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The formation of a one-dimensional periodic pattern from an originally homogeneous infinite sys-
tem is analyzed. We develop a mean-field-like theory for the structure function. The method gives
predictions for the temporal evolution towards the final stationary state. It predicts a shift of the fi-
nally selected wave vector away from the maximum of the linear spectrum. Numerical simulation
confirms this behavior for intermediate times but shows a “lock-in” of the pattern with subsequent
conservation of “nodes.” Thus the final wave vector in general is neither the one predicted by our
modified mean-field calculation nor one of those predicted by other selection criteria based on sta-
tionary solutions only. At long times a phase diffusion regime is observed where the node distances
equilibrate. This results in a ¢ ~!/* law for the width of the structure function which can be under-
stood in terms of a linear diffusion equation for the phase by assuming a random distribution of the

gradient of the phase at the lock-in time.

I. INTRODUCTION

Spatially extended continuous dissipative systems often
tend to form stationary periodic patterns. Examples are
the Rayleigh-Bénard instability of convection, the forma-
tion of cellular interfaces in crystal growth, or spatial pat-
terns in chemical reactions like Liesegang rings. The
underlying mathematical models, nonlinear partial dif-
ferential equations, typically give a continuous band of
solutions in an interval Q =[I/c\ 'k 2] of the wave number
k of the basic periodicity, where a solution within this
band is stable against small-amplitude perturbations.

One of the most intriguing questions in this context
concerns the ultimately selected wave number k—
depending on initial conditions, boundary conditions, and
external noise—and the dynamics of evolution towards
this pattern. Several different selection principles have
been proposed' ~'” to answer the question of which pat-
tern is to be selected. If the equation of motion can be de-
rived from a Lyapunov functional, one has the principle
of minimizing this functional."*> The second princi-
ple,*¢ containing this first one as a special case, is based
on a balance of forces between solutions of different k
value and is not restricted to systems derivable from a po-
tential function. The third idea’ is a phase-space argu-
ment. It assumes that the system selects the mode most
susceptible to external noise. A quite different approach
deals with the formation of periodic patterns via front
propagation. It seems to apply to cases where the fluctua-
tions responsible for the instability of the homogeneous
system are sharply localized in space. The resulting pat-
tern is governed by the “marginal stability” principle.>!°
The selected wavelength does not correspond to the ones
obtained by the previous arguments.>®

Thus, one is led to the conclusion that a static criterion
is not sufficient to determine the finally selected pattern,
even when the external boundaries are so far away that
the only important length scales are given by the interval
Q of the possible wave numbers. Nevertheless, one may
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hope that the process of pattern selection still has some
universal features such that one may define a set of
dynamical classes of problems with equivalent behavior.

One obvious criterion concerns the type of fluctuations
triggering the instability of the initially homogeneous sys-
tem. If the fluctuations are spatially localized, pattern
selection will be via front propagation.” ' If, however,
the fluctuations are spatially extended, the system will
first develop periodic structures over finite regions in
space. The final state is then a result of the competition
between these different regions.

In many cases such an instability of a homogeneous
system towards pattern formation occurs only when some
control parameter exceeds a critical value. An example is
the Rayleigh number in Rayleigh-Bénard experiments.
An approximate description of the dynamics of this sys-
tem in the close neighborhood of the critical Rayleigh
number is achieved by a complex amplitude equation.!?
For small initial perturbations with a broad spectrum in &
space it was shown by a multiple-time-scale analysis? that
the finally selected mode corresponds to the one which
minimizes the corresponding Lyapunov functional. Near
criticality this also corresponds to the critical value.

For the dynamics of these processes one has at least
three different time scales, apart from the short time scale
of the triggering fluctuations.? Starting from small am-
plitudes of random perturbations, the instability of the
homogeneous system first grows exponentially until the
amplitude of the spatially oscillatory pattern is compar-
able with the final state. Then follows a rearrangement of
the “nodes” of the pattern which depends on the nonlinear
nature of the problem. The final approach to the station-
ary periodic state then can be understood as a (linear) dif-
fusion process of the locally varying phase.

Most of the previous analysis of this problem is restrict-
ed to the immediate neighborhood of the critical point
and to small random amplitudes as initial conditions. In
the present investigation we try to gain some insight into
the selection process for more general initial conditions
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and beyond the critical region. For this purpose we for-
mulate in the following section a mean-field theory for
the structure function using a one-dimensional model
equation. It resembles the one used in the problem of
spinodal decomposition.!!~1* For short times a simple-
minded decoupling scheme suffices. For longer times,
when the system is approaching a periodic pattern and the
structure function is considerably sharpened, a modified
mean-field theory is more appropriate. This recovers
known results for the critical region but gives predictions
for a shift in wave vector outside the critical region to-
wards smaller k values. In Sec. III we present results of
extensive numerical studies. They indicate the different
time-scales: exponential linear growth of the unstable
modes at small times, saturation of the amplitudes and
decrease of the width of the structure function, as predict-
ed by the modified mean-field theory, at intermediate
times, and, finally, a slow rearrangement of the nodes by
phase diffusion after their number has become fixed. The
finally selected wave vector turns out to depend on the in-
itial conditions for the structure function in analogy to
memory effects found in spin-glass systems.!*> In Sec. IV
we analyze the time dependence of the width of the struc-
ture function in the phase diffusion regime.

II. MEAN-FIELD DYNAMICS

A simple pattern-forming equation of motion for some
one-dimensional field y (x,?) in one space dimension is

B =Ly, —pd ), (1)

at

where . is a linear operator giving rise to a spatially os-
cillatory structure. In our calculations we use the
Hohenberg-Swift'¢ form:

L=y'—

2 |
1+ 5“2* , (2)

38—5(]( 1) =0 S (k,t)—

with 0<y <1 as the control parameter.
Fourier transform of Eq. (1) is

The spatial

%y(k,z)znky(k,n

— [ dg [ dg'ytk—g—q"iaia)

(3)

where Q; is the Fourier transform of .#. It is real with a
maximum at k=1 and positive for k! <k <k? Thus, Q;
causes the homogeneous system to become unstable
agzainst perturbations with wave numbers between k! and
k-

The real stationary solutions of Eq. (1) can be given as a
Fourier series,’

y(x,t)= 3 ay,icos[(2l + Dk (x —xo)] . (4)
=0
To lowest order in y the coefficients are a,,;~y**!,
with

a;=(30)"2+0(Y,
(5)
03—01/(4Q3k)+0(y ).

Linear stability analysis has shown that these stationary
solutions are stable against small perturbations in a nar-
rower band k' <k '<k <k?<k?

We will now address ourselves to the question which k
value out of this band will be selected dynamically start-
ing from a random initial fluctuation. To this end we in-
troduce an equal-time correlation function

S(k,)=(y(—k,t)y (k1)) , (6)

where the averaging is over initial conditions or
equivalently, in the infinite system, over space. From (3)
one has

[ dqf dg'{y(—k,tly(k —q —q",t)y (g, t)y(g",D)) . %)

The simplest approximation is to decouple the four-point correlation function into three pairs of pair correlation func-

tions (random-phase or mean-field approximation),

19 gin=

L2 |23 [ dastan|stkn .

(8)

In this approximation the nonlinearity is independent of k; the different k modes couple only via the total amplitude.

This can be utilized to solve the equation exactly:

20, 2() t

S(k,t)=S8(k,0)e

The relaxation to the final state with k=1 proceeds via
amplitude relaxation only. This final state is independent
of the initial conditions as long as S(k =1, =0)5£0. The
higher harmonics of the stationary solution (4) are not
present and the ground-mode amplitude is reduced by a
factor of 2.

This approximation can be shown to give correct results
for the early stages of the system evolving from a homo-

1+3f dgle” "' —1)S(¢,0)/9,

—~1
9)

r
geneous state perturbed by small amplitude fluctuations,
but, as in the analogous theory of spinodal decomposi-
tion,® it breaks down before a true stationary solution (4)
of Eq. (1) has been reached. This is due to two major
shortcomings of the simple decoupling in Eq. (8). First, it
produces an overcounting of terms in the four-point
correlation function by a factor 2, when the system be-
comes coherent over large distances compared to the
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characteristic wavelength Ay. Second, the higher harmon-
ics are assumed to be incoherent with their basic modes.
We are interested in the long-term behavior of the sys-
tem. In the following, therefore, we describe a decoupling
approximation which allows for asymptotically stable
solutions. We start from a plausible assumption that the
system evolves rather quickly into a state where one can
define extended spatial regions (which we number by
I=1,...,n) with k values k; close to 1. This is a conse-
quence of the random initial fluctuations which lead to
different amplitudes and spectra in different regions of
space. The amplitudes in these regions will adjust quickly
to the local saturation amplitudes, Eq. (4). We take into
account the strong correlation of the pattern within each
region but neglect phase coherence between these regions.
We formally decompose the system into a sum over re-
gions L; of finite extents L; >>2m/k; centered at x;:

N
yk,= 3 yi(k,t) with N— oo , (10)
I=1

with a reality condition y;(k)=y;"(—k).

At a sufficiently late stage the regional y;(k) will have a
structure similar to the stationary solution, Eq. (4), i.e., it
|

k)zﬁ,z(k —-q'—q"

will consist of nonoverlapping peaks positioned at
(2n +1)k1:

—i inln)
nikn=e "3 Zmamr
n=%1,%3,...
= ™S k) (1
n=%+1,%3,...

where 8" has an envelope which is peaked at nk;.
Its width is ~L;' and it is normalized by
f dk | 8{(k)|*=1. p{™ is the mean phase and z;" the
average amplitude of the nth harmonic. The quantities
zi™, pi™, 8™, and ¢} are all time dependent As first ap-
proximation we assume that the phases p, " of adjacent re-
gions are uncorrelated while they are correlated within
each region. We define correlation functions S (k) by first
averaging over space x’, {y(x +x')y(x')),, then Fourier
transforming with respect to x, and finally averaging over
the random phases pf” and using the vanishing overlap

between peaks at different nk;:
sko=Ls 1 3 ,‘"’)2|5‘,"’(k)|2. (12)
NS L posiis,

By the same procedure, we obtain, for the nonlinear term
of Eq. (1)

(ny) (ny)

(" " (g") . (13)

I,(k) has the same peak structure as S (k). We will concentrate on the main peak at k~k;~1. Noting from the station-
ary solution, Eqgs. (4) and (5), the rapid decay of the amplitudes of the higher harmonics, we can expand Eq. (13). In

lowest order only the peaks at k~=+1 will contribute. The next-order contribution contains z‘*’

sidered later. Using the reality condition
U (==K,

the lowest-order contribution is

linearly and will be con-

I(]) 2 L[ f dq f dqll[w(l) ] ,¢(1 k+q q [w(]) )]*w(’ll(qu) . (14)

Since for large times ¥§"’(k) will be strongly peaked around k =k;, we approximate Eq. (14) by

1V ()~ iz

5 2 [, da 191V |?

1
23 1)
!

(15)

This expression becomes exact for the stationary state where only one k survives. If, instead, we would have a broad but
random distribution of k values, we would get, as in the standard mean-field theory, a prefactor 6 instead of 3. In gen-

eral, one expects a time-dependent prefactor.

As a last approximation we replace the integral in (15) by its / average:

lf dq|11Jm(q —Z f dq Wu) )| 2

(16)

The idea of this mean-field-like relation is that the scatter in k; values between different regions is small compared to the

inverse correlation length 27 /L;.
separated by defects at a typical distance L ~27/A.

In other words, the system is assumed to consist of large regions of wave number k

The equation of motion for S(k), the main peak contribution at k~1 to the pair correlation function, is obtained by

inserting (12), (14), and (16) into (7):

L3 s,n=

T 0. S(k,t)—38(k,t) fo dq S(q,1)

—R (k1) .

(17)
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R (k,t) contains the contributions to the main peak from the higher harmonics. As one can see from Eq. (13), to lowest

order this contribution is linear in 3}*"

kt)—— z f dq f dqud](—l) k)wP)(k +qr+qu)¢}—l)(_ql)d’(1—l)(_qll) . (18)
From (1) with (11) we can derive an equation of motion for ¥{*/(3k):
CIE) (D) (1)
3 U3k = = Q3> (3k, ) — f dqf dg" ¥\ 3k —q' —q" i (g i (g") . (19)

Due to the large decay constant | Q3; | (Q3;~—64 for k~k;~1), ¥i> will adjust nearly adiabatically to ¥}

¢‘3’<3k)~——f dg' [” dg"4f"(3k —q'—q" Wi (@i (g") . (20)

Inserting this into Eq. (17) and using a decoupling scheme
analogous to the one leading to Eq. (17) yields

-] A 2/\
R (k,1)=(3/Q3) [fo qu(q,t)] Stk,e) . 1)

The final (approximate) equation of motion for the
main peak is (17) in conjunction with (21). The first two
terms on the right-hand side of (17) closely resemble the
straightforward mean-field approach to spinodal decom-
position,'! 13 which, however, would give a factor 6 in
front of the integral. As mentioned above, this is a good
description of the short-time behavior. The difference
arises because of the here assumed strong correlations
within large regions. More elaborate versions give a glid-
ing prefactor in spinodal decomposition,'*!* which could,
in principle, also be incorporated here. The essential
difference to the theory of spinodal decomposition is that
for our equation the asymptotic pattern settles to a value
k=0 not a priori defined and incorporates the influence
of higher harmonics in R (k,t).

Since we have ignored the detailed mechanism of node
annihilation and generation between two neighboring re-
gions, we would expect this equation to overestimate the
rate of convergence to a final state. To see what the pre-
dictions of (17) and (21) are, we assume §(k,t) to be
strongly peaked around k(¢), with a peak width (second
moment) w(t), and expand S(k,t) around this peak. This
gives three coupled differential equations:

a ~ A
5, Stko) =4, S(ko) , (22a)
9 9 2
ko= [ako Ay, [w?, (22b)
8 -L 2 3
atw ako kO w-, (22¢)
Ay =29, —6 [ " dg S(g,)
o A 2
~(6/Q3k0)[f0 qu(q,t)] . (22d)

Explicit trajectories are obtained by inserting, e.g., a
Gaussian for for §(k,t).

A more convenient variable than S (ko) is the averaged
square amplitude ((z'V)?) or the integral over S(k,1),
which goes to a finite value for t— «. In Fig. 1 we give a

r
schematic plot of some typical flow lines for the long-time
behavior of ((z'!)?) versus k,. Parameters of the curves
are different initial conditions. The averaged square am-
plitude ((z")?) relaxes exponentially fast to a value
where Ay ~0. The width w of the peak decays with a

power law,
w~t~12 (23)

while the dominant wave vector kq(¢) shifts to its final
value k  like

ko(t)—k o ~t~'Int . (24)
The shift of this asymptotic value k , away from 1,
ko =1—177%, (25)

including contributions up to the third harmonic 3k,
differs by 3 from the shift obtained by minimizing the
Lyapunov functional® corresponding to Eq. (1). This is
possibly due to the simple decoupling leading to Eq. (21),
but there is no a priori reason that a mode differing from
the static minimum could not be preferred dynamically.
The method described here is not restricted to systems
with a Lyapunov functional as in (1) and (2), provided the
spectrum ; in (3) in real. The main deficiency of our
approach is, however, that we completely ignore phase
correlations between neighboring subsystems. Neverthe-
less, close enough to the critical point (7% << 1) the contri-

a4
§ 4
/] @
/] .
0o4+—2 LNV t
0 K ] Tl

FIG 1. Temporal development of the averaged amplitude

=([z2'"(0)?—[2"(1)]?) versus the mean wave vector ko(z)

as predlcted by Eq. (22) (schematically). &, is the finally select-
ed wave vector.
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bution from the third harmonic becomes irrelevant, and
the result of (22) agrees with the exact results for this lim-
it both concerning the selected wave number k , =1 and
the diffusional behavior of w ~t~!/2,

III. NUMERICAL ANALYSIS

We have performed a large sequence of numerical in-
tegrations of Egs. (1) and (3) with (2) in real and k space.
While the k-space integrations are more efficient for the
long-time behavior, the real-space calculations were done
as a countercheck on numerical accuracy.

The real-space integrations used a grid of some 25000
points with a grid spacing Ax~0.05X27. This amounts
to > 1200 full periods of the finally selected structure.
For most calculations we used reflective boundary condi-
tions. To check the dependence of the time evolution on
the boundary conditions, we also did calculations with
diffusive boundary conditions on one end, i.e., we gradual-
ly replaced the actual linear operator ., Eq. (2), by
3%/0x? at one boundary over the range ~100 wave-
lengths. Derivatives were taken with three- and five- or
five- and seven-point formulas for the second and fourth
derivatives, respectively. An implicit integration method
was used and counterchecked with a four-point Runge-
Kutta method.

The k-space integrations used a set of up to 8000 equal-
ly spaced modes with spacing Ak <0.001. Integration
schemes were the same as in real space. A comparison be-
tween the two different approaches gave a scatter <1073
in the number of nodes ultimately obtained which corre-
sponds just about to the discretization error. The dynami-
cal evolution of the structure function also was identical
for the two different approaches within the range of the
numerical accuracy. We are therefore confident that the
numerical results are excellent approximations to the true
dynamical behavior of the system.

The initial conditions were typically given by

p(k, t =0)=+A (Ry ++)e —4k—F7 (26)

where the + sign was taken at random, 0 <R <1 at ran-
dom, 2X107°< 4 <2x 1077, 0.8 <k < 1.2, and the width
of the Gaussian was larger than the width of the interval
[k!,k2], where Q; >0. For each parameter set { 4,k} ten
runs with different independent R, values were done.
The integrations were run over a time such that a single
mode was remaining. In time units of Egs. (1) and (2) this
corresponds to times of up to ~ 1Q%, which are the typical
diffusion times of our system.

Figure 2 shows an example for the development of a
periodic structure of y(x,t), according to Eq. (1), starting
from a random initial state. Already after short times
t=~30, a quasiperiodic state is reached. More detailed in-
formation can be gained from a k-space representation,
Figs. 3 and 4. In Fig. 3 we show the time-dependent
structure function S(k,t) for ¥=0.5 in the interval
0.6 <k < 1.4 at times r=0,20,75. The k spectrum initially
was centered at k=1. At t=20, S(k,¢) still looks like a
Gaussian, but is considerably sharpened. The random
fluctuations seem to have slightly decreased. At t=75,
however, the fluctuations around the Gaussian backbone

002 {t=0 o
-0.02

0.02
-0.02
0.2
-02

024

_02-' ‘51;”

t

yix,t)

-— X
FIG. 2. Numerical example for the evolution of a periodic
pattern from a random initial state, according to Eq. (1), ¥y =0.5.
Only a short section is shown.

have amplitudes comparable to that backbone. The same
happens in Fig. 4, where we have started with a structure
centered at k=0.8. This indicates the buildup of correla-
tions between different k modes. (Both Figs. 3 and 4 cor-
respond to single runs.)

t=75
5107

S k.t —

1

10 (- 12 14

00.6 08

FIG. 3. Evolution of the time-dependent structure function

S(k,t) for ¥ =0.5 and for k=1 starting from small amplitudes
(note the different scales).
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FIG. 4. Evolution of the time-dependent structure function
S(k,t) for y=0.5 and for k=0.8 starting from small ampli-
tudes (note the different scales).

To gain more insight we study the time dependence of
the lowest momenta of the structure function S(k,?), i.e.,
the amplitude

(2= [ dkS(k,p),

the peak position kg, and the peak width w. For the
latter we used the definition

© P © N 271172
| Sy dkRBSn | [ dk kS

Wy = © PN ) A
[, ak Stk [, dkSk,n

(27)

To compare with real-space calculations, we introduced a
corresponding width w:

21172

; (28)

Wy =

ot k2
- J, dx k-

LL fdxk(x)

where k(x)=w/A(x), and A(x) is the distance between
two nodes of y(x). Asymptotically, for nearly periodic
structures, the two definitions coincide, as was also found
in our simulation.

In Fig. 5 we show for a single run, corresponding to
Fig. 3, the time dependence of the square amplitude
((z'")?) and the peak width w(t) of the structure func-
tion. Starting from small fluctuations 4 =2x10~* [Eq.
(23)], the amplitude first increases exponentially with time
and then practically reaches it final value near times
t~10%. The width w of the structure function shows a

10' e 10"

100F 4, 4 1072

baof o 1073

Si(gt —

\\o
I}
x
M
X
f
o
a

~x.,,“)( WNo

1025~ 2107

10'3 1 1 1 10‘5

0 1 2 3 4
10 10 10 *_»10 10

FIG. 5. Peak width w and amplitude Eq §(q) of the struc-
ture function versus time (y =0.5). Note the saturation of the
amplitude and the change of the power law for w(t) from ¢~'/2
to t~1/*at t~75.

behavior consistent with the predicted ¢ ~!/? law [Eq. (23)]
for the modified mean-field approximation over the inter-
mediate time scale t~5 to 50, but then decays consider-
ably slower. For these later times a good fit is given by a
t =174 power law. This continues until times 10°—10° (see
also Fig. 7), when, for our system size, the structure func-
tion contains only a small number of modes, and therefore
it is no longer representative for an infinite system. The
width then decays exponentially (not shown), finally leav-
ing a single mode plus its higher harmonics. The calcula-
tions show that at the same time, t~100, where the am-
plitude saturates and the time behavior of the width
changes from ¢~/ to ¢t ~!/#, also the number of nodes be-
comes fixed. Therefore, the final k value is already de-
fined and the subsequent dynamics on longer-time scales
deals only with the rearrangement of nodes until they be-
come evenly distributed over the full space. We will dis-
cuss this phase diffusion in more detail in the subsequent
section.

It was already argued previously’ that the initial state
of the system may influence the final selection process.
To see this we have varied the initial amplitude A of the
fluctuations over 5 orders of magnitude with the spectral
distribution centered at k=0.8, 1.0, and 1.2. Results for
the k selection are shown in Fig. 6, where each point
represents an average over ten runs with independent ini-
tial conditions [ R, of Eq. (23)]. The variance in the final
k value was of the order ~5%10~3. For very small am-
plitudes the system finally settles to the value k=1 of the
most unstable mode, as expected. For large initial
amplitudes—corresponding to a turbulent state—the sys-
tem also tries to settle near k=1, but becomes locked at
smaller or larger values, dependent on where the initial
spectrum was centered. Note that even for k=1 we ob-
tain a shift to smaller k values. This is still within 1% of
k=1, but definitely resolvable by our numerical grid of
Ak~10"3 We attribute this latter shift to the fact that
Q; is not symmetric around its maximum at k=1, but
dampens the larger k values more strongly than the small-
er ones.

These observed shifts are much larger than the ones
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FIG. 6. Final k value k, as a function of the initial ampli-
tude and position of the peak (¥ =0.5). Different symbols indi-
cate different values of the initial position of Stk): x, k=0.8;
0, k=1.0; O, k=1.2. The lines connect the results for dif-
ferent initial amplitudes with the same k. To set the scale for
the amplitudes, the dashed line indicates the amplitude of the
stationary state at k=1, i.e., y2/3.

caused by the higher harmonics, as predicted by Eq. (22b):
k,~1—3xy%/1024. In fact, such small shifts cannot be
seen in the simulation. Calculations with a slightly dis-
torted Q, where the amplitude of the higher harmonics is
larger, show a shift by these harmonics. This additional
shift, however, is less than predicted by Eq. (22b). This
can be understood if one considers that the driving term
for this shift is proportional to the fourth power of the
amplitude. When this saturates at t~100, typically, the
number of nodes is fixed, and thus the higher harmonics
can induce no further shift.

To check the influence of ¥ on our findings we varied y
between 0.1 and 0.9. The results are similar. For smaller
y values the final shifts of k_ become smaller and vice
versa. In Fig. 7 we plot the width of the time-dependent
structure function (17) versus the decimal log of the time
for different values of the control parameter y. Initial
conditions were as in Fig. 2, with k=1 and 4 =2x107°.
Each curve was averaged over ten independent runs. We
have also performed several runs with different initial
conditions (varying k and A4) and obtained the same qual-
itative behavior. The common feature of all these runs is
J
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FIG. 7. Decrease of the peak width w with time for various
values of y (average over ten runs each). X, y=0.5; @, y=0.3;
+, y=0.2; A, y=0.1. The lines indicate the t~'/> and ¢~/

decay.

a discrimination of an intermediate- and a long-time scale.
The intermediate-time scale fits the ¢!/ law predicted
by our modified mean-field approximation, while the
longer-time scale gives a behavior like w~t~'% The
changeover between these scales varies roughly like
t.~y % as is suggestive from trivial scaling of Eqgs.
(1)—(3).

IV. PHASE DIFFUSION

In previous papers the final approach to a homogeneous
periodic structure was analyzed in terms of phase dif-
fusion."? In these approaches y(,x,t) is represented as a
slowly modulated periodic function:

y(x,t)=a(d(x,t)) cos[kox +d(x,0)]+ - , (29)

where the ellipsis represents unspecified higher-harmonic
terms. The amplitude factor a(#(x,t)) can be shown to
adjust very quickly to the local k vector, i.e., to lowest or-
der it is given by

ald(x,t))=ag(t)+a,()[Vd(x,t) P+ - . (30)

Here, for simplicity, we set ky=1, i.e., to the maximum
of the spectrum of the linear operator [Eq. (2)]. In gen-
eral, the amplitude function would contain an additional
term proportional to Vé(x,t). The final results do not de-
pend on the choice of k.

Inserting (29) and (30) into Eq. (1) and expanding with
respect to the derivatives of #(x,t), we obtain, to lowest
order,

{do+d (V) —yag+a,(Vd)*]—4ay(Ve) — 1ai— Tala,(Ve)?] cos(x +¢)+(agd—4aogAd)sin(x +¢)=0 . (31

We use the approximate orthogonality of the tri-
gonometric functions for a slowly varying phase &(x,t)
over a period

n2r<x +¢(x,t)<(n +1)2m

to separate the time dependence of the amplitudes from
the one of the phase. We neglect terms of higher order
than (V#)? and A, respectively. Finally, we separate the
spatially constant and varying amplitude factors. The re-

I
sulting equations

agla,—4ay , (32)

show an exponential relaxation of the amplitude factors to
their respective asymptotic values:
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af =2y/V73, af=—4/(V3y). (33)

The total amplitude a$ +a{°(V¢)? is the amplitude of a
stationary periodic solution with wavelength k =1+V¢
to second order in V.

The diffusion equation for the phase ¢ yields a power-
law behavior for the width of the distribution function.
To show that we define the local k vector as

k(x)=ko+Ve(x)=1+k(x) . (34)

The variance of k is calculated according to Eq. (28),
which yields

L
win=— [ dxeen (35)

where we have used node conservation as observed in the
numerical results:

L[ ax vatx =4(L)—4(0)=0 (36)
L Jo - o

With ¢(x,t), also «(x,t) obeys a diffusion equation which
can be solved by Fourier analysis:

K(x,1) = fo“’ dg e ~*1"'%14,0) cos(gx) , (37

and
20 T ® —8q2t 2
w(t) =7 fo dg e —%"[x(q,0)]% . (38)

For a further evaluation we have to make an assumption
about the distribution of « values at the onset of the phase
diffusion regime. Figure 8 shows numerical results for
| k(g,t)| at t=75. They suggest that the || distribution
oscillates around a constant in the range of the relevant
small g values. For sufficiently large systems these oscil-
lations are rapid compared to the variation of the Gauss-
ian in Eq. (38). Thus, the integral is determined by their
average and we can approximate Eq. (38) by

wl(t)= (/221 /(4L){[k(g,0)]*) ot =72, 39

—17% law for the

which yields the numerically observed ¢
width w of the k distribution.
Physically, the flat distribution means that we have a

random fluctuation of the wavelength around the k.
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FIG. 8. Example of |k(q)| at the onset of phase diffusion

(y=0.5,1=75) averaged over 12 runs. The oscillation ampli-
tude for a single run is much larger.

value, i.e., small random fluctuations of the gradient of
the phase. The sign of «(g) is randomly distributed,
which means that the fluctuations in k (x) are homogene-
ous in space and not localized. For the phase ¢ the flat
distribution in «(q) yields |#(q)| ~1/q, which means
steplike variations of the phase in real space. Such fluc-
tuations of the wave vector and the phase are consistent
with our picture of the system at intermediate times pos-
tulated in Sec. II, namely that coherent subsystems evolve
with random-phase differences between neighboring re-
gions.

Our results are in contrast to those of Newell et al.? for
the asymptotic decay of the imaginary part of the com-
plex amplitude equation. The reason seems to be that
they implicitly assume a flat distribution for |é(g)| for
small ¢, which leads to a t —!/? law for the second cumu-
lant of the phase and, in turn, to a ¢t ~3/* behavior for the
width of the structure function.

Finally, one could expect nonlinear corrections to the
phase diffusion process, since the absolute value of the
phase difference between two distant points is not bound-
ed from above. While it seems likely that this would also
lead to a slow power law or even logarithmic behavior at
intermediate times, the numerical results do not show the
necessity for such corrections.

V. CONCLUSIONS

For a simple one-dimensional model equation [Eq. (1)]
we have calculated the approach to a stationary periodic
pattern starting from a homogeneous initial state with
random fluctuations. We have found by numerical and
analytical methods that several different time scales can
be distinguished in the development of the structure func-
tion S(k,?).

At very early times an exponential growth of the initial-
ly small amplitudes of the fluctuations is found which can
adequately be described by an ordinary mean-field ap-
proach. At later times the nonlinear term in Eq. (1) leads
to a saturation of the amplitudes. In this regime the
mean-field approach has to be modified to account for the
strongly peaked structure of S(k). This modification
amounts to a change of the prefactor in the mean-field ap-
proximation of the nonlinear term, which then leads to
the correct amplitudes for the stationary solutions. The
nonlinearity also induces growth of the higher harmonics
of the instable ground modes, which, in turn, modify the
growth of the ground-mode amplitudes. As has been not-
ed earlier, this coupling is one mechanism by which the
finally selected wave vector is shifted down from the max-
imum of the linear spectrum at k=1. However, our nu-
merical calculations show a much more pronounced devi-
ation of the finally selected wave vector. As is clearly
demonstrated in Fig. 6, the selected mode is influenced by
the initial conditions, i.e., by memory effects similar to
features found in spin-glass problems.!>!” We find that
“node conservation” is the mechanism by which this
memory is established. When the amplitudes saturate and
the structure function sharpens, the system locally locks
into a periodic pattern with a wave vector close but not



equal to unity.

The final dynamics concerns the equilibration of the lo-
cal wave vectors by adjusting the node positions. This is
achieved by phase diffusion. Apparently node creation is
such a strong perturbation of the system that it is not
feasible. At the time when node conservation is establish-
ed, the time dependence of the width of the structure
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function changes from the t~!/? behavior predicted by
the modified mean-field approximation to a ¢~!/*
behavior (see Fig. 7). This slow convergence can be ex-
plained by asymptotically linear phase diffusion assuming
a random distribution of the gradient of the position-
dependent phase at the time when the final number of
nodes has become settled [see Eq. (39)].
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FIG. 3. Evolution of the time-dependent structure function

S(k,t) for y=0.5 and for k=1 starting from small amplitudes
(note the different scales).
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FIG. 4. Evolution of the time-dependent structure function
S(k,t) for y=0.5 and for k=0.8 starting from small ampli-
tudes (note the different scales).




