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Approach to ideal-gas behavior in dense classical fluids
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For a classical fluid of hard spheres we calculate for large wave numbers the leading correction to

the ideal-gas behavior of the incoherent dynamic structure factor. The theoretical prediction agrees

with results from neutron scattering experiments on dense hydrogen and sodium.

I. INTRODUCTION

For a classical fluid of hard spheres in equilibrium the
behavior of the incoherent dynamic structure factor
S(k, to} as a function of frequency co and for large wave
nutnbers k has been considered before by Sears. ' He has
found that the half-width at half inaximum coH(k) of
S(k, to) is given, for large k, by

toH (k) = (2kti Tm 'ln2)' k 1 — +O(k )
klE

where kz is the Boltzmann's constant, T the temperature,
m the mass of the particles, lE the (Enskog) mean free
path between collisions, and g is estimated to be given by
(=0.27. The leading term on the right-hand side of Eq.
(1) is due to the free motion of the particles, i.e., to ideal

gas behavior, and the second term is due to one collision
events between the hard spheres. Sears also has sho~n
that the correction to the ideal gas behavior of toH(k) of
relative order k ' [cf. Eq. (1)] is typical for hard spheres,
since it is absent for systems of particles interacting
through a soft potential. Using a value for the equivalent
hard-sphere diameter tTHs(T) of hydrogen molecules, tak-
en from independent sources, he finds that the toH(k) de-
rived from neutron scattering experiments on hydrogen
gas at T=85 K and pressures @=35, 70, and 140 bars,
agree for large k with the hard-sphere result for AH(k)
given by Eq. (1). Recently, Morkel and Glaser ' found
from neutron scattering experiments on liquid sodium
that the toH(k) at 602 and 803 K and at saturated vapor
pressures also agree with the hard sphe-re coH(k) for large
k if oHs(T) (i.e., IE) is used in Eq. (1) as an adjustable pa-
rameter. They obtain effective hard-sphere potentials
which are realistic representations of the actual interparti-
cle potential for sodium. Thus it appears that for large k,
the behavior of coH(k) for hydrogen and sodium can be
described by that of the coH(k) for equivalent hard-sphere
fluids.

In this paper we calculate for hard spheres the leading
correction of $(k, co) itself, to its ideal gas behavior. We
base ourselves on the approach discussed before for the
intermediate incoherent scattering function F(k, t )+ eo

dco xpe(icot)S(k, }caot large k. We rederive Eq.
(1) for toH(k) and give an exact expression for g. We also

derive a new expression, of the form of Eq. (1), for the
maximum value S(k,O) of S(k, to), for large values of k.

Since the exact value of g (i.e., (=0.4486) is consider-
ably different from the value estimated by Sears, we
reconsider the experimental toH results for H2 (cf. Ref. 2)
and Na (cf. Ref. 4) in order to establish whether again the
toH for H2 and Na show a hard-sphere-like behavior. In
addition we wish to determine in how far a hard-sphere-
like behavior is also present in the top value S(k,O) at
large k. Therefore we use the experimental data for
S(k,O) given by Morkel and Gliser for Na. For H2 we
use data from a neutron scattering experiment performed
at our Institute in Delft at T=300 K and p=782 bars in
order to see whether not only toH(k) but also S(k,O) is
hard-sphere-like. In Sec. II we review the theory and in
Sec. III we compare the theory with experimental results.
%e conclude with a discussion in Sec. IV.

II. THEORY

1V

L=Lo+ g T(i,j), (3)

with

Lo= g v;.
i=i

where v; and r; denote the velocity and position of parti-
cle i at t =0, respectively. In Eq. (3), Lo is due to free
streaming and T(i,j ) to a collision between particles i and

~ ~

J) & e.~

T(i j)=0 Jd&
~ vJ & ~e(v;, tr)&(r;, +tr&)[&-.(ij) 1], —

In this section we determine for a system of N hard
spheres in equilibrium the leading corrections to ideal gas
behavior for F(k, t) and S(k,co). We start with F(k, t)
which is defined for t & 0 by

F(k, t)=(e 'e' e '), (2)

where the brackets denote the canonical ensemble average,
k =

~

k
~

and L the (pseudo) Liouville operator for hard
spheres
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where o is the diameter of the hard spheres, & a unit vec-

tor characterizing a binary collision, e(x) the unit step
function and the substitution operator b-(i,j ) acts only on

v; and v~. and replaces them by the velocities after a
binary collision, i.e.,

b (LtJ)vi =v; —&(&'v,j );

l7 (&,J)vi =vj +&(& vi ) .

%e will need the expansion

(6)

Afl A(E —
f& ) Af2 A(f$ f2 ) A(t EI )e' + "=e"'+ dt& 'Be ' + dt& dt2e 'Be ' 'Be ' + (7)

useful for noncommuting operators 3 and 8. With A=LO and B=g, T(ij), Eq. (7) is equivalent to the binary col-

lision expansion in which the dynamics of the entire N-body hard-sphere fiuid is expressed systematically in terms of
contributions of zero, one, and two hard-sphere collisions. Using this result in Eq. (2) yields for the zero and one col-
lision contribution to F(k, t),

0
i j =],

/, J

(8)

If we let the free streaming operators exp(tLO) act on ri and use T(i,j )f=0 when f does not depend on v; and vj [cf.
Eq. (5)], we find

F(k, t)=(e ' )+(N —1) I dti(e ' 'T(1,2)e ' ' )+
In the following we shall use a time scale

r„=(P m)'~ /k (10)

which is a time a particle needs to traverse the wavelength 2m. /k with thermal speed (pm )
' {with p= 1/ktt T) as well

as a reduced dimensionless time ~ and reduced velocities cj given by

r=tlrk,
cj=(Pm)'~ vj (j=1,2, . . . , N) .

Then Eq. (9) reads, after evaluation of the zero collision (i.e., ideal gas) contribution,

'"N —1F(k, t)=e- + ™N I d'(e "
T(1 2)e

" " "
)+O(f2(r)/k )

0
(12)

where k=k/k and the estimate k f2(r) for the two-
collision contribution follows from the third term on the
right-hand side of Eq. (7) and Eqs. (10) and (11). Thus we
find that up to order k the binary collision expansion
leads to an expansion of F(k, t) in powers of 1/k with
coefficients which are functions of r. The one collision
contribution in Eq. (12) is further evaluated in the Appen-
dix with the result for t & 0,

given by Eq. (8.4) of Ref. 6 in which F(k, t) is expanded in
powers of t ItE with coefficients which are functions of r.
Here tE (@pm/8)' lF——is the mean free time between
collisions.

For the incoherent scattering function

S(k,co) =(2m )
' I dt exp( i cot )F(k,t)—

we use F(k, t) =F(k, t) so th—at

fi(&)
F(k, t) =e ~'+ +O(f, (~)/k')

kl~
(13)

oo

S{k,co) =—I dt cos(cot)F(k, t) . (16}

with

lz ——1/[i/2rrno g(o )], (14)

n the number density, g {o.) the pair correlation function

g {r)at contact, and

1/2

2F2{ 2 2~ p 2,'4r ), (15)

Substitution of Eq. (13) for F(k, t) yields
1/2

S( k, co) = pm 1 ~2
&e

—(co ) /2+
2m- k kl~

+O(s2(co' ) /k ') (17)

where the reduced dimensionless frequency co* is given by
where 2F2 is one of the generalized hypergeometric func-
tions &I'& defined in the Appendix. The result for I'{k,t)
given by Eqs. (13} and (15) is consistent with the result

co =cork =co(Pm ) /k

and where

(18)
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4 oo

s i (co') = dr cos(cu'r}e
9m

0.4

(19) G.P.

Thus, $(k, co) is expressed as a series in 1/k in which the
coefficients are functions of the reduced frequency co', the
leading term being the ideal gas contribution. From the
expansion of cos(co'r) in powers of co'r it follows that [cf.
Eq. (19)],

-O.P
0

9~ .
o 2j!

X [—2(~')']', (20)

FIG. 1. The first correction s&(co ) to the ideal gas S(k,co)
for a hard-sphere fluid [cf. Eq. (17)] as a function of
co =(Pm)'~~ay/k. The arrow points to the value of co where
the ideal gas S(k,u) has its half-width at half maximum.

which series converges absolutely for all co'. We have cal-
culated si(co')=s, ( —co') numerically for 0(co' &5 us-

ing a few hundred terms in the expansion on the right-
hand side of Eq. (20), thereby verifying the convergence of
the results. We show si(co') in Fig. 1. We observe that
s i (co' ) is positive for 0 & co' & 0.81, negative for
0.81&co'(2.66, and positive again for ~'&2.6 6. For
large co', si(co') behaves as [cf. Eq. (19)]

si(co')=,—4+O(1/(co") },
3n(co')

(21)

S(k,co) = 4 +0( I/co ),2k" 1 6

rr mix Q7

the behavior of s, (co') for large co' yields the exact
behavior of S(k,co) so that Eq. (17) still applies when
co'~~. The contributions of the fry streaming and of
the terms of relative order k and higher are irrelevant
then.

Next we consider the maximum value S(k,O) and the
half-width AH(k) of S(k,co). From Eqs. (17) and (20) it
follows that

$(kO)= ™
2m

1/2
si(0)

1+ +O(1/k') . (23)

where

si(0) = sE2(»»2; » —, ', —, ) =0.32808 . (24)

Thus, the leading hard-sphere correction to S(k,O) is of
relative order 1/k, similar to coH(k} [cf. Eq. (1)]. The
half-width AH(k) is defined by $(k,AH( k) }= —,

' $(k,O) so
that [cf. Eq. (17))

AH�(k)= 2 ln2

Pm
k 1 — +O(1/k ) (25)

with

and therefore decays very slowly -(co') compared to
the leading ideal gas contribution -exp[ —(co') /2] in Eq.
(17). Thus, for a fixed but large value of klE the second
term in the expansion of $(k, co) on the right-hand side of
Eq. (17) increasingly excexh the first term when co' in-
creases. However, since for all k and large co,

s i(0)—2si (v'2 ln2)

2 ln2
=0.4486 . (26)

Thus we recover Eq. (1), including an exact expression for

N exp leo 'T s) co = 2'IT

[cf. Eq. (16)] and since fi(0)=0 and 82fi(r)/c}r =0 for
r=O There.fore the zeroth and second moments of
S(k,e) are not affected by the leading hard-sphere correc-
tion term in Eq. (17) and are given by the ideal gas values
1 and k /Pm, respectively, which are exact for all k.
Since si(0)&0, the leading hard-sphere correction to
S(k,0) from ideal gas behavior is positive [cf. Eq. (23)].
Since si(co') &0 for the reduced ideal gas half-width
co" =(2 In2)'~ (cf. Fig. 1), the leading hard-sphere correc-
tion to the ideal gas boa(k) is negative [cf. Eq. (25)].
Thus, the spectra S(k,co} with the leading hard-sphere
correction included are sharper than the corresponding
ideal gas spectra and show a tail -co ~ for large co, typi-
cal for hard spheres.

III. EXPERIMENTS

In this section we compare the theoretical results for
coH(k ) and S(k,O) derived in the previous section for hard
spheres with results obtained from neutron scattering ex-
periments on hydrogen and sodium.

A. Hydrogen at 85 K

Sears has compared his theoretical prediction for coH

[cf. Eq. (1) with /=0. 27] with the co& obtained from neu-
tron scattering experiments on hydrogen gas at T=85 K
and @=35, 70 and 140 bars. ' He uses an equivalent
hard-sphere diameter crHs(T}=2.91 A for the hydrogen
molecules which is derived from the actual values of the
coefficients of self-diffusion D at this temperature. In
fact, Sears has compared (cf. Fig. 2) the experimentally

We note that the zeroth and second moments of s i(co')
vanish, i.e.,

f dco s(iN')= f '
dc@'(co') si(co')=0

since
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FIG. 2. The relative deviation I (k ) =1—AH/coH of the half-
~idth mH from its ideal gas behavior ~H for hydrogen gas at 85
K and 35 bars (0), 70 bars t'5), and 140 bars (4, ) {cf.Ref. 2), as
functions of kl~ where oHs ——2.91 A and lz is the corresponding
mean free path. The curves are the asymptotic hard-sphere re-
sults g/(klE} with /=0. 27 ( ———) (cf. Ref. 1) and with
/=0.45 ( ) [cf. Eq. (26)].

derived relative deviation I (k)=1—AH/co'H of coH from
its ideal gas behavior co'H (2kttT——rn 'ln2)' k for Hz with
the theoretical hard-sphere prediction I (k) =g/(klan ) [cf.
Eqs. (1) and (25)]. We observe in Fig. 2 that the agree-
ment between theory and experiment using the exact value
)=0.45 is better for kls ~ 1 than the agreement using the
estimate /=0. 27. Therefore, Sears's conclusion that AH
of Hi shows a hard-sphere-like behavior for large k is
strengthened when the exact value of ( is used in Eq. (1)
instead of his estimated value.

I a a a i I I g ) i t a j0
0 I 2 3 4

k(A )

FIG. 3. The reduced half-widths ~H/k' as functions of k for
liquid sodium (0) (cf. Ref. 5) at saturated vapor pressure and
602 K (a) and 803 K (b), for the corresponding ideal gas Auids

( ———) and for hard spheres ( ) with (=0.45, oHS=2.96
A, lE ——0.33 A (a) and oHs ——2.83 A, l~ ——0.61 A (b). The verti-
ca1 arrows point to where klE ——1, the horizontal arrows point to
where coH/k =D, with D the coefficient of self-diffusion of
sodium.
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B. Sodium at saturated vapor pressure

Morkel and Glaser ' have compared their experimental
neutron scattering results for coH of liquid sodium at
n=0.0229 A , T=602 K and n=0.0216 A , T=803
K, with the theoretical hard-sphere result [cf. Eq. (1)]
with (=0.27. For large k they find a very good agree-
ment between theory and experiment when /z ——0.26 A at
602 K and lE ——0.37 A at 803 K corresponding to
equivalent hard-sphere diameters crHs(T}=3.22 A at 602
K and crHs(T)=3. 11 A at 803 K. Here we compare the
experimental data for AH and S(k,O) with the exact
asymptotic hard-sphere results [cf. Eq. (1) with /=0. 45
and Eq. (25)]. In fact we consider, as in Refs. 4 and 5, the
more convenient reduced quantities coH/k and S(k,O)k
since these tend to the constants D and (mD) ', respec-
tively, for small k. The experimental results of Morkel
and Gliser are displayed in Fig. 3 for coH/k and in Fig.
4 for S(k,O)k . We find that both cd/k and S(k,O)k
show a hard-sphere-like behavior for klan & 1 when we use
the corrected values Is =0.43 A and cTHs(T)=2.96 A at
602 K [cf. Figs. 3(a} and 4(a)] and ls ——0.61 A and o Hs( T)
=2.83 A at 803 K [cf. Figs. 3(b) and 4(b)]. Thus not only
is eH hard-sphere-like, as Morkel and Gliser have con-
cluded, but so is S(k,O), as we find here. In the next
paragraph we study both coH and S(k,O) for Hz.

0.2—
oCf

v) 0. I—

OJ

O

I i I I I I I l 1 I I0
1

(
I f f I

(
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FIG. 4. The reduced top values S(k,O)k as functions of k
for liquid sodium (g) (cf. Ref. 5) at 602 K (a) and 803 K (b), for
the corresponding ideal gas fluids (———) and for hard
spheres ( ) with oHs ——2.96 A (a) and oHs ——2.83 A (b). The
vertical arrows point to where kl~ ——1, the horizontal arrows
point to where S(k,O)k'=(mD)
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C. Hydrogen at 300 K

We have performed a neutron scattering experiment on
hydrogen gas at T=—300 K, n=0.0129 A and p=782
bars. We use the RKS-1 rotating crystal time-of-flight
spectrometer at the Delft 2 MW light-water swimming-

pool reactor. The wavelength of the incoming neutrons
was 4 A. The sample container and the correction pro-
cedures used to obtain the incoherent S(k, cu) from the
measured neutron intensities are described in Ref. 7. The
experimental results for &AH(k)/k and S(k,0)k are
displayed in Fig. 5. In order to compare our results with
the exact theoretical hard-sphere predictions we use for
Hi the equivalent hard-sphere diameter oHs(T) =2.56 A.
This value of (rHs has been derived by Chen er a/. from
low-density diffusion data for Hz at T=300 K. The
theoretical predictions for roH and S(k,0) with Iz ——1.94
A are shown in Fig. 5. We observe in Fig. 5(a) that for
klE y 1 the experimental values of AH(k)/k approa
the corresponding ideal gas behavior in a hard-sphere-like
manner. In addition, for kIz & 1, the deviations of the ex-
perimental S(k,O)k from ideal gas behavior follow the
prediction calculated for a hard-sphere fluid [cf. Fig.
5(b)j. Therefore, for hydrogen, not only coH (k ) is hard-
sphere-like for large k, but also S(k,O). In Fig. 5 we also
show the k =0 limits of AH(k)/k and S(k,O)k, i.e., D
and (AD) ', respectively, with D=23.8 A /ps. We es-
timated this value of D from an extrapolation of results

for D obtained by Chen et al. from small k neutron
scattering data at 300 K at three densities neighboring to

0

the present one. We note that the value a=23.8 A /ps is
close to the diffusion coefficient DHs =23 A /ps of the
equivalent hard-sphere fluid. ' Although our experi-
ment was performed with little emphasis on small k
values we still observe in Fig. 5 that the experimental
AH(k) and S(k,O) show a tendency towards the corre-
sponding small k limits.

IV. DISCUSSION

Using temperature-dependent hard-sphere diameters
OHs(T) for Hz and Na particles we find that the half-
width coH(k) of S(k, cu) for H2 at 85 K and the roH(k) and
S(k,O) for H2 at 300 K and Na at 602 K and 803 K ap-
proach for klan ~ 1 the corresponding ideal gas litnits in a
hard-sphere-like manner. In order to assess the physical
significance of the crHs(T} used in our comparisons, we
show the Silvera-Goldman potential" for H2 in Fig. 6(a)
and the Rasolt-Taylor potential' for Na in Fig. 6(b}. In
addition we display our effective hard-sphere potentials
for H2 with aHs(T) =2.91 A at 85 K and 2.56 A at 300 K
in Fig, 6(a) and for Na with oHs( T) =2.96 A at 602 K and
2.83 A at 803 K in Fig. 6(b). We observe in Fig. 6 that
our effective hard-sphere potentials are model potentials
representative for the repulsiue parts of the actual inter-
particle interaction 4(r) both for Hi and Na and that the
decrease of oHs(T) with increasing temperature T is a re-
flection of the softness of the repulsive parts of 4(r) for
Hq and Na. Also, we note that the apparent insignifi-
cance of the attractiue parts of 4(r) for the experimental
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FIG. 5. The reduced half-widths coH/k {a) and top values
S(k,0)k {b) as functions of k for hydrogen gas () at 300 K
and 782 bars, for the corresponding ideal gas fluid ( ———)

and for hard spheres ( - ) with oHs ——2.56 A and I~ ——1.94 A.
The vertical arrow points to where kIE ——1. The horizontal ar-
rows point to where mH/k =D (a) and S(k,0)k =(~D) ' (b)
with D=23.8 A /ps.

FIG. 6. The reduced potentials 4(r)/kz for H2 (cf. Ref. 11)
[solid curve in (a)] and Na (cf. Ref. 12) [solid curve in (b)] as
functions of the interparticle separation r. Also shown are the
equivalent hard-sphere potentials for H2 at 85 K [——— in

(a)], and 300 K [———in (a)] and for Na at 602 K [ ———.
in (b)] and 803 K [———in (b)].
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I]IH(k) and S(k,0) considered in this paper might be due

to the fact that thermodynamic states are studied for
which the average kinetic energy k&T of the particles is

large compared to the well depth e of III(r) (cf. Fig. 6}.
Recently van Well and de Graaf' studied the results

for the coherent scattering function obtained from neu-

tron scattering experiments on liquid Ar at 120 K. For
large k they find that the approach to ideal gas behavior
in Ar is the same as that observed in a corresponding
Lennard-Jones (LJ) fiuid' with o L&

——3.36 A and

e/kE ——123 I},but that both approaches differ significant-

ly for klE & 1 from that in a corresponding hard-sphere
fluid with aHs ——3.43 A. For dense fluids it seems there-
fore that while the approach to ideal gas behavior is
hard-sphere-like for klE ~ 1 and k]] T y e, such a behavior
is absent for klE y 1 when kET &e Prob. ably, the infiu-
ence of the attractive part of the interaction potential on

S(k,co) extends up to very large values of k then. This
conclusion is further supported by recent comparisons of
molecular dynamics (MD) simulation results for
Lennard-Jones (LJ) fluids and kinetic theory calculations

for hard spheres at intermediate values of k. At
kET/e=1. 47, Ullo and Yip' find no differences in the
half-width coH(k) of the coherent scattering function
when 6 & kaLi & 10 for LJ fluids, the corresponding re-
sults of neutron scattering experiments on krypton' and
the theoretical hard-sphere values. Therefore they con-
clude that at k~ T/a=1. 47 and intermediate k values, the
details of the potential are irrelevant and the fluids behave
hard-sphere-like, similar as we find here for Na and H2 at
large k. A similar comparison' at kET/e=0 97 a.nd
6&kaLi&12 shows that the mH(K) of LJ systems' agree
with those of corresponding argon fluids' but differ con-
siderably from the theoretical hard-sphere results. Thus
at ke T/e=0. 97, LJ fluids do not behave hard-sphere-like
at intermediate values of k and the details of the potential
are still relevant then, as they are at large k (cf. Ref. 13).
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APPENDIX

Here we evaluate the function f ] (q. ) defined by the Eqs. (12}and (13), i.e.,

f (]r)=( Pm)' lE(N 1) f dr'—(e ' T(1,2)e " '
) .

From Eq. (5) for T(i,j), the definition of g(r) (Ref. 6) and Eq. (14) for !E follows straightforwardly that

(Al)

f](7)= f dr' f d&((e '
~
c]z &

~
e(c]z &)[b-(1,2) —1]e ' ))]z,

2m

where the two sets of labeled angle brackets refer to the reduced normalized velocity averages

(A2)

(A4)

—c2/2
(( }) =(2m. )

~ dc e ' ( ).J J (A3)

In Eq. (A2) we replace e(c]z &) by —,', since b-=b - [cf. Eq. (6)]. We use the reduced center-of-mass velocity
C=(c]+ez)/2 and the reduced relative velocity e=e]z. Since b- in Eq. (A2) acts only the component of e in the &
direction, i.e., on c =c &, we may integrate over C and over the two components of c orthogonal to &. Then

A I

o
e c~ - — e T

with

+ 00 —c2/4
(( }) =(4n) ' dc e (

. ). (A5)

We use b- c = —c and perform the r' integral. Thus,

f ( } e
—8/2 f d Ik ) Hl

(4~

l k 'CTC ~T/2
e

ik chic /2

ik &e ~/2—~e
r

(A6)

or, more conveniently,

f ( )= — e ~" dr' ' d&ik &e'" """
8m. 0

x& ic ic e' "' ), .

(A7)

In the following we need the hypergeometric functions

&Fz which are defined by'

&Fq(a],a2, . . . , az', p],p2, ~, pq;z )

(a])„(a2}„x . x(a]}), z"

„,(p, )„(p,)„x x(p, ). n]
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where

{a)„=a(a+1)X. X(a+n —1)= I (a+n)
(A9)

I (a)

is a Pochhammer symbol and I (x ) the gamma function.

In Eq. (A7) we expand exp(ik &c~w '/2), use only the

terms which are odd in k &, and perform the average

(( . )), and the r' integral term by term. Then,

ft«)= r'e "Jd&(it &).'vp
1 6~3/

where we used, Ft(a;P;z)=,Ft(P—a;P; —z)expz, for the
confluent hypergeometric function, Ft.2o

In Eq. (A10) we expand &Ft and perform the & integral
term by term, so that

(A 1 1)

X tFt( ~', t', 4(k &)'r ) (A10) which is the final result for f, (r).
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