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Stability and wave-vector restriction of axisymmetric Taylor vortex flow
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The stability of Taylor vortex flow with respect to axisymmetric perturbations is calculated nu-

merically for several values of the radius ratio. In the nonlinear regime the resulting band of stable
wave vectors is considerably smaller than predicted from ainplitude expansions. On the low-q side

the stability limit departs rather suddenly from the amplitude-expansion result with increasing re-

duced Reynolds number c.q and is influenced by the appearance of two bifurcations, which are con-
nected with the coupling of two flows with resonating wave vectors. The influence of these bifurca-
tions becomes stronger with decreasing radius ratio. The wavelength-changing process, however, is
still given by the Eckhaus mechanism. The numerical results are in very good agreement with re-
cent quantitative experimental measurements.

I. INTRODUCTION

Many dissipative systems exhibit spontaneous pattern
formation when some control parameter A is increased
above a critical value 9F, . The two classical examples are
Rayleigh-Benard convection' and Taylor vortex fiow. i

In all of these systems the pattern has a uniquely defined
wave vector q, at threshold. Upon increasing St above
9P„a continuous wave-vector band of stable solutions
opens up. The limits of this band are given by a variety
of instabilities, which in the case of Rayleigh-Benard con-
vection have been extensively studied both theoretically
and experimentally. For Taylor vortex flow (TVF) the
theoretical stability limits with respect to axisymmetric
perturbations have been determined so far only within the
framework of amplitude expansions, which are valid close
to threshold. In the nonlinear regime these limits do
not agree with recent high-precision measurements by
Dominguez-Lerma et a1. ' Nonaxisymmetric perturba-
tions have been considered in detail by Jones. " ' They
do not simply restrict the band, but rather lead to other
types of flow [wavy vortex flow (WVF), jet mode]. '~'5

The most important axisymmetric instability is the
Eckhaus instability, which is the one-dimensional long-
wavelength bulk instability. ' ' It is present in most
pattern-forming systems, but often it is superseded by oth-
ers, which can be higher-dimensional bulk instabilities
(e.g., zig-zag in Rayleigh-Benard convection or nonax-
isymmetric in TVF) or surface instabilities induced by
boundaries. Roughly speaking, in order for the latter to
be excluded the lateral boundaries may not lead to a
depression of the pattern close to the sidewalls. '

So far, no detailed quantitative comparison between ex-
perimental and theoretical Eckhaus limits has been per-
formed for any system. Semiquantitative agreement was
found in the buckling instability of a rectangular
plate. ' In TVF the usually employed solid end plates
provide boundary conditions that enhance the pattern via
the Ekman vortex system. Also, nonaxisymmetric modes
are only relevant for rather large values of
sti ——(9F—9t, )/9P, if the ratio g=Ri/Rz of the inner to

II. BASIC EQUATIONS
AND NUMERICAL METHODS

To study axisymmetric solutions and perturbations to
the Navier-Stokes equations for incompressible fluids, it is
convenient to introduce a cylindrical polar coordinate sys-
tem (r,P,z) and a velocity potential f. The velocity field
is then given by

u(r, z) =(u„u~, u, ) = ——,u~, —1 t)1b 1 t)g
r t)z

' ' r dr
(2.1)

The basic flow (Couette flow) is purely aziinuthal (see,
e.g. , Ref. 25),

(2.2)

where

the outer radius is chosen sufficiently below 1 (e.g. , Ref.
23). Thus a comparison between experimental and
theoretical stability limits is possible in the fully nonlinear
regime.

We here present a numerical stability analysis of TVF
with the outer cylinder at rest. Using a Galerkin pro-
cedure, axisymmetric solutions are calculated for three
different values of ri (F1=0.892,0.75,0.5) and their stabil-
ity with respect to axisymmetric perturbations is deter-
mined. It is found that for ett ~0. 1 the band of stable
wave vectors is considerably smaller than that given by
amplitude expansions to third order. ' This is due to an
interesting bifurcation structure involving flows with
resonating wave vectors. In addition, a fold appears at
the low-q side of the band. The stability limit moves very
close to the tip of this fold with increasing sR, but the
band is still limited by the Eckhaus instability. %hen
lowering g this behavior becomes more and more pro-
nounced. The results agree very well with the data by
Dominguez-Lerma et al. '

In Sec. II the basic equations are set up and the numeri-
cal procedures are described. The results are then present-
ed in Sec. III. Concluding remarks are given in Sec. IV.
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i)=R i /R 2, p =Q2 /Q i, (2.2a)

with Qi 2 being the rotation rates of the inner and outer
cylinder, respectively. (For generality, we allow Q2 to be
arbitrary in this section. ) We now introduce dimension-
less variables x,y, t, u, P via

x =zq/d, y =2(r Ri ——d/2)/d, p=r/R2

t=2vtld, V=(u~ —uy)/QiRi, P=g/vRq,
(2.3)

with q denoting the dimensionless wave vector of the
periodic solution to be computed, d the gap width
R2 —R i, and v the kinetic viscosity. With this scaling the
azimuthal momentum equation and the azimuthal vortici-
ty equation read, respectively (see, e.g., Ref. 11),

ZpB, Z = 4By —
By p"+q pB, Z

p

+Wq 2
(1—p)——

2
B v

1 q —p
(ri —p)(1 —rt) p

~'(I+~) 1 B(y,z}
g —p, p B(x,y)

Here overbars have been dropped. The Jacobian of a and
b,

B(a,b) Ba Bb Ba Bb

B(x,y) Bx By By Bx
'

the potential vorticity Z,

(2.6)

Z = ——
By

—By+ B,
4 1 q

p p p

and the Taylor number P,
2Qid (rt —p)

(1 —ri )v
(2.8)

have been introduced.
The boundary conditions on the inner and the outer

cylinder read

v=g=Byp=0 aty=+1 .

Here zero net flow along the cylinder has been assumed.
Considering an infinite system, we use periodic boundary
conditions in x direction.

The stability equations are given by the linearization of
(2.4) and (2.5) around the nonlinear solution (vo, fo) and
take the form

U) U)
=L (vo Wo) (2.10)

where T and L(vo, ago) are linear operators and L depends

2pB,v= 4B pB +q pB —(1—ri) —vt y y x
P

—2q B„i'+�(1 ri)q v—B,P —2q—'9 P 1 B(v,g)
rt(1+ri) "

p
' B(x,y)

'

(2.4)

on (vo, Po).
The nonlinear equations (2.4) and (2.5) are solved by use

of a Galerkin method (see, e.g., Ref. 26). To this end we
expand v and g in a combined (truncated) Fourier-
Chebyshev series,

N M
v= g g a kT (y)exp(ikx),

k~ —N m=O

N M

g iPm kTm(y}exp(ikx),
k= —N m=0

where

(2.11)

(2.12)

am, k =am, —k~ Pm k Pm, —k (2.13)

If this symmetry were broken at some point for a solution,
which is connected to that at threshold, this would show

up as an instability in the stability analysis. To get matrix
equations for the coefficients a k and p k we insert
(2.11) and (2.12) into (2.4) and (2.5) and project the result-
ing equations onto

T (y)exp( ilx)—(1—y )

This scalar product has been chosen to make use of the
good boundary resolution of Chebyshev polynomials. In
order to fulfill the radial boundary conditions (2.9),
Lanczos's ~ method is applied: The v equation is pro-
jected only onto the first M —2, and the p equation onto
the first M —4, Chebyshev polynomials for each Fourier
mode /. The projections onto the highest 2 (4} Chebyshev
modes are replaced by the 2+4 boundary conditions
(2.9). The resulting nonlinear algebraic equations are
solved by Newton iteration.

For the axisymmetric perturbations ( vi, Pi) in (2.10) the
Floquet ansatz

vi —— g g c7 kT (y)exp(ikx)exp(ipx+tyt), (2.14)

N M

g i p k T (y)exp(ikx)exp(ipx+at)
k= —Nm =0

(2.15)

is made. Since here no symmetry relation like (2.13)
holds, the size of the matrices is doubled as compared to
the previous ones. Applying the same Galerkin procedure
as above, one is led to a generalized eigenvalue problem
for the growth rate o of the form

(2.16)

where

P, k

The eigenvalue of interest is expected to be real, and the
onset of instability is given by its sign change. A being
nonsingular, the eigenvalue problem

+mk =+m, —ky &mk = &m, —k .

The cutoff parameter M can be chosen k dependent to
render the expansion more efficient. Finite-difference cal-
culations by Booz 7' show that well above threshold v

can still be taken as even and P as odd in x. Therefore,
one can choose a k and p k to be real:
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TABLE I. %'ave vectors of the tip of the fold (qF ) and of the Eckhaus limit (qE) for different values

of the cutoff parameter E in the Fourier expansion.

12
12
12

q=0. 75
X

2.29
2.23
2.22

2.321
2.261
2.254

12
12
12

g=0. 5

2.716
2.61
2.60

2.720
2.620
2.607

'Bx=a 'x (2.17) III. NONLINEAR SOLUTIONS
AND THEIR STABILITY

can therefore be solved by inverse iteration.
The following comment appears in order: Numerical

Galerkin procedures tend to very poorly reproduce eigen-
values for eigenvectors that are dominated by modes
T exp(ikx) with m or k close to the cutoff parameters.
In the problem at hand some of these (very large) eigen-
values have even the wrong sign, thus faking an instability
which, in fact, is not present. For time-dependent studies
this may lead to serious problems. Here it is of no conse-
quence, as the relevant (small) eigenvalue is not affected
for N and M large enough.

A criterion for the accuracy of the results is the change
in the torque exerted on the cylinders, if the number of
modes is increased. The torque on the outer cylinder (per
unit length) is given by

6 = [tl( 1 —p )/(1+ ri ) —( t) v (y = + 1))],26

(2.18)
6 =2trR tvp'Qt/d,

where ( . ) denotes the average over x, and p' is the
density of the fluid. A result was regarded to be satisfac-
tory if the torque changed less than 1% when X was in-
creased by 2. (M =12 turned out to be sufficient for all
calculations. ) Another test is given by the fact that rJ
must be an even periodic function in p with period 1. If
not enough Fourier modes are retained, there will be
strong deviations from this periodicity. The influence of
N on the stability limit is demonstrated in Table I,

To check the quality of the nonlinear solutions ob-
tained, it is conventional to compare the calculated
torques with experimentally measured values. Like all of
the physical quantities involved, the torque is not indepen-
dent of the wave vector q of the flow. Therefore, a pre-
cise comparison of theory and experiment requires
knowledge of both torque and wave vector. In Fig. 1 our
results for the dimensionless torque 6/6 as a function of
e~ are compared with measurements by Donnelly and
Simon for radius ratio t)=0.5 and @=0. As Donnelly
and Simon do not give values for q, we show not only the
torque for the critical wave vector q, =3.16, but also indi-
cate the spread of torques implied by the continuous band
of stable wave vectors.

A comparison was also made with the numerical data
for the torque and the radial velocity given by Jones.
%'ithin his error bounds our data agree very well with his
over the whole range 0 & cq & 2.

We have studied the stability of Taylor vortex flow
with respect to axisymmetric perturbations in the case
p =0 for three different values of the radius ratio:
t)=0.892, 0.75, and 0.5. In the first case, which corre-
sponds to a small gap, one is limited to low values of
eR =—(A —9F, )A, as the transition to wavy vortex flow
occurs already at cq ——0.12. ' The stability limits ob-
tained in this case are shown in Fig. 2 (solid lines). As is
to be expected close to threshold, the instability is of the
Eckhaus type and the limits agree well with those given
by third-order amplitude expansion which are shown as
dashed lines. The neutral curve is also given. Experi-
ments for this radius ratio have been performed by Ahlers

G/6
—torque for q =q, =3)6
—— mtnimal an d maximal torque

Don

KR

0.0 5

—Q.S

FIG. 1. Dimensionless torque 6/6 vs c~ =(A~ —A' )/N:
numerical results for q =3.16 and spread due to the stable q
band in comparison ~ith experiments by Donnelly and Simon
(Ref. 29).

FIG. 2. Stability limits for t)=0.892 [Eckhaus, ; Eck-
haus to third order, ———;neutral curve, ——.—.; experi-
ments by Ahlers et al. (Ref. 31), U; and Dominguez-Lerma
et al. (Ref. 10), &&].
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a a a a ~ a ~ a I ~ a i ~ a
W

FIG. 3. Stability limits for r1=0.75 [Eckhaus, ; Eck-
haus to third order, ———;neutral curve, ———;experi-
ments by Dominguez-Lerma et al. {Ref. 10), Q].

et al. ' and Dominguez-Lerma et al. ,
' who determined

the stability limits by changing the aspect ratio of their
apparatus. In Fig. 2 their data are given as squares and
crosses, respectively. For q &q, they do not reach the
theoretical Eckhaus curve, whereas for q &q, very good
agreement is found.

Lowering il increases the range of zti for stable TVF
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FIG. 4. (a) Bifurcation diagram in terms of the radial veloci-
Qp at x =m and x =0 for g =0.75 and c~ ——0. 195 (stable,

; unstable, ———). For details see the text. (b) Bifurca-
tion diagram in terms of the dimensionless torque G/C for
g=0.75 and c~ ——0. 195 (stable, ; unstable, ———). For
details see the text. The arrows indicate wave vectors for which
solutions are shown in Figs. 5(a)—5(c).

considerably. At the same time the locus of the transition
to %VF becomes strongly q dependent: Experiments by
Cole' and calculations by Jones' show that for g=0.75
the transition to %VF occurs at ett ——1 for q =2.4,
whereas for q =3.5 it is delayed to ett ——5. Axisymmetric
perturbations are therefore expected to be dominant up to
c~ ——1 and beyond, depending on q. The resulting stabili-
ty hmits for TVF are shown in Fig. 3 (solid line). Also
given (as diamonds) are the experimental data by
Dominguez-Lerma et al. , ' who report that the instability
occurs in the bulk and is axisymmetric. It is seen that the
theoretical results reproduce the data very well over the
whole relevant range of Reynolds numbers. This consti-
tutes the first detailed, quantitative agreement of theoreti-
cal and experimental Eckhaus limits. For comparison the
stability limits as determined by the amplitude expansion
(dashes) and the neutral curve (dashed-dotted) are also
given. As expected, the former gives good results close to
threshold (zest &0.1). For larger ztt the expansion does
very poorly, especially on the low-q side, where it fails to
reproduce the strong bend at q=2. 5. The numerical
analysis reveals that this bend is not due to a change in
the type of the instability: It is still of the Eckhaus type
(@~0). Instead, the solutions themselves change their
character and two bifurcations, which are discussed
below, show up. This bifurcation structure has been stud-
ied in some detail by several authors. ' ' ' ' They did
not, however, study the stability of the solutions obtained.
Quantitative predictions for the observable band of wave
vectors were therefore not possible.

To better understand the following it is useful to recog-
nize that any 2m-periodic flow (one vortex pair per wave-
length 2m/q) of wave vector q can also be looked at as be-
ing m periodic (two vortex pairs per wavelength) with
wave vector q /2. Thus, the neutral curve can be
represented either as the neutral curve for 2n-periodic
flow centered around q, or as that of the n-periodic flow
centered around q, /2. Above the intersection point of the
two curves, 2m-periodic solutions as well as m-periodic
solutions exist for the same (small) value of q. For the
range 0.5&rj(1 this occurs for zest ~0.1. As the non-
linearity of the hydrodynamic equations is quadratic,
these two modes interact. For increasing c~ this interac-
tion becomes stronger and leads to the bifurcation dia-
grams shown in Figs. 4(a) and 4(b) (for zR ——0. 195). Fig-
ure 4(a) shows the dimensionless radial velocity
utt ——u, d/v for the same flow at x =0 and x =n. as a
function of q, similar to Fig. 4 of Meyer-Spasche and
Keller. The chosen values of x correspond for the 2n. -

periodic flow around D to the location of maximal out-
ward and inward velocity, respectively. Figure 4(b)
displays the same bifurcation structure in terms of the di-
mensionless torque G/G. In order to display the connect-
edness of the structure, in both figures each value is plot-
ted for the 2m-periodic (heavy lines) as well as the n.

periodic flow (thin lines).
Starting in the stable regime at D (solid lines, stable;

dashed lines, unstable), one reaches the neutral curve at A

by continuously increasing the wave vector. Decreasing q,
however, one does not reach the neutral curve. Instead,
one ends up at the fold F (q =2.33). This fold is connect-
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the third-order theory. Yet, it still misses the strong bend
at q =2.6 completely, indicating that at least two in-

dependent modes are necessary to describe the flow in that
region. Included in Fig. 6 are the only experimental data
available for this radius ratio, which were given by
Snyder, who looked at the transitions between different
numbers of vortices after changes in the Reynolds num-

ber, rather than changing the wave vector continuously
with sR fixed. States with the same number of vortices
are connected by dots, transitions are marked by arrows.
Clearly his experimental procedure does not give the full
band.

To give an overview of the dependence of the stable
band on the radius ratio, Fig. 7 sho~s the stability limits
for all three values of ri (solid lines). Again the neutral
curve (short and long dashes) and the Eckhaus limit to
third order (dashed line), which are almost independent of
g, are also given.

IV. CONCLUDING REMARKS

The kind of interaction, which in Sec. III was seen to be
responsible for the asymmetrical narrowing of the stable
wave-vector band, is present in all pattern-forming sys-
tems, if the control parameter is chosen large enough to
yield a sufficiently wide neutral curve. In most systems,
however, this has no infiuence on the stability limits, as
the bifurcations and folds, if any, appear only far out in
the unstable regime (compare, e.g., Fig. 9 of Ref. 36 with
our Table I). It appears to be a peculiarity of the wide-

gap TVF to react so sensitively to these interactions. For
q )q, the bifurcation structure appears to have no infiu-
ence on the stability limits for sit (1 and ri )0.5.

A direct consequence of the bifurcation structure is that
the longitudinal phase diffusion constant D~~ diverges at
the fold due to terms involving derivatives with respect to
q (see, e.g. , Refs. 37 and 38). The stability limit will
therefore never coincide with the tip of the fold. In con-
trast to the high-q side, where the divergence occurs only
on the neutral curve, this divergence is well within the
neutral band, and for Ett )0.5 it occurs very close to the
stability limit. Thus, the q dependence of D~~ near the
low-q band edge is much stronger than that on the high-q
side. By now, experiments allow measurement of the
phase diffusion constant quantitatively. Therefore, it
should be possible to verify this aspect of the bifurcation
structure experimentally.

As the interaction becomes stronger with increasing c~
and decreasing g, it would be interesting to do experi-
ments for ri=0. 5—which could check our numerical
findings —or even smaller values of tl. For these radius
ratios TVF is stable with respect to nonaxisymmetric per-
turbations up to c.q ——3 and beyond. Thus, it allows us to
study the aforementioned interactions and the stability
limits for even stronger nonlinearity. Numerical work in
that direction (sit ~ 1, ri (0.5) is in progress.
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