I. INTRODUCTION

It is commonly taken for granted, even by sophisticated
writers,! 3 that the toss of a “true coin” is “random.”
The technical and mathematical definitions of “random-
ness” are of great interest. The explication of this subject
is in fact the aim of the semipopular? expositions re-
ferred to above. In contrast, the definition and analysis of
the term true coin are completely lacking. In fact, we
know of just one paper, so far unpublished,* which has
any relevance to the subject. Our main conclusion is that
true coins have no intrinsic randomness and that what is
relevant is the relationship of the (initial) parameters of
the coin to the precision of the coin tosser. Further, there
is nothing critical about this relationship, so that the toss
of a coin, by a continuous, realizable change of parame-
ters, could become as obviously nonrandom as switching
on or off a light.

Since no one has defined or even discussed what is
meant by a true coin, we shall make several remarks. If
the term is to be more than a tautology, it will have to
mean a system (or class of systems) whose generic features
are well approximated by physical coins. We cannot ex-
pect the detailed characteristics to be fundamental, since
many sizes and shapes of physical coins can be tossed in a
variety of conditions and all will be for practical purposes
random. Indeed the motion of other common mechanical
“randomizers,” such as dice, roulette wheels, spins of the
tennis racket, etc. will be subject to essentially the same
analysis.

By ‘“true” we mean that the coin itself is completely
symmetric between heads and tails, in other words, that
the equations of motion are independent of these labels.
Further, we assume that the equations of motion are
Newton’s equations, with no external source of random
fluctuations included. We thus assume that the fluctua-
tions of the air, and the thermodynamic and/or quantum
fluctuations of the coin and the surface on which it falls
are absent or negligible. In any case, if these factors were
essential for a coin toss to be random, it would be inaccu-
rate to call the coin random. The equations of motion are
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in this approximation completely deterministic.

The equations of motion connect the initial conditions
to a final observed output configuration. This mapping is,
as a rule, strongly nonlinear. In the case of a coin (if it is
treated as a rigid body) the initial conditions are the posi-
tion, configuration, momentum, and angular momentum
of the coin just after it leaves the “thumb” of the flipper
and begins its fall onto the surface. There are three possi-
ble final configurations: the coin resting flat on the sur-
face with its head side up, its tail side up, or the coin bal-
anced on its edge. All initial configurations are mapped
into one of these three final configurations. The first two
final configurations, heads and tails, are stable point at-
tractors.’ Regions of initial condition space mapped onto
these two attractors are called the basins of attraction
(BA’s) for the coin toss. The boundary which separates
BA’s for heads and tails consists of initial conditions
mapped onto the coin standing on its edge. This boun-
dary is a set of measure zero and thus with probability
one the coin ends up either heads or tails (we assume an
infinitely thin coin).

In order to illustrate the situation, in Sec. III we pro-
duce a definite model of a true coin toss. We consider it
important to have a fairly realistic model, as it greatly
aids in thinking clearly about the problem. The details of
the model are not important as long as it has the generic
properties of physical coin tosses, with the approxima-
tions just discussed. (Other models with different details
give, numerically, the same generic results.)

It is very well known that deterministic nonlinear sys-
tems (DNS) are quite capable of displaying intrinsic ran-
domness, so it is perhaps natural to think that systems
describing coin flips have this property. We shall now ar-
gue that this is not the case.

Technical definitions of randomness can be reduced to
statements about arbitrarily long sequences of zeros and
ones. Such a sequence can be interpreted as a real number
in the binary representation. [We exclude definitions of
randomness (if any exist) which are able to distinguish be-
tween random and nonrandom finite sequences. Other-
wise our discussion is independent of the precise technical
definition of randomness.] It can also be regarded as the
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output of a dynamic process. For example, it could
represent the sequence of heads and tails in the indefinite-
ly repeated flip of a coin. Or it could represent an indefi-
nitely long sequence of measurements on a dynamical pro-
cess which does not stop. An essential aspect is that
rigorous concepts of randomness do not apply to a finite
sequence of results.

A DNS can be regarded as a map of an initial (real)
value or values to an output consisting of a finite or infin-
ite sequence of zeros and ones. This description assumes
that the output consists of a sequence of coarse-grained
results with each element of the sequence on an equal
footing with all other elements. The input parameters, on
the other hand, are as a rule approximate. Two cases can
be distinguished. In one the output sequence is bounded
in length, while in the other it is unbounded. Coin flips
and all the other common mechanical randomizers are in
the first category. Periodically repeated measurements on
conservative systems or on driven systems provide exam-
ples of the second category.

Mechanical randomizers are in the first category be-
cause they conveniently give a single, definite and practi-
cally unpredictable outcome in a finite time. Physically
this behavior is based on the fact that the system’s energy
is dissipated rapidly enough that it comes to rest (or at
any rate has its final configuration obviously determined)
in a finite time.

Those DNS possessing arbitrarily long output se-
quences have the capability of having a random output.
If the output is random, even if the input initial condition
is a finite set of real numbers, we may say that the DNS is
intrinsically random. This case is characterized by the
fact that the output sequence is extremely sensitive to the
input value.

The Bernoulli shift is a trivial example of an intrinsical-
ly random DNS. It consists of a rule which rewrites the
input real in binary notation and interprets the result as
an unbounded sequence. An intrinsically random DNS
based on Newton’s equations can be constructed from
Sinai’s billiard, or a periodically kicked rotor. [Sinai’s bil-
liard moves without friction on a square elastic table with
one fixed ball of finite radius at the center from which it
can also scatter elastically. An elementary measurement
gives the result one (zero) if the billiard is in the upper
(lower) half of the table. Repeating this measurement
periodically (with sufficiently long period) gives, for al-
most all initial conditions, a random sequence as output.]

Actually, even an intrinsically random DNS does not
“create” randomness, but merely transforms one (as-
sumed) random sequence (the initial real value) into a ran-
dom output sequence. The terminology “intrinsic” is jus-
tified because in this case one cannot help but choose a
real represented by a random sequence, if by “choose” one
means to “determine physically the initial conditions.” In
fact, physical determination can at best set the initial con-
ditions to some accuracy which we denote by €. A given
determination can then be regarded as picking a typical
real from the region characterized by €. Note that € need
not be, and generally is not, very precisely determined.
We note that Wolfram® has suggested that appropriate
definitions of randomness exist which allow DNS’s to

produce a random sequence from a finite (and therefore
nonrandom) set of input integers. The correctness of his
suggestion has no influence on our argument.

II. BASINS OF ATTRACTION

The appropriate concept to describe deterministic sys-
tems whose output is one of a finite set of possibilities is
that of basin of attraction (BA). One should investigate
BA’s for a given system and classify randomness accord-
ing to the degree of their interpenetration.® To make the
discussion more concrete we give in Fig. 1 the basin of at-
traction for heads (tails) of the much oversimplified
model coin first considered by Keller.* This model does
not allow the coin to bounce and determines heads or tails
by the angle of the coin at the instant it first touches the
surface. The basin boundaries are the family of equidis-
tant hyperbolas, zE =(7n)*/12 where n is an integer cor-
responding to a vertical coin at the first touch. [Actually,
Fig. 1 (and Fig. 2) fixes all initial variables but two, name-
ly the initial potential energy and the initial rotational en-
ergy.] The dark regions are the set of initial conditions
which lead to the result “heads,” the light regions are
“tails,” and the mutual boundary of these regions is the
unstable result of the coin standing on edge.

As illustrated in Fig. 1, the coin toss of Ref. 4 cannot
be arbitrarily sensitive to initial conditions. Rather, any
initial condition leading to heads will have a neighbor-
hood of nearby initial conditions also leading to heads. If
a coin is repeatedly tossed with initial parameters deter-
mined sufficiently accurately to lie in this neighborhood it
will always give heads.

If a long sequence of coin tosses is to give a random re-
sult, therefore, it can only be because the initial conditions
vary sufficiently from toss to toss. Clearly, they must
also vary randomly. In other words, it is crucial to specify
how the coin is tossed. Clearly a sequence of coin tosses
will be random if the uncertainty € of the initial condi-
tions is large compared to the width W of the stripes
characterizing the basins of attraction. (Of course, it
must be assumed that an uncertainty in making the flip
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FIG. 1. Outcome of a simplified model coin toss of Ref. 4 as
a function of the initial excess height z and the initial rotational
energy E. (Dark regions correspond to heads.)
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FIG. 2. (a) Same as Fig. 1 but for a more realistic model coin
toss described in the text. Surface parameters are ¥ =0.3 and
u=1. (b) Inset from (a), enlarged. Fuzzy boundaries and isolat-
ed points of (a) here reveal additional structure. (c) Inset from
(b), enlarged. Apart from graininess due to the finite number of
points shown, the boundaries are smooth. Under further magni-
fication no new structure can be resolved.

picks out at random a set of initial values in a region
whose size is characterized by €). This is the fundamental
reason that a coin toss is perceived to be random. Namely,
the deliberate inability of the tosser to choose the initial
conditions precisely enough so that the coin toss is statist-
ically repeatable leads to the unpredictability and random-
ness of the result. That is, the condition W <<€ is essen-
tial for a random output, where € depends on the mecha-
nism of flipping, while W is intrinsic to the coin.

This conclusion is disappointingly trivial and may
indeed have been the conclusion reached by many, in
times before modern ideas about random sequences be-
came fashionable. However, it is worthwhile noting that
by a continuous decrease in €, which can be achieved
without any change in the coin itself, the situation W >>¢
can be achieved. This is the condition for many devices
which are meant to be deterministic, for example, keys on
a calculator. The distance between keys is W, while € is
related to the diameter of the fingertip. A wristwatch cal-
culator is an example of a device which is nearly on the
borderline between mechanically deterministic and
mechanically random because W >e.

However, Fig. 1 depicts a much simpler BA than that
of more realistic models. BA’s for a more realistic model
(Sec. III) which allows for bouncing of the coin from the
surface are shown in Fig. 2. While the details of our
model toss are postponed for Sec. III, we notice here that
in our model, and in any other realistic coin toss model,
the outcomes heads and tails are the stable point attrac-
tors. Since stable attractors have open basins of attrac-
tion® it then follows that for a general choice of initial
conditions there is a sufficient precision € (€0) to ensure
that all successive tosses give the same outcome. We ex-
pect, though, that actual coins with more degrees of free-
dom would have more complicated BA’s than for the
model of Fig. 2.

The BA of a finite dynamical process is the most com-
plete intrinsic measure of what it means for the process to
be random, or more precisely, how that process converts
uncertainty in the initial conditions into uncertainty of the
final result. It does not seem to be possible to give a
meaningful classification of BA’s. Nevertheless, it is of
some interest to consider ways in which it could be said
that a degree of intrinsic randomness can attach to the
basins of attraction themselves.

More generally, the parameter W (and €) must be re-
garded as a vector of parameters which varies with posi-
tion in initial value space. Suppose that W decreases ex-
ponentially as some conveniently controlled parameter is
varied; for example, it could decrease exponentially with
initial total energy. Then the BA could be considered to
have a sort of intrinsic randomness in somewhat the same
sense that we say the weather is unpredictable, namely,
any improvement in € could be counteracted by raising
the height a bit or by trying to predict weather farther
into the future.

Even if a DNS is nonrandom, there is a possibility that
basin boundaries separating BA’s have complicated, in
particular, fractal structure. Grebogi et al.” have pro-
duced and studied such systems. They show that final-
state sensitivity depends on the fractal characteristics of
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the basin boundaries (BB). Their analysis gives a generic
result for fixed BA by considering the limit e—0. This
limit is not really applicable to the case of a system which
is perceptually random, but rather consists of the error
analysis for a system which is nearly predictable.
Nevertheless, it is worth investigating the possibility that
BB’s of a coin toss are fractal. [Near a given BB, if initial
conditions are taken with error €, then a fraction f(e) of
initial points give uncertain outcome. In the limit e—0,
f(e)~€* where a <1 for fractal and a=1 for smooth
boundary.]

Fractal BB’s can be classified further as discontinuous
(e.g., an uncountable sequence of disjoint stripes) or con-
tinuous (e.g., a snowflake structure). For our model coin
toss we have numerically determined that the BB is
smooth, although at low levels of resolution it appears as
a disjoint fractal (see Fig. 2). We also argue on general
grounds that the BB for coin tosses and other common
randomizers is smooth.

It would be of interest to determine the deviations of
the system from randomness as W/e— «. We have not
found a way to do this which did not depend very impor-
tantly on the form assumed for the uncertainty in the ini-
tial conditions, suggesting that the characteristics of the
tossing mechanism are much more important than those
of the coin. However, we speculate that if the uncertainty
in initial conditions has the form of a Gaussian distribu-
tion of scale € about the nominal initial condition, then
the corrections to “true” randomness are small in propor-
tion to exp[ —(W/e)*]. This may explain why coins
behave in practice as perfect randomizers.

III. DESCRIPTION OF THE MODEL

To illustrate and expand on the points just discussed we
need a fairly realistic model, in particular one which has
the important nonlinearities involved in describing the
bouncing of the coin from the surface. As mentioned ear-
lier, we regard the coin as a rigid body, falling in vacuum
onto a perfectly flat surface. In order to further simplify
calculations, our model coin has only one axis of rotation
(one of the coin diameters). In other words our model
coin cannot wobble. It is equivalent to a rod which can
move in one vertical plane only (two-dimensional coin
toss). While this two-dimensional (2D) coin toss cannot
be compared meaningfully with experiments done on
three-dimensional (3D) coins, it should be a good model
for a physically realizable system (although we do not ad-
vocate trying to build such a system). In other words, we
have every reason to expect that this model describes a
system in the same class as coins and dice. We give some
details of the model below in case someone wants to check
our results, and because there are a few amusing features
which were not obvious before doing the calculation.

We choose units such that mass of the coin, its radius,
and the acceleration of gravity are all equal to 1. Gravity
acts along the negative-z axis, the surface against which
the coin collides is a plane perpendicular to the z axis and
the coin being two dimensional can move only in the xz
plane. Motion between the collisions is trivial and the
only effort required is in finding the times of collisions.

We also need to specify laws which govern the collision.
Assuming that the collision is instantaneous we have

: =U;+ap, +bp, ,
u;c =Uy +bpz +¢cpx

where u and u’ are endpoint velocities before and after
the application of momentum transfer p, a=1
+sin(8)*/1, b=sin(6)cos(0)/I, c=1+cos(6)*/1, I is the
moment of inertia, and the angle @ gives the orientation of
a coin at the collision. 6 is measured from the z axis so
that 6=m/2 corresponds to a coin parallel to the floor
with heads facing up, and a counterclockwise rotation
around the y axis corresponds to a positive change in 6.

We assume an inelastic surface with friction described
by the inelasticity parameter ¥ (0<7y < 1) and the coeffi-
cient of friction u (u>0). Following Whittaker® and
Roth’ we choose u, =—yu, and p,=—sgnlu,)up, if
that leads to u, such that u,u, >0. In case this gives
u,u, <0 we separate the collision into one or two parts.
In the first part there is a transfer of momentum p‘!’ such
that p{" = —sgn(u, )up,"’ and the endpoint velocity at the
end of the first part of collision, u'!’, satisfies u;”=0. If
u" >0 we assume the collision has ended. If u)" <0 we
assume that the second part of collision occurs, at the end
of which endpoint velocity is specified by u*'=0 and

(2) (n
u, " =—yu, .

While the above definition of the collision is somewhat
arbitrary, it satisfies the following physical requirements:
energy after the collision is never greater than before the
collision; p, is positive; p, acts as a friction (tends to de-
crease |u, |); u, is positive.

IV. RESULTS OF NUMERICAL SIMULATIONS

Numerical simulations were done for y=0.3 and u=1
and we have used =7 characteristic for a uniform rod
of mass 1 and length 2 (the 2D coin). In Fig. 2 we show
BA in the (z,E) plane. z +1 is the initial height of the
center of mass of the coin above the surface and the initial
rotational energy is E=0.5Iw? The initial velocity v and
the initial angle 6 are chosen to be zero and the initial an-
gular velocity w to be non-negative. The general pattern
of Fig. 2(a) is clearly related to Fig. 1. Namely, at the en-
ergies under consideration, for most tosses the final out-
come is determined by the first collision, i.e., in a typical
toss the total energy of the coin decreases below 1 after
the first collision.

From Fig. 2(a) we see that there are large regions in the
phase space where even significant changes in the initial
conditions (z,E) do not change the outcome. It cannot be
seen from Fig. 2 but one expects and we have checked
that the wide stripes do not suddenly disappear but con-
tinuously change positions as the initial angle 0 is varied.
This means that a two-dimensional section of the phase
space shown in Fig. 2 is a good indication of what hap-
pens in the entire phase space.

To check for the possibility that the basin boundary
separating heads from tails is fractal, in Fig. 2(b) we show
an enlargement of a typical boundary region of Fig. 2(a).
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It is seen that the boundary region of Fig. 2(a) consists of
many little stripes. However, in a further enlargement of
Fig. 2(b) shown in Fig. 2(c), no new satellite stripes are
found. This shows that our model coin toss has the
smooth BB. Below, we connect this result to the concept
of significant collision and argue that there are only a fin-
ite number of stripes in a given energy region because
there can be only a finite number significant collisions of
the coin with the surface.

Even for DNS which have only stable point attractors
and have smooth BB’s there is a further meaningful
description based on the (average) final-state sensitivity
when some initial parameters of the system are being
varied. For an arbitrary point in a BA there exists a max-
imal error in the initial data which still does not change
the outcome. We may analyze how this maximal allowed
uncertainty U (and its relevant moments) varies with ini-
tial data. The average uncertainty U is related to the
characteristic size of the basins of attraction. While the
model coin toss gf Ref. 4 obviously has U=const, in or-
der to find U=U(E) for our model toss we had to use a
computer to determine positions of boundaries in the
direction of increasing energy. We choose to count the
number and positions of the boundaries along the main
diagonal of Fig. 2(a).

The total number N of boundaries crossed, along the
line segment from the origin z=E =0 to z =E, is shown
in Fig. 3. An approximate exponential dependence of
N=N(E) is seen explicitly in the inset of Fig. 3 where
In(N) is shown versus E. For 15> E > 3 one has approxi-
mately N =exp(0.4+0.273E). However, the data for the
highest energies probed (18> E > 15) suggest a steeper
than exponential asymptotic N =N (E) dependence.

The fact that the average width of the stripes decreases
with the initial energy slightly faster than exponentially
means that in some sense a coin toss is random. However,
things are much more complicated. The point is that the
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FIG. 3. N, the number of boundaries crossed along the main
diagonal of Fig. 2(a), from the origin to the point with rotational
energy E. An approximate exponential dependence of N on E
in the energy interval 3 < E < 15 is seen clearly in the inset.

distribution of stripe widths is very broad. There are wide
stripes whose width decreases on average very slowly with
energy. The precision tosser would have an easy task
achieving a certain outcome if aimed for the center of one
of these regions. On the other hand, there are fractal-like
regions, located in the vicinity of tosses where a coin at
the first collision lands perpendicularly to the surface,
where the stripe width decreases with energy faster than
exponentially.

Figure 4 is a semilogarithmic (base 10) plot of stripes’
widths as a function of E at the stripes’ right boundaries.
The fact that for larger energies (E > 10) the lower en-
velope of points on Fig. 4 decreases somewhat faster than
linearly suggests that the width of the narrowest stripe de-
creases with energy faster than exponentially.

We were not able to fit the decrease of the width of the
widest stripe to either a power law or an exponential
dependence with energy. The absence of a simple fit is
caused by the toungelike domains, protruding from high-z
regions, which first cross the z =F line around z =14.1
[see Fig. 2(a)].

The abundance of boundaries in a given (small) energy
region is determined by the maximal number of signifi-
cant collisions for a toss in that region. We define N, the
number of significant collisions for a given toss, as the
number of collisions after which the coins orientation
changes quadrant. This is based on the expectation that
flat and perpendicular collisions behave as branching
points for the further evolution, and the observed fact that
repeated consecutive collisions in the same quadrant cost
little energy and do not affect future evolution so drasti-
cally.

In Fig. 5 we plot N; corresponding to different
boundaries as a function of E. We notice that for larger
energies (E > 10) the upper envelope of points in Fig. 5 in-
creases slightly faster than linearly with energy. These
points correspond to tosses at the very narrowest
stripes—and for such tosses, except for the first collision
when the coin loses a significant portion of its energy, in

_|o_

log‘cw-

FIG. 4. A semilogarithmic plot of stripe widths W along the
main diagonal of Fig. 2(a), as a function of the rotational energy
E at the stripes’ right boundaries.
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FIG. 5. N;, the number of significant collisions for tosses at
different boundaries, along the main diagonal of Fig. 2(a), as a
function of rotational energy E at a given boundary.

each of the subsequent collisions energy decreases by a
small, though weakly increasing amount.

We have also investigated how N,, the number of signi-
ficant collisions per toss, averaged over 100 equally spaced
initial angles between 0° and 180°, changes as a function of
energy. From Fig. 6 we see that N, increases logarith-
mically with E, meaning that in a typical toss, at each sig-
nificant collision, the coin on average loses a fixed frac-
tion of its energy.
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FIG. 6. N,, the number of significant collisions per toss,
averaged over 100 equally spaced initial angles between 0° and
180°, as a function of z=E. Error bars are equal to two stan-
dard deviations of the N distribution.

V. ANALYSES OF THE RESULTS

In this section we describe the critical point which
characterizes the stripes’ boundaries and discuss some ad-
ditional approximations used to handle consecutive soft
collisions.

From numerical solutions one finds that between suc-
cessive collisions, in tosses with the greatest number of
significant bounces, the angle changes by almost exactly
180°. This requires wv, to be nearly constant, Fm/2,
which for large total energy means that | v, | is small and
|w| large, or vice versa. We always find that || is
large and nearly equal to | v, | so that u, is very small
and u, =0. Collisions are such that the coin hits the sur-
face nearly upright and |w | decreases a bit.

For each boundary found in numerical simulations,
tosses very near the boundary involve very many soft col-
lisions, all in the same quadrant, with the effect of orient-
ing a coin closer to being orthogonal to the surface. A
collision is called soft if the momentum transfer during
the collision is very small. Such a collision is followed by
many other soft collisions, occurring in exponentially de-
creasing time intervals (“‘chattering collisions”).

After very many soft collisions, a stage is reached, how-
ever, where either the total energy of a coin is decreased
below 1 and one can stop the execution, or the upper
bound on the error for u, exceeds u,. In the second case
we usually already have u; =0 so we set u, to zero and
proceed through a rotation with u, =u, =0 fixed. In very
few cases would one have nonzero u,. In these cases we
assume that the surface first instantly supplies the neces-
sary momentum to set u, to zero and then again proceed
with a rotation with u,=u, =0 fixed. Once a coin is ro-
tating, for tosses near the boundary it does so so as to in-
crease its height and then eventually flips over and falls
flat on the other side. We have made sure that in all such
cases the lower bound on energy (error estimation) is
larger than 1 so that the flip is really possible.

Our simulations reveal that the critical point which
determines whether the final outcome will be heads or
tails consists of many chattering collisions all of which
have the effect of orienting the coin closer to being per-
pendicular to the surface. Tosses where such collisions
never make the coin stand up on its edge form one side of
a given boundary, while in tosses on the other side of a
boundary, after many chattering collisions the coin starts
rotating and finally flips over.

The ad hoc approximation which we used to treat the
very few cases of nonzero u; is expected at most to slight-
ly displace those few boundaries. One may also object to
the rule which keeps u, =u, =0 fixed during the rotation
since in general this may require a force F supplied by the
surface such that |F, | > | F,| or F, <0. However, this
does not happen for rotations entailed in tosses close to
the basin boundaries. These rotations are characterized by
w?<<1, |sin(@) | <<1sothat F,=1and |F, | << 1.

The error estimation is an essential part of numerical
simulation for coin tosses used to generate Figs. 2—5, and
while we have made sure that the outcomes of all tosses
used to generate these figures are certain, Fig. 6 is an ex-
ception, however. Almost all tosses used to generate this
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figure occur at enormous initial energies so that when fi-
nally the total energy of a coin decreases below 1 the
upper bound on the error in the orientation of a coin is so
large that one cannot tell if a coin is heads or tails. For-
tunately, to find N, it is not crucial to know whether a
particular toss ends up heads or tails. Rather, we assume
that numerical uncertainties in the orientations of a coin
are uncorrelated and equivalent to averaging over dif-
ferent nearby initial conditions of a coin. Since N, is by
definition the average of N, this additional numerical
“self-averaging” should not change its value.

We have also analyzed a coin toss of frictionless surface
(px =0) with a collision law u, = —yu, and demonstrated
that it is a predictable process.! There again a long se-
quence of chattering collisions represents a critical point,
and on one side of each boundary is followed by sliding
(instead of rotation) which finally turns the coin over.

The quantitative numerical analysis has been done only
for the surface with friction, however.

It would be interesting to consider other classical dissi-
pative systems, and in particular determine the distribu-
tion of the sizes of the BA’s and its dependence on total
energy.
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