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For a classical fluid of hard spheres we calculate for large wave numbers the leading correction to
the ideal-gas behavior of the incoherent dynamic structure factor. The theoretical prediction agrees
with results from neutron scattering experiments on dense hydrogen and sodium.

I. INTRODUCTION

For a classical fluid of hard spheres in equilibrium the
behavior of the incoherent dynamic structure factor
S(k,w) as a function of frequency « and for large wave
numbers k has been considered before by Sears."'? He has
found that the half-width at half maximum wg(k) of
S(k,w) is given, for large k, by

wy(k)=(2kyTm ~'In2)!"%k
klg

1——§—+O(k‘2)l, (1)

where kp is the Boltzmann’s constant, T the temperature,
m the mass of the particles, /; the (Enskog) mean free
path between collisions, and § is estimated to be given by
£~0.27. The leading term on the right-hand side of Eq.
(1) is due to the free motion of the particles, i.e., to ideal
gas behavior, and the second term is due to one collision
events between the hard spheres. Sears also has shown
that the correction to the ideal gas behavior of wy(k) of
relative order k ! [cf. Eq. (1)] is typical for hard spheres,
since it is absent for systems of particles interacting
through a soft potential. Using a value for the equivalent
hard-sphere diameter oys(7) of hydrogen molecules, tak-
en from independent sources, he finds that the wy (k) de-
rived from neutron scattering experiments on hydrogen
gas at T=85 K and pressures p=35, 70, and 140 bars,’
agree for large k with the hard-sphere result for wy(k)
given by Eq. (1). Recently, Morkel and Gliser*> found
from neutron scattering experiments on liquid sodium
that the wy(k) at 602 and 803 K and at saturated vapor
pressures also agree with the hard-sphere wy (k) for large
k if oys(T) (i.e., Ig) is used in Eq. (1) as an adjustable pa-
rameter. They obtain effective hard-sphere potentials
which are realistic representations of the actual interparti-
cle potential for sodium. Thus it appears that for large k,
the behavior of wy(k) for hydrogen and sodium can be
described by that of the wg (k) for equivalent hard-sphere
fluids.

In this paper we calculate for hard spheres the leading
correction of S(k,w) itself, to its ideal gas behavior. We
base ourselves on the approach discussed before® for the
interrilgdiate incoherent scattering function F(k,t)
=f dowexpliot)S(k,w) at large k. We rederive Eq.
(1) for wg (k) and give an exact expression for £. We also
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derive a new expression, of the form of Eq. (1), for the
maximum value S(k,0) of S(k,w), for large values of k.

Since the exact value of £ (i.e., §=0.4486) is consider-
ably different from the value estimated by Sears, we
reconsider the experimental wy results for H, (cf. Ref. 2)
and Na (cf. Ref. 4) in order to establish whether again the
oy for H, and Na show a hard-sphere-like behavior. In
addition we wish to determine in how far a hard-sphere-
like behavior is also present in the top value S(k,0) at
large k. Therefore we use the experimental data for
S(k,0) given by Morkel and Gliser for Na.> For H, we
use data from a neutron scattering experiment performed
at our Institute in Delft at 7=300 K and p=782 bars in
order to see whether not only wy(k) but also S(k,0) is
hard-sphere-like. In Sec. II we review the theory and in
Sec. III we compare the theory with experimental results.
We conclude with a discussion in Sec. IV.

II. THEORY

In this section we determine for a system of N hard
spheres in equilibrium the leading corrections to ideal gas
behavior for F(k,t) and S(k,w). We start with F(k,t)
which is defined for ¢ >0 by®

F(k,t):(eik.rled‘e —fk"1> , )

where the brackets denote the canonical ensemble average,
k=|k| and L the (pseudo) Liouville operator for hard
spheres

N
L=Lo+ 3 TG, 3)
l,i]<=jl
with
N 3
Lo= Evi-gr—_ , 4)

i=1

where v; and r; denote the velocity and position of parti-
cle i at t =0, respectively. In Eq. (3), L, is due to free
streaming and 7'(i,j) to a collision between particles i and
j, i.e.,

T(,))=0* [d& |v;;8 | O(v;8)8(ry+08)[byli,j)—1],
(5)
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where o is the diameter of the hard spheres, & a unit vec- ba(i’j)vi =v; _a(a-vij) :

tor characterizing a binary collision, ©(x) the unit step (6)
function and the substitution operator b;(i,j) acts only on
v; and v; and replaces them by the velocities after a

binary collision, i.e.,

ba(l,j)V!=Vj+a'(a'Vu) .
We will need the expansion

_

t At Alt—t)) t h Aty At —ty)  Alt—t))
eAtBimedty [dre™Be™ Ty [(diy [ die™ B BT T 4 (7
useful for noncommuting operators 4 and B. With 4 =L, and Bzzi, ; T(,]), Eq. (7) is equivalent to the binary col-
lision expansion in which the dynamics of the entire N-body hard-sphere fluid is expressed systematically in terms of
contributions of zero, one, and two hard-sphere collisions. Using this result in Eq. (2) yields for the zero and one col-

lision contribution to F(k,t?),

ik —ik- N t ik-
F(k’t)z(ezkrletLOe 1kr1>+ 2 fo dl](é‘ krletlLOT(i’j

ij=1
ij

)eit—tl)LOe——ik-r1>+ . 8)

If we let the free streaming operators exp(tLg) act on r; and use T'(i,j)f =0 when f does not depend on v; and v; [cf.

Eq. (5)], we find
—ik t —ik-
Flk,=(e """y (V=) [ de;(e 71T (1,2)e
In the following we shall use a time scale

e =(Bm)"?/k

—ikvy(i—t)y

9)

(10)

which is a time a particle needs to traverse the wavelength 27 /k with thermal speed (Bm )~/ (with B=1/kgT) as well
as a reduced dimensionless time 7 and reduced velocities ¢; given by

T=t/T ,

c;=(Bm)"*v; (j=1,2,...,N).

Then Eq. (9) reads, after evaluation of the zero collision (i.e., ideal gas) contribution,

(Bm)!A(N

-2
F(k,t)=
(k,t)=e + X

where k=k/k and the estimate k~%f,(r) for the two-
collision contribution follows from the third term on the
right-hand side of Eq. (7) and Egs. (10) and (11). Thus we
find that up to order k ~2 the binary collision expansion
leads to an expansion of F(k,t) in powers of 1/k with
coefficients which are functions of 7. The one collision
contribution in Eq. (12) is further evaluated in the Appen-
dix with the result for >0,

(1)
F(k,t)=e"2/2+f~lL+0(f2(r)/k2) (13)
klg
with
lg=1/[V2mno’g(o)], (14)

n the number density, g(o) the pair correlation function
g (r) at contact, and
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2
- TS€~T2/22F2(—;‘1_;—;%y%;%TZ) ’ (15)

2
f[(T)=§‘

where ,F, is one of the generalized hypergeometric func-
tions ,F, defined in the Appendix. The result for F(k,?)
given by Eqgs. (13) and (15) is consistent with the result

= [Tar e 0 T(,20e 7T polsn kY 12

f

given by Eq. (8.4) of Ref. 6 in which F(k,t) is expanded in
powers of t/tg with coefficients which are functions of 7.
Here tz=(mBm/8)"/*l; is the mean free time between
collisions.

For the incoherent scattering function

+ o
Stk,w)=2m~" [ " dt exp(—iwt)F(k,t)

we use F(k,—1t)=F(k,t) so that

Stko)=— [ dt costet)F(k,1) (16)
T 0
Substitution of Eq. (13) for F(k,t) yields
1/2 *
Bm L | i, S1(@7)
Stko)= |2m | Ll-e thdie
(hol=1571 % |° kip
+0(s,(w*)/k?) |, (17)

where the reduced dimensionless frequency w* is given by
o* =0t =0(pm)"?/k (18)

and where
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X Fy( 5,555, 557) . (19)

Thus, S(k,w) is expressed as a series in 1/k in which the
coefficients are functions of the reduced frequency w*, the
leading term being the ideal gas contribution. From the
expansion of cos(w™7) in powers of w*7 it follows that [cf.
Eq. (19)],

swh=g 3 LSRRG R at g

X[—2(*)Y, (20)
which series converges absolutely for all ©*. We have cal-
culated s,(0*)=s,;(—w*) numerically for 0<w* <5 us-
ing a few hundred terms in the expansion on the right-
hand side of Eq. (20), thereby verifying the convergence of
the results. We show s;(w*) in Fig. 1. We observe that
si(w*) is positive for O<w*<0.81, negative for
0.81 <w®* <2.66, and positive again for ©* >2.66. For
large w*, 5,(w*) behaves as [cf. Eq. (19)]

8

o ,7+0(1/(a) ), (21)
and therefore decays very slowly ~(w*)™* compared to
the leading ideal gas contribution ~exp[—(w*)?/2] in Eq.
(17). Thus, for a fixed but large value of ki the second
term in the expansion of S(k,w) on the right-hand side of
Eq. (17) increasingly exceeds the first term when »* in-
creases. However, since for all k and large w,%

silo*)=

2k* 1
—— 1
Snpmity o + +O( /%), (22)
the behavior of s5;(w*) for large w* yields the exact
behavior of S(k,w) so that Eq. (17) still applies when
@*— . The contributions of the free streaming and of
the terms of relative order k ~2 and higher are irrelevant
then.

Next we consider the maximum value S(k,0) and the

S(k,w)=

half-width wg(k) of S(k,w). From Egs. (17) and (20) it
follows that
gm |1 51(0)
k,0)= [E% | 2.
S(k,0) Py A [H— Ky +O0(1/k?) (23)
where
51(0)= 8 3Fz(% 4,2;4,4;5)=0.32808 . (24)

Thus, the leading hard-sphere correction to S(k,0) is of
relative order 1/k, similar to wgy(k) [cf. Eq. (1)]. The
half-width wg (k) is defined by S(k,wy(k))=+S(k,0) so
that [cf. Eq. (17)]

2In2

wH(k) Bm

kg

172
k [1_—i+o<1/k2>] . (25

04
s (w¥)
02t
0 |
02 I L 1 1
0 | 2 3 4
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FIG. 1. The first correction s;(w*) to the ideal gas S(k,w)
for a hard-sphere fluid [cf. Eq. (17)] as a function of
0*=(Bm)"?w/k. The arrow points to the value of w* where
the ideal gas S(k,w) has its half-width at half maximum.

(O =25:(V2In2) ) 1486 (26)
21n2 ) '
Thus we recover Eq. (1), including an exact expression for

£
We note that the zeroth and second moments of s;(w*)
vanish, i.e.,
+oo * * t o * *\2 *
[ T do*si0®)= [ " do*(w*)s(0*)=0

since
f_ﬂo dw* explio*7)s(0*)=2m)*f (1)

[cf. Eq. (16)] and since f,(0)=0 and 8%f,(7)/37*=0 for
7=0. Therefore the zeroth and second moments of
S(k,w) are not affected by the leading hard-sphere correc-
tion term in Eq. (17) and are given by the ideal gas values
1 and k2/Bm, respectively, which are exact for all k.
Since s5;(0)>0, the leading hard-sphere correction to
S(k,0) from ideal gas behavior is positive [cf. Eq. (23)].
Since s;(w*)<0 for the reduced ideal gas half-width
©*=(21n2)'"? (cf. Fig. 1), the leading hard-sphere correc-
tion to the ideal gas wy(k) is negative [cf. Eq. (25)].
Thus, the spectra S(k,w) with the leading hard-sphere
correction included are sharper than the corresponding
ideal gas spectra and show a tail ~w™* for large , typi-
cal for hard spheres.

III. EXPERIMENTS

In this section we compare the theoretical results for
wy(k) and S(k,0) derived in the previous section for hard
spheres with results obtained from neutron scattering ex-
periments on hydrogen and sodium.

A. Hydrogen at 85 K

Sears has compared his theoretical prediction for wy
[cf. Eq. (1) with £=0.27] with the wy obtained from neu-
tron scattering experiments on hydrogen gas at T=85 K
and p=35, 70 and 140 bars.>’ He_ uses an equivalent
hard-sphere diameter oys(7)=2.91 A for the hydrogen
molecules which is derived from the actual values of the
coefficients of self-diffusion D at this temperature. In
fact, Sears has compared (cf. Fig. 2) the experimentally
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FIG. 2. The relative deviation I'(k)=1 —wg/o' of the half-
width wy from its ideal gas behavior w'§ for hydrogen gas at 85
K and 35 bars (@), 70 bars (W), and 140 bars (A ) (cf. Ref. 2), as
functions of klz where oys=2.91 A and I is the corresponding
mean free path. The curves are the asymptotic hard-sphere re-
sults §/(klg) with £=0.27 (— — —) (cf. Ref. 1) and with
£=0.45 ( ) [cf. Eq. (26)].

derived relative devnatlon Mk)=1—wy/w} of oy from
its ideal gas behavior wit =(2kpTm ~'In2)'/%k for H, with
the theoretical hard-sphere prediction I'(k)=£/(klg) [cf.
Egs. (1) and (25)]. We observe in Fig. 2 that the agree-
ment between theory and experiment using the exact value
£=0.45 is better for klg > 1 than the agreement using the
estimate §=0.27. Therefore, Sears’s conclusion that wy
of H, shows a hard-sphere-like behavior for large k is
strengthened when the exact value of £ is used in Eq. (1)
instead of his estimated value.

B. Sodium at saturated vapor pressure

Morkel and Gliser*> have compared their experimental
neutron scattenng results for wy of liquid sodlum at
n=0.0229 A~3, T=602 K and n=0.0216 A~3, T=803
K, with the theoretlcal hard-sphere result [cf. Eq. (1)]
with £=0.27. For large k they find a very good agree-
ment between theory and experiment when® 1 =0.26 A at
602 K and /=037 A at 803 K corresponding to
equivalent hard-sphere diameters oys(7)=3.22 A at 602
K and oyxs(T)=3.11 A at 803 K. Here we compare the
experimental data for wy and S(k,0) with the exact
asymptotic hard-sphere results [cf. Eq. (1) with £=0.45
and Eq. (25)]. In fact we consider, as in Refs. 4 and 5, the
more convenient reduced quantities wy /k* and S(k,0)k?
since these tend to the constants D and (#D)”!, respec-
tively, for small k. The experimental results of Morkel
and Glaser are displayed in Fig. 3 for oy /k? and in Fig.
4 for S(k,00k%. We find that both wy/k? and S (k,0)k>
show a hard-sphere-like behavior for k/; > 1 when we use
the corrected values If=0.43 A and ohs(T)=2.96 A at
602 K [cf. Figs. 3(a) and 4(a)] and /£ =0.61 A and ofis(T)
=2.83 A at 803 K [cf. Figs. 3(b) and 4(b)]. Thus not only
is wy hard-sphere-like, as Morkel and Glaser have con-
cluded, but so is S(k,0), as we find here. In the next
paragraph we study both wy and S(k,0) for H,.
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FIG. 3. The reduced half-widths wy /k? as functions of k for
liquid sodium (@) (cf. Ref. 5) at saturated vapor pressure and
602 K (a) and 803 K (b), for the corresponding ideal gas fluids
(— — =) and for hard spheres ( ) with £=0.45, oys=2.96
A, 1 =0.33 A (@) and oys=2.83 A 1=0.61 A (). The verti-
cal arrows point to where ki =1, the horizontal arrows point to
where wy /k*=D, with D the coefficient of self-diffusion of
sodium.

S (k,0) k> (ps &%)

-1
k (R7)
FIG. 4. The reduced top values S(k,0)k? as functions of k

for liquid sodium (@) (cf. Ref. 5) at 602 K (a) and 803 K (b), for
the corresponding ideal gas fluids (— — —) and for hard

spheres ( ) with oys=2.96 A (a) and oys=2.83 A (b). The
vertical arrows point to where klp=1, the horizontal arrows
point to where S(k,0)k?=(7D)"!
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C. Hydrogen at 300 K

We have performed a neutron scattering experiment on
hydrogen gas at T=300 K, n=0.0129 A~> and p=782
bars. We use the RKS-1 rotating crystal time-of-flight
spectrometer at the Delft 2 MW light-water swimming-
pool reactor. The wavelength of the incoming neutrons
was 4 A. The sample container and the correction pro-
cedures used to obtain the incoherent S(k,w) from the
measured neutron intensities are described in Ref. 7. The
experimental results for wy(k)/k* and S(k,0)k? are
displayed in Fig. 5. In order to compare our results with
the exact theoretical hard-sphere predictions we use for
H, the equivalent hard-sphere diameter oys(7)=2.56 A.
This value of oys has been derived by Chen et al.® from
low-density diffusion data for H, at T=300 K. The
theoretical predictions for wy and S(k,0) with [p=1.94
A are shown in Fig. 5. We observe in Fig. 5(a) that for
klg > 1 the experimental values of wy(k)/k? approa
the corresponding ideal gas behavior in a hard-sphere-like
manner. In addition, for ki > 1, the deviations of the ex-
perimental S (k,0)k? from ideal gas behavior follow the
prediction calculated for a hard-sphere fluid [cf. Fig.
5(b)]. Therefore, for hydrogen, not only wg(k) is hard-
sphere-like for large k, but also S(k,0). In Fig. 5 we also
show the k =0 limits of wg(k)/k? and S(ok,O)kz, ie., D
and (wD)!, respectively, with D=23.8 Az/ps. We es-
timated this value of D from an extrapolation of results

T T T
- \\ (O)
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'x \\\
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S =- o
3I
O 1l L 1
T T T
(\r L
og 005 7
a - §
N b .
X
’5 - —
= -~ |
» -
0
0 05 .0 15

k (A7)

FIG. 5. The reduced half-widths wy /k? (a) and top values
S(k,0)k? (b) as functions of k for hydrogen gas (@) at 300 K
and 782 bars, for the corresponding ideal gas fluid (— — —)
and for hard spheres (——) with oys=2.56 A and Iz =194 A.
The vertical arrow points to where klp=1. The horizontal ar-
rows point to where oy /k?*=D (a) and S(k,0)k?=(7D)"" (b)
with D=23.8 A"/ps.

for D obtained by Chen et al.® from small k neutron
scattering data at 300 K at three densities neighboring to
the present one. We note that the value D=23.8 Az/ps is
close to the diffusion coefficient Dys=23 A%/ps of the
equivalent hard-sphere fluid.®~!° Although our experi-
ment was performed with little emphasis on small &
values we still observe in Fig. 5 that the experimental
wg(k) and S(k,0) show a tendency towards the corre-
sponding small k limits.

1V. DISCUSSION

Using temperature-dependent hard-sphere diameters
ous(T) for H, and Na particles we find that the half-
width wg (k) of S(k,w) for H, at 85 K and the wy (k) and
S(k,0) for H, at 300 K and Na at 602 K and 803 K ap-
proach for klz > 1 the corresponding ideal gas limits in a
hard-sphere-like manner. In order to assess the physical
significance of the oyg(7T) used in our comparisons, we
show the Silvera-Goldman potential'! for H, in Fig. 6(a)
and the Rasolt-Taylor potential'?> for Na in Fig. 6(b). In
addition we display our effective hard-sphere_ potentials
for H, with oys(7T)=2.91 A at 85 K and 2,56 A at 300 K
in Fig, 6(a) and for Na with o§;5(7)=2.96 A at 602 K and
2.83 A at 803 K in Fig. 6(b). We observe in Fig. 6 that
our effective hard-sphere potentials are model potentials
representative for the repulsive parts of the actual inter-
particle interaction ®(r) both for H, and Na and that the
decrease of oyg(T) with increasing temperature 7 is a re-
flection of the softness of the repulsive parts of ®(r) for
H, and Na. Also, we note that the apparent insignifi-
cance of the attractive parts of ®(r) for the experimental

500 , —r
a00} (@) |
300} 1
200} .
100 t :
0
< -lool—— M — 1 !
~ T 'I' ¥ T T
L (b)
ea]
< 500 :' -
= l:
l‘
) o B
-s00b——
2 3 4 5
r (R)

FIG. 6. The reduced potentials ®(r)/kp for H, (cf. Ref. 11)
[solid curve in (a)] and Na (cf. Ref. 12) [solid curve in (b)] as
functions of the interparticle separation r. Also shown are the
equivalent hard-sphere potentials for H, at 85 K [—.—.—. in
(a)),and 300 K [— — — in (a)] and for Naat 602 K [ —. —. —.
in (b)] and 803 K [— — — in (b)].
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wy(k) and S(k,0) considered in this paper might be due
to the fact that thermodynamic states are studied for
which the average kinetic energy kpT of the particles is
large compared to the well depth € of ®(r) (cf. Fig. 6).
Recently van Well and de Graaf'® studied the results
for the coherent scattering function obtained from neu-
tron scattering experiments on liquid Ar at 120 K. For
large k they find that the approach to ideal gas behavior
in Ar is the same as that observed in a corresponding
Lennard-Jones (L)) fluid'* with o0;;=3.36 A and
€/kp =123 K, but that both approaches differ significant-
ly for klg>1 from that in a corresponding hard-sphere
fluid with oys=3.43 A. For dense fluids it seems there-
fore that while the approach to ideal gas behavior is
hard-sphere-like for klg > 1 and kpT > ¢, such a behavior
is absent for klg >1 when kpT <e. Probably, the influ-
ence of the attractive part of the interaction potential on
S(k,w) extends up to very large values of k then. This
conclusion is further supported by recent comparisons of
molecular dynamics (MD) simulation results for
Lennard-Jones (LJ) fluids and kinetic theory calculations

for hard spheres at intermediate values of k. At
kgT/e=1.47, Ullo and Yip'® find no differences in the
half-width % (k) of the coherent scattering function
when 6 <koy;<10 for LJ fluids, the corresponding re-
sults of neutron scattering experiments on krypton16 and
the theoretical hard-sphere values. Therefore they con-
clude that at k3T /e=1.47 and intermediate k values, the
details of the potential are irrelevant and the fluids behave
hard-sphere-like, similar as we find here for Na and H, at
large k. A similar comparison'’ at kzT/e=0.97 and
6 <kopy <12 shows that the 0% (K) of LJ systems'* agree
with those of corresponding argon fluids'® but differ con-
siderably from the theoretical hard-sphere results. Thus
at kpT /€=0.97, LJ fluids do not behave hard-sphere-like
at intermediate values of k and the details of the potential
are still relevant then, as they are at large k (cf. Ref. 13).
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APPENDIX

Here we evaluate the function f,(7) defined by the Egs. (12) and (13), i.e.,

fl(T):(Bm )I/ZIE(N‘-‘].) fOTdT,<e—ik-clf'T( 1,2)

—ikec)(r=7)
e

). (A1)

From Eq. (5) for T(i,j), the definition of g (r) (Ref. 6) and Eq. (14) for /5 follows straightforwardly that

f1<7)=ﬁ [l dr [doe™ 7 e8| Oe1d)bs(1,2)~1]e

—ik-c)(r—7")

)>12 ’

where the two sets of labeled angle brackets refer to the reduced normalized velocity averages

—c?
(C)y=@m =72 [deje 7%

(A3)

In Eq. (A2) we replace ©(c,,-d) by 3, since by=b_, [cf. Eq. (6)]. We use the reduced center-of-mass velocity
C=(c;+¢;)/2 and the reduced relative velocity c=c,,. Since b; in Eq. (A2) acts only the component of ¢ in the &
direction, i.e., on ¢, =c-&, we may integrate over C and over the two components of ¢ orthogonal to &. Then

\/_ T.A —ik-6 ! _ik-6c (r—1'
fl(»r):z;rz—e_’l/z fordTIfdae(k.a)ZTZA(e xkaca‘r/2|ca“ba_l)e ik-oc ( Tl/2>’ (A4)
with
i [ s
(C0),y=@m=172 [ dege ) (AS)
We use b, c, = —c, and perform the 7’ integral. Thus,
V3 A iiaca‘r/Z o
f1(7)=4—2e”’2/2fdoe'k’a'zr/4<lcai L e > (A6)
m ik-gc,/2 r
|
or, more conveniently, In the following we need the hypergeometric functions
F, which are defined by'®
~ T.A P q
f1(T)=——\8/7§'e_'2/2 fordr’ 7 fd(’}ik'(’ie“"")z"z/4

ik-Gc,7' /2
X< ]Ca tcoel acyT )

r o

(A7)

,ap;Bl,Bz, P ,Bq;Z)
. X (al),.(az),,x e X(ap)n i
T2 Bn(BaX X (Bg)y n!

pFelaga, ...

(A8)
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where

Fa+n)
INa)

is a Pochhammer symbol and I'(x) the gamma function.
In Eq. (A7) we expand exp(iﬁ-&car’/Z), use only the

terms which are odd in ﬁ-&, and perform the average

((-++)), and the 7’ integral term by term. Then,

(a)p=ala+1)X -+ Xla+n—1)= (A9)

filn= ‘/3-,2# —72 [d5(k-6)

X 1Fi(+;3;+(k8)?), (A10)

where we used F,(a;B;z)= F,(B—a;B;—z)expz, for the
confluent hypergeometric function ,F,.%

In Eq. (A10) we expand F; and perform the @ integral
term by term, so that

22

fl(r)———-——r3 =72 F( 33,55, (A11)

which is the final result for f(7).
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