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The intensity of the small-angle x-ray or neutron scattering has been calculated for two nonran-
dom (regular) fractals: the Menger sponge and a related fractal, called the fractal jack (a form simi-
lar to the metal six-pointed object used in the American children's game). The scatterers are as-
sumed to be systems of independently scattering, randomly oriented identical nonrandom fractals
constructed from a material with uniform density. The scattered intensity I (q) can be expressed as
a function of qa, where q =4m', 'sin(8/2); k is the scattered wavelength; 8 is the scattering angle,
and a is the edge of the cube which is the starting approximant to the fractal. The calculations
show that I(q) is a monotonically decreasing function on which maxima and minima are superim-
posed. For large qa the monotonic decay is proportional to q, where D is the fractal dimension.
The first maximum for q&0 is a single peak located at q =ql. Groups of maxima are found at

q =3 ql, where k is a positive integer greater than 1. The number of maxima within a group be-

comes greater as k increases. Numerical calculations of I(q) provide no evidence that the maxima
and minima are damped and die out as q becomes larger. Thus I(q) for the two nonrandom frac-
tals does not appear to approach the simple power-law scattering proportional to q which is

characteristic of the small-angle scattering from random fractals. The techniques developed to cal-
culate I(q) for the Menger sponge and the fractal jack can also be employed to find the small-angle
scattering from other nonrandom (regular) fractals.

I. INTRODUCTION

Although discussions of the theory and properties of
fractals' devote much attention to nonrandom (regular)
fractals, such as the Koch curve or the Menger sponge, i

most calculations of the small-angle x-ray and neutron
scattering from fractals have dealt with random frac-
tals or pores with fractal boundaries. ' The only ex-
ception of which we are aware is the work of Kjems and
Schofield, ' who have outlined properties of the small-
angle scattering from nonrandom one-dimensional frac-
tals.

In order to compare the scattering from random frac-
tals with that from a nonrandom fractal structure, we
therefore have developed equations for the small-angle x-
ray and neutron scattering from an assembly of identical,
randomly oriented, independently scattering Menger
sponges constructed from a material with uniform densi-
ty. %e have used these results in some numerical calcula-
tions of the intensity. Our work, which employs a tech-
nique which is similar to the method of Kjerns and Scho-
field, ' is, as far as we know, the first study of the scatter-
ing from three-dimensional nonrandom fractals.

Nonrandom fractals are generated from an initial con-
figuration by a sequence of approximants. The zero-order
approximant for the Menger sponge, for example, is a
uniform-density cube with edge a. Our technique gives
an expression for the intensity I„(q) for the nth approxi-
mant to a regular fractal, where

q =4m.k sin(8/2) » l,
k is the scattered wavelength, and 0 is the scattering an-
gle.

Our results for the first four approximants to the
Menger sponge show that there are both similarities and
differences in the scattering from random and nonrandom
fractals. A characteristic feature of the small-angle
scattering from random fractals is that if a is a length
with the magnitude of the overall diinension of the frac
tal, the scattered intensity I(q) for qa » I is proportional
to q, where D is the fractal dimension" of the fractal.
Since this power law is such an important property of the
scattering from random fractals, we expected the intensity
which we calculated for the Menger sponge to exhibit a
similar behavior.

However, as we explain in Sec. IV, our numerical calcu-
lations indicate that the intensity I„(q) from the nth ap-
proximant to a Menger sponge does not appear to ap-
proach a power law. Instead, we find that

I„(3q)=3 I„ i(q)+L„ i(q) .
An expression for L„,(q) is given in Sec. IV. In an in-
terval of q where the nth approximant adequately de-
scribes the scattering, I„ i(q) will be nearly as reliable an
approximation as I„(q), so that I„(3q) would be essential-
ly equal to 3 I„(q) if L„ i(q) were negligible

We call the condition I„(3q)=3 I„(q) a generalized
power law. Like an ordinary power law, the generalized
power law is satisfied when I„(q) is proportional to q
We say that the power law is generalized because we find
that in I„(q) there are maxima and minima which are su-
perimposed on a decay proportional to q . If the first
subsidiary maximum (i.e., the maximum for the smallest
value of q not equal to zero) of I„(q) occurs for q =qi,
the generalized power law states that there will be maxima
at q =3 ql, where k is a positive integer.
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Instead of a single maximum at q =3"q„however, we

find that in the neighborhood of q =3 q& approximately
3k maxima of varying amplitude are superimposed on the
curve proportional to q . We ascribe these multiple
higher-order maxima to the fact that L„,(q) is not negli-

gible.
As we have mentioned, the Menger sponge can be con-

structed from a sequence of approximants, beginning with
a uniform-density cube with edge a. This uniform cube is
defined to be the zero-order approximant. To obtain the
first approximant, the uniform cube which is the preced-
ing approximant is divided into 27 smaller cubes, each
with edge one-third that of the uniform cube. The cubes
with edge a/3 in the center of each face and at the center
of the initial cube are then removed, leaving 20 cubes.
Succeeding approximants are obtained by performing an
analogous operation in which each of the cubes making

up the next-lowest approximant is divided into 27 cubes,
after which the cubes at the center of each face and at the
center of each cube of the latter approximant are re-
moved. The fractal dimension D of the Menger sponge is
equal to log20/log3—=2.73. . . .

As we explain in Sec. III, by a method analogous to
that which we employ to calculate the scattering from a
Menger sponge, we can compute the scattered intensity
from a related fractal, which, for want of a better name,
we have called the fractal jack because it has a form simi-
lar to the metal six-pointed object used in the American
children s game. This fractal is similar, though not iden-
tical, to a two-dimensional fractal discussed by Vicsek. '

The first approximant to the fractal jack is obtained from
a cube with uniform density and edge a by dividing this
cube into 27 cubes with edge one-third that of the original
cube and then removing all of the cubes with edge a/3
except those in the center of each face and at the center of
the original cube. After this operation, seven cubes with
edge a/3 remain. Higher-order approximants are gen-
erated by performing the same operation on the each of
the cubes of preceding approximant. Since the fractal
jack is generated by retaining 7 out of the 27 cubes pro-
duced when the cube edge is divided by 3 to form the next
approximant, the fractal dimension D of the fractal jack
will be equal' ' to log7/log3 —= l.77. . . .

II. THE SMALL-ANGLE SCATTERING
FROM A MENGER SPONGE

To calculate the intensity I„(q) for an assembly of N
identical independently scattering, randomly oriented nth
approximants to Menger sponges, we use the equation'

I„(q}=IooN(V„) ([F„(q)] ),
where q =

~ q ~

=4m A,
' sin(8/2); the vector q is parallel

to a —ao, where a and ao are unit vectors in the direc-
tions of the scattered and incident beams, respectively, the
symbols ( ) denote an average over all orientations, Ioo is
a constant,

V„=( —„}"a

is the volume of the filled region of the nth approximant
to the sponge, a is the length of the edge of the cube

j=—1k= —11=—1

n is a positive integer,

~o 'kl ( 1 ~jo~ko)( 1 '5ko~lo)( 1 ~jo~io) i

5;j is the Kronecker delta symbol, and

Rjkt =(a/3)(j x+ky+Iz) (6)

is the vector from the center of the zero-order cube to the
center of one of the cubes with edge a/3 into which the
zero-order approximant is divided to form the first ap-
proximant, and x, y, and z are unit vectors in the direc-
tions of the x, y, and z axes, respectively. In addition,

Fo(q) = 1 '(i q rjdy
Vo

sin[(q x)(a/2)] sin[(q y)(a/2) sin[(q z)(a/2)
(q x)(a/2) (q y)(a/2) (q z)(a/2)

is the structure factor for the zero-order approximant (i.e.,
for a uniform-density cube with edge a). The origin of
the x, y, and z axes is chosen to be at the center of the
zero-order approximant, and the axes are oriented so that
each cube face is perpendicular to one of the axes.

The quantity tolkt in G&(q) in Eq. (5) is equal to zero
when two or more of the indices j, k, and I are zero. This
definition of cojkt ensures that the triple sum in Eq. (4) in-
cludes only the cubes with edge a/3 which form the first
approximant.

The second approximant F2(q) is obtained from
Fo(q/3) by performing the same operation on Fo(q/3}
that was employed to obtain F, (q) from the structure fac-
tor Fo(q) of the zero-order approximant. The result of
this calculation can be written as

F2(q) =G&(q)Gz(q)Fo(q/9),

since from the definition of G„(q),

G„(q)=G„](q/3) .

which is the zero-order approximant, and the structure
factor F„(q) of the nth approximant is given by

F„(q)=(1/V„) I e "q"dV . (2)
n

In (2) the origin of the volume integration is taken to be at
the center of the sponge and r is a vector from this origin
to the volume element dV. The structure factor F„(q) is
normalized so that F„(0)=1.Thus, from Eq. (1),

I„(0)=I N(V„) ([F„(0)])=I N(V„)

The structure factor F&(q) for the first approximant
can be calculated from (2) by dividing a uniform-density
cube with edge a into 27 cubes with edge a/3 and remov-

ing the seven cubes at the center of the first approximant
and at the centers of its six faces. The structure factor
Fi (q) which is obtained from (2) can be expressed as

F&(q) =Gl(q)Fo(q/3) .
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By induction

n

+„(q)=g G;(q)Fo(q/(3")) .

From (1) and (7) we obtain

n

1„(q)=I N(v„)' II [G;(q)]' [Fo(q/(3")[['l .
i=1

When q is small enough that Fo(q/(3"))=I,

'" ' =(II [G,[q[['l

By use of (4), (9) can be expressed as

n 5 5 N

Q [Gl(q)) g g g Ajkl cos(q'R kl ),
j=.—T k= —T I =-T

n 8 n

0
1

1

1

2
2
2
2
2
2

0
0
1

1

0
1

1

2
2
2

0
0
1

0
0
1

0
1

2

20
8

4
0
8
4
2
3
2
1

TABLE I. Values of the A 'kl. For convenience, 4003~'k[ has
been tabulated, rather than Ajkl itself. The Ajq[ can thus be ob-
tained by dividing the numbers in the table by 400. Since the
values of the A~ql remain constant when the order or sign of the
indices is changed, all the AJ'ki can be found from those in the
table.

where

Rjki =3 Rjki
—(n —1)

and

3n

After the Aj'kj in (10}have been evaluated from (4} when

n =1, the other coefficients Ajkl in (10}for n & 1 can be
calculated from the Aj'kl in Table I by use of the result
that

n+t n t

g [G;(q)]'= g [G (q)1' g [Gj(q/3")l'
i=1 i=1 j=1

From this calculation we find that

&max max max

P~ ' —3' k —3'r l —3's '

~min min min

In (12)

(12)

1+Trp,„=Minint Tn,n~ 3t

k+T,r,„=Minint T„,n 3t

l+T,s,„=Minint T„, 3t

J —T
, pm;/=M»int —Tn,n~ 3t

k —T,
, p;„=Maxint —Tn,n~ 3t

I —T,s;„=Maxint —Tn,ns 3t

(13}

and

Maxint(x, y) =x;„, , x &y

Maxint(x, y)=y;„'", x &y

Minint(x, y) =x;„,'", x &y

Minint(x, y) =y;„,'", x &y .

where

j=—T„k=-T„ I =—T„'VPjkl

(12+k2+l2)1/2(u /3rt) (16)

The quantities x;„,'" and y[„;"in (14) are, respectively, the
largest integers not greater than x or y. Similarly, x;„,'"
and y;„,

'" are the smallest integers not less than x or y,
respectively. The AJkl can be shown to have the same
value when any two indices are interchanged and also to
be independent of the signs of the indices. All of the Aj'kl

therefore can be obtained from those listed in Table I.
The average over orientation can be calculated' for

each term in (10) by use of a polar coordinate system in
which the z axis is chosen to be in the direction of Rjkl.
Therefore, from (1) and (10),

III. THE FRACTAL JACK

Since the nth approximant to the fractal jack is con-
structed by dividing each cube in the preceding approxi-
mant into cubes with edge a/3" and retaining only the
cubes at the center of each face and at the center of the
each cube with edge a/3" ', the structure factor E„(q)
for the nth approximant to the fractal jack can be ob-
tained simply by replacing nl.kl/20 by (1—co kl)/7 in Eq.J J
(4}. [The factor —„ is changed to —, in order to satisfy the
normalization condition E„(0)=0.] Then, by a procedure
analogous to that employed to calculate I„(q) for the
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Menger sponge, the scattered intensity It„(q) for the frac-
ta1 jack can be expressed as

rc„(q)=I x(U„)'([z„(q)]'},

lated from (23) for n & 1. The limits in (23) are given by
(13) and (14).

IV. RESULTS AND DISCUSSION

where

&[(q)=H i (q)+o(q),

1

H„(q)= —,
'

j=—I k= —1 I= —1

i (q R"j,()(1—co kj)e

Thus

where n is a positive integer and

n

E„(q)= $7 H;(q) F (q/(3")) .

(18)

(19)

We have computed I„(q)/I„(0) and E„(q)/K„(0) from
(15) and (22), respectively, for 2 & n & 4 and for
0 &qa & 81. (Copies of our FORTRAN programs are avail-
able. ) Our results for n =4 are shown in Figs. 1 and 2.
%e have as yet been unable to extend our calculations to
larger n for either the Menger sponge or the fractal jack
because for n & 4 our program uses more memory than is
available on the University of Missouri's computer and
also requires prohibitively Iong computing times.

As we have mentioned, (15) and (22) are valid only
when the magnitude of q is small enough that

Fo(q/(3") ) —= 1

This condition can be employed to estimate the value of

K„(q(=1 /((U„) it [H;(q([ [F (q/(3"())
)

.
i=1

10 I ) l i I Illq

For q sufficiently small that Fo(q/(3")) —= 1,

K„(q)
[H;(q)] (21)

10

The average over orientation in (21) can be performed in
the same way as for the Menger sponge, so that

j= —T„k= —r„!= —r„'Vpj k!

where the T„and the pjk! are given by (11) and (16),
respectively, and

10

10

&max max

~,"k!"= g
max

gn gfj—3'p, k —3'r, l —3's ' (23)
& =&miri =

min
=

rnirt

From the values of BJ'k! in Table II, the Bjk! can be calcu-

10

TABLE II. Values of the BJ'kI. For convenience, 49BJ'Aq has
been tabulated, rather than BjkI itself. The Bjkh thus can be ob-
tained by dividing the numbers in the table by 49. Since the
values of the B,kI remain constant when the order or sign of the
indices is changed, all the BJ'I,~ can be found from those in the
table.

49BJ'

10

10

10
10

x=qa
10 10

FIG. 1. Scattered intensity I„(x) for the Menger sponge cal-
culated from (15) for n =4, plotted as a function of x =qa. As
is mentioned in the text, the magnitude of I„(x) is somewhat too
large for x & 50, but the positions of the maxima and minima
are nearly correct.
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FIG. 2. Intensity K„(x) for the fractal jack calculated from
(22) for n =4, plotted as a function of x =qa. The magnitude
of I„(x) is somewhat too large for x & 50, although the positions
of the maxima and minima are nearly correct.

Moreover, the pattern of maxima and minima within each
group seems to become more complex as q increases, and
our calculations do not suggest that the maxima and mini-
ma will be more highly damped as qa becomes larger.
Although we cannot predict the properties of I„(q) and
E„(q) for n »4 from our numerical calculations for
n (4, we would like to emphasize that the intensities plot-
ted in Figs. 1 and 2 give absolutely no indication that the
scattering will euer approach a simple power law. The os-
cillations superimposed on the power-law decay of the
scattered intensity which we have recently computed' for
two one-dimensional nonrandom fractals also show no
tendency to decay as q increases.

If the decay on which the oscillations are superimposed
is proportional to q, the product q I„(q) should be a
function in which the amplitude of the oscillations is
bounded. Plots of q I„(q) and q E„(q) for the Menger
sponge and the fractal jack, respectively, are shown in

Figs. 3 and 4. Since for x &50 the oscillations in these
plots are bounded, the plots suggest that for both of these
two nonrandom fractals the scattered intensity at large q
is proportional to the product of q and a function with
oscillations which have a bounded amplitude.

We will now examine Eq. (9) in order to illustrate in
more detail the conditions under which I„(q) will be pro-
portional to the product of q and a function which os-
cillates with a bounded amplitude. (Analogous results are
true for the fractal jack.) From Eq. (4)

x =qa for which (15) and (22) will give rehable intensities.
From the definition of the structure factor Fo(q) in Eq.
(6), if qa «3",

G;(3q) =G;,(q)

for i & 1. Therefore, when Fo[q/(3")]=—1, we find from
(9) that

Fo(q/(3") )=1——
24 [qo /(3") ]' . (24)

To terms of order (qa), the relative error resulting from
the approximation [Fo(q/(3"))] =1 in (15) or (22) will
therefore be

—,', [qa/(3")]'

and thus will be less than 1% if —,', [qa/(3")] &0.01. As
this condition will be satisfied when x =qa &O. lv 123",
for the fourth approximant (i.e., for n =4), qa should not
exceed 28. This result is consistent with our observation
that within the accuracy of the lines on the plots in Figs.
1 and 2, the curves for the fourth approximant did not
differ noticeably from those for the third approximant
when x was less than 50. However, for 50X 81, the inten-
sities in Figs. 1 and 2 are too large. Our calculations for
n =3 and n =4 suggest, on the other hand, that in a more
precise calculation, the positions of the maxima and mini-
ma corresponding to those in Figs. 1 and 2 for x & 50 are
more reliable than the magnitudes of the intensities.

For random fractal aggregates with fractal dimension
D, the scattered intensity for large qa is proportional to
q . As can be seen from Figs. l and 2, however, for
large x the scattering from the Menger sponge and the
fractal jack does not follow the simple power law which is
a characteristic of the scattering from random fractals.
Instead, groups of maxima and minima are superimposed
on a monotonically decreasing curve proportional to q

x
c S

Cl
X

x = qa

FIG. 3. Product x I„{x)for the Menger sponge for n =4
plotted as a function of x =qa. Even though for x ~50 the
magnitude of x I„(x) is somewhat too large, the positions of
the maxima and minima are nearly correct.
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FIG. 4. Product x K„(x) for the fractal jack for n =4 plot-
ted as a function of x =qa. %'hile the magnitude of x E„(x) is

somewhat too large for x & 50, the positions of the maxima and
minima are nearly correct.

I„(3q)

n i=1
n —1

= [G (3q)]' g [G;(q)]') .
i=1

Thus, because

3
—log20/log 3

000 20

I„(3q) I„](q)
3

—]o]]20/log 3 " +L ( )
I„(0) I„](0)

where

n —1

L„,( )I=([[ G(3 )I]'—A'
] g [G;(q)]'

E =1

(25)

According to (25), if L„](q)were negligible, the equa-
tion

and the function g„(q)=q I„(q) would have the property
that"

g (3q) =g (q) .

When g(q) is constant, the scattered intensity is propor-
tional to q, as is true for random fractals. When there
are maxima and minima in g (q), successive extrema are
located at q values 3 times those of the preceding ex-
trernurn, so that if the first nonzero value of q for which
there is a maximum is q&, there also are maxima at ap-

(3q) I„(3q)=q I„(q)

would be obtained. If (26) were satisfied, I„(q) could be
written as

proximately 3 ql, where k is a positive integer.
The curves in Figs. 1 and 2, however, show quite clearly

that (26) does not describe I„(q) for large q(2. Therefore,
L„](q) cannot be neglected. We believe that L„](q)
must be the source of the increasing complexity of succes-
sive groups of maxima in I„(q).

The approximate centers of these groups, however, are
located at the positions where (26) predicts single maxima.
In a group of maxima centered around 3"q] in Figs. 1 and
2, there are approximately k maxima.

Even if we have not been able to find an approximation
for L„](q) or even to develop techniques for estimating
its magnitude, the curves in Figs. 1—4 suggest that al-
though it is large enough to split the maxima at 3 q1
predicted by (26), L„](q) is too small to change the order
of magnitude of I„(q) from the values given by (26).

For random fractals, the small-angle scattering for
large q is proportional to q, while for pores with frac-
tal boundary surfaces ' it decays with q . Since the
cubic cavities in the Menger sponge suggest that this frac-
tal might be considered to be a model of a material with
fractal pores, we were not sure whether the scattering for
the Menger sponge would be more like that from a ran-
dom fractal or from a material with fractal pores until we
saw the results of our calculations of I„(q) and I(:„(q).

Figures 1 ahd 3, however, illustrate that the monotonic
decay on which the maxima and minima are superim-
posed is proportional to q, and not to q

' '. After
thinking about this result, we realized that the intensity
calculated from (15) cannot be considered to be the
scattering from the cavities in the Menger sponge. Al-
though the small-angle-scattering analogue of the Babinet
principle' states that a system of pores in a material with
uniform density will scatter like an assembly of uniform
particles which have the same shape as the pores, this re-
sult is valid only when the overall dimensions of the sys-
tem are so large that the effect on the scattering intensity
resulting from these overall dimensions occurs at scatter-
ing angles too small to be observable. (A hollow sphere
with outer radius a and inner radius b, for example, will
scatter like a uniform sphere with radius b only if a ~~b
and also the scattering angles are so large that the outer
radius a has no noticeable effect on the scattered intensi-
ty. ) Our hindsight thus tells us that it really is not very
surprising to find a decay proportional to q-D for the
scattering from the Menger sponge.

The results of our calculations lead us to suggest,
though we have no rigorous proof, that both the spli:ting
of the maxima and also the fact that these maxima do not
appear to die out as q increases are the result of two com-
peting symmetries which are present in the approximants
to the Menger sponge and the fractal jack. First, there
is the cubic symmetry which is a result of the construc-
tion of the fractal by removing cubes from preceding ap-
proximants. This cubic symmetry and the resulting ten-
dency to approach translational invariance produce inten-
sity maxima analogous to Bragg reflections and probably
are the cause of both the presence and the splitting of the
subsidiary maxima. The second symmetry, which is the
dilation invariance or self-similarity that is the defining
characteristic of a fractal, ' is the source of the decay pro-
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portional to q upon which the maxima and minima are
supenm posed.

The effects of these two symmetries, however, are not
always easy to separate in the scattering curves. For ex-
ample, because of the maxima and minima in the scat-
tered intensity, the fractal dimension would not be easy to
evaluate reliably from scattering curves like those in Figs.
1 and 2. This difficulty in extracting the fractal dimen-
sion for experimental data for nonrandom fractals may be
related to the some of the problems Avnir et al. encoun-
tered in their attempts to determine the fractal dimension
of nonrandom fractals by image analysis.

In their calculations of the optical diffraction and x-
ray and neutron small-angle scattering' from some non-
random fractals, Allain and Cloitre and Kjems and
Schofield' have employed methods similar to those
which we have described.

The techniques which we have developed for computing
the scattered intensity from the Menger sponge and the
modified sponge can be easily modified to find the
scattering from other nonrandom fractals. For nonran-
dom fractals constructed by dividing the preceding ap-

proximant into parts and removing some of these pieces,
functions analogous to G„(q) and F&&(q/(3")) can be ob-
tained. The intensity I„(q)/I„(0) for these fractals can
then be calculated, and the error in approximating the
structure factor by the expression Fo(q)=1 can be es-
timated.
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