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The onset of chaos in the rf-biased Josephson junction is studied through numerical simulations.

It is shown that the chaotic region predicted by the method of Melnikov spans only a narrow region

of rf amplitudes and consists of weakly chaotic solutions which maintain phase lock with the rf bias.
The experimentally observed threshold of chaos is shown to coincide with the onset of unlocked

chaotic behavior at higher rf amplitudes.

I. INTRODUCTION

The existence of chaos in the rf-biased Josephson junc-
tion has been verified through theory, ' simula-
tion, ' ' and experiment. ' ' ' ' ' The extensive
literature on chaos in this system is due in part to the fact
that, when treated within the Stewart-McCumber
model, ' the equation of motion is one of the simplest
to exhibit chaos and also describe a significant physical
system. This situation allows chaos to be studied through
a full interplay between theory, simulation, and experi-
ment. The rf-biased junction is also of practical impor-
tance in that it defines a standard of voltage, an applica-
tion for which chaotic behavior must be avoided. In ad-
dition, what has been described as Josephson noise in SIS
mixers is very probably chaos in an rf-biased junction.

This paper is concerned with the onset of chaos in the
Josephson junction at low levels of rf bias. The mini-
mum rf amplitude required to produce chaos has been
previously investigated theoretically, ' in simula-
tions ' ' ' ' ' ' ' ' and in experiments. ' %hile
there is reasonably good agreement between simulations
and ex eriments for the rf-amplitude threshold of
chaos, theoretical predictions based on the method of
Melnikov yield a significantly lower threshold. ' This
discrepancy has prompted the present study, in which nu-
merical simulations are used to locate a narrow chaotic re-
gion, previously overlooked, for which the threshold of
chaos is accurately predicted by the method of Melnikov.
The onset of chaos is found by exploring the parameter
range of periodic solutions and searching for bifurcations
which lead either to the period-doubling scenario or the
tangency scenario for chaos. Bifurcation diagrams con-
structed for periodic solutions are used to show the rela-
tionship between the chaotic regions predicted by the
method of Melnikov and those commonly observed in ex-
periments and simulations.

The nature of the chaotic state is explored for a range
of rf-bias levels near the onset of chaos. When the chaotic
state is entered through a period-doubling sequence, it is
found that the resulting state is one in which the junction
phase maintains synchrony with the rf bias. As others

ave noted previously, ' ' ' 2' ' 8 such phase-locked
chaotic states typically span only a narrow parameter
range. In agreement with Sakai and Yamaguchi, ' we

find that the phase-locked chaotic region is usually ter-
minated by a crisis which leads either to a region of
periodic motion or a region of unlocked chaotic motion.
The tangency scenario, on the other hand, often leads

directly to unlocked chaotic motion.
The remainder of this paper may be outlined as follows.

Section II reviews the results obtained by application of
the method of Melnikov to the rf-biased junction. Sec-
tions III through V explore the parameter range of period-
ic solutions and the onset of chaos as a function of the
bias frequency coi. The case in which coi is much larger
than the junctions plasma frequency co& is discussed in
Sec. III. In this limit, stable periodic solutions are found
to span a parameter range defined by the Bessel-function
approximation and no chaotic behavior is observed. Sec-
tion IV considers the situation in which co& is greater than
but comparable to coy. In this case, chaos is found to
develop through a period-doubling cascade. Section V
discusses values of coi less than to~, in which case the on-
set of chaos may be associated either with tangency or
with period doubling. Section VI explores the nature of
the chaotic state near the onset of chaos.

II. METHOD OF MELNIKOV

Considered within the Stewart-McCumber model,
the system to be studied consists of an ideal Josephson ele-
ment of critical current I, shunted by a capacitance C
and resistance 8 and driven by a current source which in-
cludes a dc component of amplitude Io and an rf com-
ponent of amplitude Ii and frequency coi. In terins of di-
mensionless parameters, the equation of motion for the
junction phase P is

PP+P+sinP=io+i&sin(Air), (l)

where 13=2eI,R C/fi is a dimensionless hysteresis param-
eter, io ——Io/I, is the normalized dc bias, i

~
——I& /I, is the

normalized rf amplitude, 0& co&(fi/2eI, R )——is the normal-
ized rf frequency, i.=t(2eI, R/A') is the normalized time,
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and dots indicate derivatives with respect to r. In this no-

tation p is the voltage across the junction normalized to
I,R. In addition to describing a Josephson junction, the
above equation describes the motion of a damped, driven
pendulum where P is the angle of the pendulum from
vertical.

The existence of chaos in the system defined by Eq. (1)
is predicted theoretically by the method of Melnikov for
a special situation, namely the situation in which the sys-
tern is close to being conservative and the motion is near a
separatrix of the underlying conservative system. In the
method of Melnikov, the noncanservative terms of the
equation of motion, the damping and drive terms in the
present case, are treated as perturbations. Although the
predictions of the method of Melnikov are thus both lim-
ited and approximate, they are of interest because of the
general scarcity of such analytical results in the theory of
chaos.

The equation of motion for the conservative system
underlying Eq. (1),

PP+ sing =0, (2)

is equivalent to that of an undamped„undriven pendulum.
Integrating Eq. (2) yields

E = —,
'
pp + (1—cosp),

where the constant of integration E is the energy of the
system in units of the Josephson coupling energy fiI, /2e.
Equation (3) defines the trajectories of the conservative
system in state space, that is, in the (P,P) plane. State-
space trajectories are plotted in Fig. 1 for p=100 and
several values of energy. Trajectories for E &2 corre-
spond to a pendulum swinging back and forth, the energy
being insufficient for the pendulum to reach the upward
vertical position. For E ~2 the motion corresponds to a
pendulum rotating around and around, either in the for-
ward or reverse direction depending on the initial condi-
tions. The trajectory for E =2 is the separatrix. Motion
on the separatrix corresponds to the case in which a pen-
dulum begins in the upward vertical position with an in-

finitesimal velocity, gains speed as it falls toward the
downward vertical, and comes to a stop as it approaches
the upward vertical again. Because the velocity ap-
proaches zero at the beginning and end of the separatrix
trajectory, the time required to traverse it fram —ir to m

is infinite. The method of Melnikov predicts the onset of
chaos for situations in which the trajectories of the per-
turbed system approximate this motion.

When applied to Eq. (1), the method of Melnikov
predicts that chaos will occur for rf amplitudes which
exceed a critical value i&, given by

i„= +io cosh(ir —,Qi~P) .
4 1

p
(4)

Simulations presented in the following sections confirm
this result for the case io O——and P=100 for a range of
0).

The method of Melnikov is expected to be accurate only
over parameter regions for which Eq. (1) represents a
nearly conservative system. An estimate of this parameter
region can be obtained if we require that the amounts of
energy dissipated in the resistance and supplied by the
current source over one excursion of the separatrix orbit
are small compared to the total energy of the system. On
the separatrix one notes that

cos(P/2),

P»16,
io«1/m .

(8)

(9)

from which it follows that the energy dissipated in the
resistance is

Z, = f y'd~= f ydy=8/v p, (6)

and the energy supplied by the dc source is
Cia ~ 1r

Ed, io ——Pdi. =io d$ =2m.io .

Requiring that Eq and Ed, be small compared to the total
energy, E =2, yields

0.3

0.2

Although it is not possible to obtain a simple expression
for the energy supplied by the rf source, it is reasonable to
assume that a condition similar to Eq. (9) must be im-
posed on i &. Thus, we presume that the requirement

~ e 0.1 E) && 1/K (10)

LLI

0.0
I

0 -0.1

-O. 2

PHASE, cp

FIG. 1. State-space trajectories of the conservative system for
P= 100 and several values of energy.

and Eqs. (8) and (9) represent sufficient conditians for the
validity of Eq. (4). These conditions are similar to but
slightly more restrictive than those suggested by Guban-
kov et OI.

Further insight into the range of validity of Eq. (4) is
obtained if one notes that the factor multiplying the cosh
function is assured to be small by Eqs. (8) and (9) but the
cosh function itself increases exponentially for large argu-
ments. It follows that i i, will generally satisfy Eq. (10) if
and only if Qiv p is less than or on the order af unity.
Because the junction's plasma frequency is Q~ =1/v p in
the dimensionless natation used here, Eq. (10) is roughly
equivalent to the condition
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0) &Op .

Taken together, the conditions specified by Eqs. (8), (9),
and (11) determine the range of parameters for which we
might expect to find the onset of chaos predicted by the
method of Melnikov. However, we begin our search by
considering the limit Q~ ~&Q& in order to make contact
with a parameter region in which the range of periodic
solutions approaches a simple form.

III. BESSEL-FUNCTION LIMIT

The presence of a periodic driving force suggests that
the typical steady-state solutions of Eq. (1) will be period-
ic with a period equal to that of the rf-bias 2tr/QI or pos-
sibly some multiple of this period. That is, we expect to
find solutions which obey the relation

p(r+ m 2m /Q I ) =p(r) + 2m I, (12)

(Ii)
I «o «QI+ I J.(II) I

(13)

where J„is the Bessel function of order n and i I is an al-
ternative measure of the rf amplitude defined by

for all r with m and 1 integers. For such a solution, the
phase advances by exactly I revolutions during m rf cycles
and the average voltage ((()) is (1/m)QI. The smallest
value of m for which Eq. (12) holds is the period of the
solution measured in rf cycles.

For the rf-biased junction it is often found that the
average voltage remains constant at a particular value of
(I/rn)QI over some range of dc bias. On such rf-induced
constant-voltage steps, the junction is said to be phase
locked because the phase rotates in synchrony with the rf
bias. It is useful to distinguish two types of rf-induced
steps, namely principal steps, for which I/m is an integer
n, and subharmonic steps, for which I/m is not an in-
teger. It can be shown ' ' that in the limit Q~ g~1 or the
limit QI~&Q~, the principal step of order n spans the
range of dc bias given by

the discovery of stable solutions which would otherwise be
difficult to locate.

To distinguish stable periodic solutions from unstable
ones, we test the local stability of each solution by com-
puting its Liapunov exponents. If the state vector (P, (())
of a solution is represented by (X„Xi),then its Liapunov
exponents A,; are defined by"

1
&; = lim ln

I
ith eigenvalue of J(r, ro)

I+—+0

where J is the Jacobian matrix,

Stability is determined by the maximum Liapunov ex-
ponent, which we denote by A, . For periodic solutions a
negative A, implies stability and a positive A, implies insta-
bility. The numerical methods used to evaluate Liapunov
exponents for this system have been discussed elsewhere.

In the search for periodic solutions of Eq. (1} that ap-
proximate the separatrix trajectory of Eq. (2), it is possible
to imagine two ways of obtaining a match. One possibili-
ty is a solution in which ((I oscillates about zero with an
oscillation amplitude approaching n and an oscillation
period equal to the rf cycle. This solution corresponds to
a point on the n =0 principal step. The second possibility

(a)

ILl

x 0
CL,

iI ——iIQI '(1+Q P ) (14)

(()( m 2rr/QI ) =(('l(0) (mod2n. ), (15}

Later in this section, we compare the computed range of
periodic solutions for Q, =2Q~ with the limiting Bessel-
function form given by Eq. (13).

The problem of finding periodic solutions to Eq. (1) is
equivalent to the problem of finding initial conditions
II)(0) and II)(0) such that the computed trajectory yields O
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I

P(m 2ir/QI) =(()(0), (16)

where m is the expected period. An iterative approach to
solving Eqs. (15) and (16) that has been discussed else-
where ' was employed in the present study. Because this
method does not use the natural relaxation of the system
to find steady-state solutions, it yields periodic solutions
which are unstable as well as those which are stable. A
knowledge of unstable solutions often proves to be useful
in that an exploration of their parameter range can lead to

rf AMPLITUDE, i&

FIG. 2. Initial phase of period-1 solutions as a function of rf
amplitude on the n =0 step (a) and n =1 step (b) for @=100,
Q~ ——0.2, and io ——0. Stable and unstable solutions are indicated
by solid and dotted lines, respectively.
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Pp(r) = Pi(r+ n/Q i
—). (19)

is also a solution in the case io ——0. For the symmetric
solutions discussed above, Pi and Pi are identical mod2n. ,
but in the case of broken symmetry, Pi and Pi can be
identified as the pair of asymmetric solutions.

is a solution in which P advances by one revolution during
each rf cycle and the angular velocity approaches close to
zero as P passes through n .This solution corresponds to
a point on the n =1 principal step. These associations
suggest that the chaotic region predicted by Eq. (4) will
evolve out of n =0 or n = 1 periodic solutions. In the fol-
lowing, attention is restricted to these cases.

The various periodic solutions for a given set of param-
eters p„Qi,io, and i i can be identified uniquely by speci-
fying the state vector of a given point in the rf cycle, say
(P(0), $(0)). Although it leads to an occasional ambigui-

ty, we will, for simplicity, identify periodic solutions sole-

ly by their initial phases P(0). The initial phases of
period-1 solutions are shown in Fig. 2 as a function of rf
amplitude for the case P=100, Qi ——0.2, and io ——0. The
n =0 and n =1 solutions are shown in Figs. 2(a) and 2(b),
respectively, with stable and unstable solutions indicated
by solid and dotted lines, respectively. Figure 2 is called a
bifurcation diagram and can be regarded as a catalog of
periodic solutions.

Consider first the locus of n =0 solutions plotted in
Fig. 2(a). In the absence of an rf bias there are two solu-
tions, a stable one at P(0)=0 and an unstable one at
P(0)=m. These solutions correspond to a pendulum at
rest in the downward vertical position and a pendulum
balanced in the upward vertical position. For small rf-
bias levels the stable solution is one in which the pendu-
lum simply oscillates symmetrically about /=0. Above

i&
——2. 19, this symmetric solution loses its stability and

between i I
——2. 19 and 2.63 there are two stable solutions,

each of which violates the symmetry of the io ——0 system.
One of the two solutions corresponds to a pendulum
swinging further in the positive P direction than the nega-
tive P direction. For the other solution this asymmetry is
exactly reversed. The pair of solutions having broken
symmetry develops through a pitchfork bifurcation at
i, =2.19 and vanishes again through a pitchfork bifurca-
tion at i&

——2.63. Between iI ——2.63 and 5.36 the stable
solution is again symmetric but the point of symmetry is
P=m rather than /=0. After a second interval of sym-
metry breaking between i&

——5.36 and 5.69, the stable
solution returns to being symmetric about /=0. With
further increases in i i the pattern of symmetric and asym-
metric solutions begins to repeat itself. However, each
time the solution symmetric about / =0 (or P=m ) returns
at a higher level of rf bias, the amplitude of the oscillation
increases by about 2m. The n =0 solutions which most
closely approximate the separatrix orbit are the solutions
symmetric about /=0 near the first interval of broken
symmetry where the oscillation amplitude approaches m.

Symmetry breaking in the io ——0 system has previously
been discussed by D'Humieres eI. al. ' and MacDonald
and Plishke. ' lt is easily verified that if Pi(~) is a solu-
tion of Eq. (1), then the function

It is useful to compare the range of n =0 solutions
shown in Fig. 2(a) for Q, =2Q& with the Bessel-function
form given by Eq. (13). In the limit Qi»Q~, Eq. (13)
predicts the existence of an n =0 solution at io ——0 pro-
vided I Jo(ii)

~

&0. Thus, n =0 solutions are expected
for all i i except the zeros of Jo. These exceptional points
correspond to the points at which the limiting form of the
solution switches between oscillations symmetric about
/=0 and oscillations symmetric about P =n. Comparing
this situation with the case of finite Q, suggests that the
zeros of Jo will fall near the intervals of i i over which
symmetry breaking is observed. Indeed, the first three
zeros, i i

——2.40, 5.52, and 8.65, fall within the intervals of
broken symmetry shown in Fig. 2(a). One concludes that
this bifurcation diagram is very close to what would be
obtained in the limit AI &&0&.

We now consider the n =1 solutions for Qi ——2Q&

which span three distinct intervals of i, as shown in Fig.
2(b). Each interval is spanned by one stable and one un-

stable solution, the two solutions disappearing together at
each end of the interval in a tangent or saddle-node bifur-
cation. Although tangent bifurcations sometimes lead to
chaotic behavior, in the present instance the system sim-

ply switches from the n =1 state to the n =0 state as i,
passes through the point of tangency and no chaos results.

An n = 1 solution is necessarily asymmetric since (() in-

creases by 2' during each rf cycle. The solution for
which this asymmetry is reversed is an n = —1 solution
and for each n =1 solution there is a corresponding
n = —1 solution given by Eq. (19). Because both solu-

tions span the same range of ii, it is sufficient to consider
only the n =1 solution.

As with the n =0 solutions for Qi ——2Q», the ranges of
i

&
spanned by the n =1 solutions are given approximately

by the Bessel-function limit. From Eq. (13) we expect
stable n =1 solutions at io ——0 provided

~
J, (i, )

~
&Qi.

For the case Qi ——0.2, Eq. (13) thus predicts n =1 solu-

tions between i
&

——0.41 and 3.35, between i& ——4.39 and
6.33, and between i I

——7.79 and 9.30, in close agreement
with the results shown in Fig. 2. The nature of the solu-
tions on each of these three intervals is distinctly dif-
ferent. Roughly speaking, on the first interval P advances

by 2m during each rf cycle without any backward rotation.
On the second interval a net advance of 2nis obtained b.y
rotating forward 4m and then backward 2~ during each rf
cycle. On the third interval P rotates forward 6n then
backward 4nOf these thr. e. e types of motion, it is the one
on the first interval which is expected to approximate the
separatrix orbit.

Because chaotic behavior is not observed at QI ——2Q&
and the solutions at this frequency already approximate
the limit Q, I ~&O~, it is reasonable to conclude that chaos
will not be observed for Q& greater than 20~. In the fol-
lowing sections we explore the range of n =0 and n = 1

solutions for 0& less than 20&. Attention will be focused
on two solution branches, to be designated A and 8.
Branch 3 is defined, for the present, to include the stable
n =0 solution at iI ——0 and all stable n =0 solutions
which can be reached from this solution by a continuous
tracing through stable solutions on the bifurcation dia-
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gram. At QI ——2Q&, branch A apparently spans the range
from it ——0 to infinity. Branch 8 is similarly defined to
include the stable n =1 solution of lowest i I and all the
stable n =1 solutions connected to it through stable solu-
tions by the bifurcation diagram. At Q, =2Q~, branch 8
extends from i I

——0.43 to 3.39. The ranges of branches A

and 8 are indicated in Fig. 2 by brackets at the top of the
frames.

At this point it is useful to introduce Fig. 3, which
summarizes the results of this and the following sections.
Figure 3 shows the frequency dependence of the rf-
amplitude ranges of solution branches A and 8 plus that
of a third branch, designated C, which is defined later. In
addition, the onset of chaos predicted by the method of
Melnikov is shown by a dashed line. The rf amplitude is
plotted here as it rather than i I to simplify comparison
with the results of previous workers. Figure 3 will be dis-
cussed in detail as we examine a succession of bifurcation
diagrams for frequencies less than 2Q~.

20.0

1O O — &

5.0

QJ
O 2.0-

1.0

IV. PERIOD-DOUBLING CASCADE

Bifurcation diagrams for period-1 solutions on the
n =0 and n =1 steps are shown in Figs. 4(a) and 4(b),
respectively, for Qi ——1.4Q&. These diagrams are like
those shown in Fig. 2 for QI ——2Q~ with the exception of
two regions where stable solutions are replaced by unsta-
ble solutions. In particular, the n =0, m =1 solution is
unstable over the range from i, =2.30 to 2.66 in the first
region of broken symmetry and the n =1, m =1 solution
is unstable over the range from i I

——0.52 to 2.63 in the
first interval over which it is expected to be stable. These
instabilities are associated with the onset of chaos through
period doubling, a situation observed many times previ-
ously in this system ' ' '

The regions of instability on the n =0 and n =1 steps
are shown on expanded scales in Fig. 5. In order to illus-
trate the period-doubling bifurcation cascade, this figure
includes period-2 and period-4 solutions in addition to the
period-1 solutions shown in Fig. 4. As an example of
period doubling, consider the n =0 solutions having posi-
tive initial phase in Fig. 5(a). At ii ——2.298, where the
m =1 solution loses stability, there is a pitchfork bifurca-
tion and two stable m =2 solutions appear. The m =2
solutions become unstable at i, =2.372 and pitchfork bi-
furcations at this point lead to four stable m =4 solu-
tions. The m =4 solutions become unstable in turn at
i, =2.387 and pitchfork bifurcations at this point lead to
eight m =8 solutions (not shown). An exactly similar
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FIG. 3. Range of rf amplitude for solution branches A, 8,
and C as a function of frequency for 8 =100 and io ——0. For
clarity, the n =0 and n =1 solutions are shown separately in
frames (a) and (b), respectively. The dashed line in each frame
indicates the onset of' chaos predicted by Eq. (4).
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r f AMPLITUDE, i&

FIG. 4. Initial phase of period-1 solutions as a function of rf
amplitude on the n =0 step (a) and n = I step (b) for @=100,
QI ——0. 14, and io ——0.
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FIG. 5. Initial phase as a function of rf amplitude for solu-
tions of period 1, 2, and 4 on the n =0 step (a) and n =1 step (b)
for P= 100, Qi ——0. 14, and io ——0.

period-doubling sequence occurs for the n =0 solutions
with reversed asymmetry having negative initial phases.

In the period-doubling cascade, the interval b, i, (m)
over which the solution of period m is stable decreases
rapidly with increasing m. In fact, general arguments
show that

Ai i (2")
lim =4.6692. . . ,

(2k+1)
(20)

where 4.6692. . . is a universal constant. Equation (20) al-
lows one to estimate the accumulation point of the cas-
cade ii„atwhich the period of the solution approaches
infinity and beyond which the motion of the system be-
comes chaotic. Based on the stability interval of the
period-8 solution, i&, is estimated to be 2.391 for the
n =0 cascade discussed above. This value of i, defines
the upper limit of solution branch A at Q, = 1.4Q~ and is
a threshold for chaotic behavior, as will be verified in Sec.
VI. Similarly, as shown in Fig. 5(b), solution branch 8
ends in a period-doubling cascade with a threshold for
chaos at i~, ——0.581. As can be seen from Fig. 3, these
values of i

&
for the onset of chaos are significantly above

the threshold of 0.296 predicted by the method of Melni-
kov. However, as Eq. (11) indicates, the method of Melni-
kov is not expected to be especially accurate at
Qi ——1.4'.

The breakdown in stability of the n =0 and n =1 solu-

r f AMPLITUDE, I)

FIG. 6. Initial phase as a function of rf amplitude for
period-1 solutions on the n =0 step {a) and n =1 step (b) for
P=100, Q~ ——0.1, and io ——0.

tions which leads to chaotic behavior at A~ ——1.40& was
not observed at Q, =2Q». At what value of Qi does
chaotic behavior first occur? Chaos is found to first
evolve out of the n =0 solution at a point between
Qi ——1.41Q& and 1 40 Qz and out of the n =1 solution be-
tween Qi ——1.70Q& and 1.69Q&. These critical values of
Q~ are evidenced in Fig. 3 by discontinuities in the range
of solution branches A and 8. The results shown in Fig.
3 confirm the empirical rule ' that chaos does not occur
in this system for Q»&Q~.

The bifurcation diagrams for period-1 solutions on the
n =0 and n =1 steps are shown for Qi ——Qz in Fig. 6.
Although similar to the results for Q, =1.4Q&, these dia-
grams reveal several additional regions of instability. In
Fig. 6(a), all three of the intervals of broken symmetry
show instabilities and, in Fig. 6(b), all three of the n =1
solution intervals include unstable regions. Because Fig. 6
includes only m =1 solutions, the pitchfork bifurcations
shown here are all associated with symmetry breaking.
However, if one excludes from consideration all of the
pitchfork and tangent bifurcations displayed in Fig. 6,
then all other points at which the m = 1 solution loses sta-
bility are points at which period-doubling cascades are ini-
tiated. Viewed with this fact in mind, Fig. 6(a) suggests
that intervals of chaos will alternate with intervals of
stable period-1 solutions as a function of increasing rf am-
plitude. This regular alternation between periodic and
chaotic solutions, noted previously by Octavio, derives
from the system's tendency, still apparent in Fig. 6, to fol-
low the Bessel-function pattern.



R. I . KAUTZ AND J. C. MACFARI. ANE 33

At Ql ——Q~, solution branches A and 8 are qualitative-

ly similar to what they are at Q, =1.4Q~, but the range of
branch 8 is very small, as shown in Fig. 6(b). The accu-
mulation points which terminate branches A and 8 at
their upper limits are i&, ——1.808 and 0.352, respectively,
at 0& ——Qz. The latter value is reasonably close to the
threshold of 0.318 predicted by the method of Melnikov.
In the next section it is shown that, for values of QI less
than Q&, the method of Melnikov becomes an accurate
predictor of the accumulation points of both the n =0
and n =1 cascades.

V. HYSTERESIS AND TANGENCY
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FIG. 7. Initial phase as a function of rf amplitude for
period-1 solutions on the n =0 step (a) and n = l step (b) for
P= 100, Q~ ——0.07, and ro=O

Bifurcation diagrams for the case Qi ——0.7Q& are shown
in Fig. 7. An important new feature of the n =0 diagram
is a region of hysteresis between ii ——0 and the end of the
first period-doubling cascade at iI ——1.177. The stable
n =0 solution branch beginning at iL——0 ends at
ii ——0.851 with a tangent bifurcation. If iI is increased
beyond 0.851, the system jumps to a second solution
branch which ranges from I'I =0.324, where it begins with
a tangent bifurcation, to i I

—1.177, the end of the period-
doubling cascade. The hysteresis loop is completed if i I is
reduced below 0.324, forcing the system to switch from
the second branch back to the first. For reasons of con-
tinuity, we retain the label A for the branch ending with
the period-doubling cascade and introduce the label C for
the branch that begins at ii ——0. The range of solution

branches A and C are indicated by brackets at the top of
Fig. 7(a).

The hysteresis region described above has been con-
sidered previously by Huberman et al. and D'Humieres
et al. ' The ranges of solution branches A and C are
shown as a function of frequency in Fig. 3(a). The region
of hysteresis is the roughly triangular area where branches
A and C overlap. Branch C first appears at frequencies
just below Qi ——Q&. The initiation of branch C can be
seen in the bifurcation diagram for Qi ——Qz [Fig. 6(a)] as
the apparently infinite slope of branch A at ii ——0. At
frequencies below Qz, branch C expands rapidly to cover
a broad range of rf amplitudes while branch A narrows

until it spans only a very small range of i I at 0.3 Q~, the
lowest frequency simulated.

At frequencies below Qz, the character of the solutions
on branch A is determined by a resonance between the
drive frequency and the natural oscillation modes of the
system. '6 To understand this resonance effect, it is useful
to consider again the undamped, undriven system of Eq.
(2). In the limit of small oscillation amplitudes (E~O),
the oscillation period of the conservative system ap-
proaches 2ir/Qz. The system's nonlinearity gives rise to
longer periods of oscillation for larger oscillation ampli-
tudes, with the period approaching infinity as the ampli-
tude approaches n (E~2). Quantitatively, the orbital

period vo is given by

ro —— K ($0/2),
4

Qp
(21)

where K is the complete elliptic integral of the first kind
with modular-phase argument and $0——cos '(1 E) is-
the oscillation amplitude. At any drive frequency less
than Qz, there will be some oscillation amplitude for
which the orbital period of the conservative system
matches the drive period. Thus, if the damped, driven
system is not heavily damped, we might expect to find
resonant solutions for a range of rf amplitudes producing
orbits with natural periods which approximate the rf drive
period.

To confirm that the solutions on branch A are the pro-
posed resonant solutions, we consider the computed solu-
tions at Q~ ——0.7Q&. Figure 8 shows state-space trajec-
tories for an rf amplitude at which stable period-1 solu-
tions exist simultaneously on branches A, 8, and C. The
resonant nature of solution A is suggested by the fact that
its orbit is much larger than that of solution C. More
conclusive evidence is given by the near coincidence of the
amplitude of solution A, namely Po ——2.34, with the am-
plitude predicted by Eq. (21) for a conservative orbit hav-
ing the same period, namely go=2. 20.

In addition to confirming the resonant nature of branch
A, Fig. 8 a11ows us to compare the state-space trajectories
of solutions A and 8 with the separatrix, which is indicat-
ed by a dotted line. Although both solutions lie near the
separatrix, solution 8 is significantly closer than solution
A. This difference correlates with the fact that the end
point of the period-doubling cascade for branch 8,
i&, ——0.431, is much closer to the threshold of chaos
predicted by the method of Melnikov, i&, ——0.429, than
the end point of the cascade for branch A, iI, ——1.177.
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The rapid convergence of branch 8 to the separatrix orbit
with decreasing 0&, relative to branch A, can be under-
stood in terms of the difference in the distance to be
traversed in j)j space for the two orbits. For an n = 1 solu-
tion which approximates the separatrix, the system moves
from n to n—during one rf cycle while for an n =0 solu-
tion the system must move from —n to m and back to

nagain —in the same period of time. At Q, =0.7Q& the
rf cycle is sufficiently long for an n =1 solution to
traverse the separatrix once but not sufficiently long for
an n =0 solution to do so twice. This factor of 2 explains
why the threshold predicted by the method of Melnikov is
rapidly approached by the upper limit of branch 8 for
requencies below Qz while it is approached by the upper

limit of branch A only below 0.5 Q~, as shown in Fig. 3.
ifurcation diagrams for the case QI ——0.5Q~ are shown

in Fig. 9. Here we find that the upper bounds of branches
A and 8 are nearly coincident. The state-space trajec-
tories shown in Fig. 10 reveal that solutions A and 8 both
approach the separatrix orbit very closely. Thus, it is not
surprising to find that the end points of the cascade for
branches A and 8, i ~,

——0.779 and 0.661, are both close to
the threshold for chaos predicted by Eq. (4), i„=0662.

t Q~ ——0.3Q&, the agreement is even better, with a
predicted threshold of i;, =1.494 and observed accumula-
tion points at i I, ——1.490 and 1.491 for branches A and 8.

Experimentally, solution branches A and 8 would be
di ficult to observe at QI ——0.5Q&. As Fig. 9(a) indicates,
the system starts on solution branch C at i, =0 and will
remain on branch C as i

&
is increased up to 2.99, a point

well beyond the ranges of branches A and 8. Thus, the

b
experimentally observed threshold of chaos will be ata or

eyond the tangent bifurcation which terminates branch
AAs Fig. 3 shows, this situation holds for frequencies

below 0& ——0.660&, the crossover point between the upper
limits of branches A and C. In some cases including th t
shs own m Fig. 9(a), another stable solution branch overlaps
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FIG. 9. Initial phase as a function of rf amplitude for

period-1 solutions on the n =0 step (a) and n =1 step (b) for
P=100, QI=0.05, and io 0——

the upper limit of branch C and the system merely
switches to another type of periodic motion when i1)
passes through the point of tangency. In other cases, no
such periodic solution exists and the system enters the
chaotic state when the upper limit of branch C is exceed-
ed. In fact, at frequencies below QI ——0.66Q~, the ob-
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branches A, 8, ajjd C for jj3=100, Qj ——0.05, i0=0, and
i =0.66&1083. The separatrix of the conservative system is in-

dicated by a dotted line.
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served threshold of chaos is often the tangent bifurcation
at the end of solution branch C. An example in which the
chaotic state is entered through the tangency scenario in
this way will be discussed in the next section.

UI. CHAOS
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FIG. 11. Initial phase (a) and maximum Liapunov exponent
(b) of the steady-state solution as a function of rf amplitude for
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{a). The maximum Liapunov exponent is calculated over 8192
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In the previous discussion, the onset of chaos has been
explored through bifurcation diagrams for periodic solu-
tions. In this section we examine the chaotic state itself in
the region near the threshold of chaos.

A bifurcation diagram which includes chaotic solutions
is shown in Fig. 11(a) for a case in which chaos develops
through a period-doubling cascade. Fig. 11(a) continues
the bifurcation sequence shown in Fig. 5(a) to solutions
with periods greater than 4. The procedure used to con-
struct Fig. 11(a) consists of first allowing the system to re-
lax to the steady-state solution at a given rf amplitude and
then plotting the phase at the beginning of 512 successive
rf cycles. In the region below i, =2.3873, where the
steady-state solution has a period of 4 rf cycles, this pro-
cedure yields all four possible values of initial phase. Be-
tween i, =2.3873 and 2.3902 one finds eight different
values of initial phase, indicating a period-8 solution. At
higher values of i i the period-doubling process continues
with solutions having periods of 16, 32, 64, . . . , rf cycles.

Beyond the accumulation point of the cascade at
ii ——2.3910, the period of the solution is presumably infin-
ite and the 512 plotted points merely give an indication of
the range of initial phase for the chaotic state.

One of the defining characteristics of the chaotic state
is that, although the system will naturally relax to a
chaotic trajectory, any particular chaotic trajectory is un-
stable with respect to small perturbations. More precisely,
chaos is a steady-state behavior for which at least one
Liapunov exponent is positive. Figure 11(b) plots the
maximum Liapunov exponent A. for the solutions shown
in Fig. 11(a). Over the range of i, where the solution is
periodic, A, is negative, indicating stability in the presence
of small perturbations. Above the accumulation point of
the period-doubling cascade, A, is positive, confirming the
chaotic nature of the solutions in this parameter range.

On the chaotic side of the accumulation point, one
finds a reverse bifurcation cascade in which the bands of
chaotic motion shown in Fig. 11(a) gradually become wid-
er and merge together, such that the number of bands
will, at some point, decrease from 16 to 8, then from 8 to
4, and so on with increasing i, . Usually, the envelopes of
the chaotic bands widen smoothly but, as Fig. 11(a)
shows, there are two discontinuities in the present in-
stance. In the first discontinuity, at i, =2.3924, the
chaotic bands suddenly increase in width so that four
bands merge to form two bands. In the second discon-
tinuity, at i

&

——2.3934, the chaotic bands suddenly disap-
pear. Both of these discontinuities are produced by what
are called crises in which chaotic bands collide with un-
stable periodic solutions. The first crisis shown in Fig. 11
is called an interior crisis because the chaotic bands sim-

ply change size. The second is called an exterior crisis be-
cause it forms a boundary of the chaotic region.

Crises have been previously identified in the rf-biased
junction by Sakai and Yamaguchi ' and by Gwinn and
Westervelt. The nature of the collision between chaotic
solutions and unstable periodic solutions is illustrated in
Fig. 12. Here we show the Poincare sections of the chaot-
ic solution for values of i, just below the two crisis points.
The Poincare section is obtained by plotting the location
of the system in state space at the beginning of a large
number of successive rf cycles. At i, =2.392 the Poincare
section [Fig. 12(a)] consists of four distinct segments, one
for each of the four bands in Fig. 11(a). The circles
shown in Fig. 12(a) locate the twelve points corresponding
to an unstable period-12 solution. As i

&
increases beyond

2.392, the four segments of the chaotic solution expand
until they collide with the unstable period-12 solution at
i& ——2.3924 to produce the interior crises. Similarly, the
exterior crisis at i& ——2.3934 results when the two seg-
ments of the chaotic solution shown in Fig. 12(b) collide
with the indicated unstable period-6 solution.

Beyond the exterior crisis at i& ——2.3934, the system
switches from a chaotic solution to a stable period-2 solu-
tion on the n =1 step. Thus, at Q& ——0.14, the chaotic re-
gion which evolves from the n =0 period-doubling cas-
cade spans only the short interval from i& ——2.3910 to
2.3934. Moreover, the chaos which occurs on this interval
is of a weak type which we describe as phase-locked
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chaos ' ' ' and is elsewhere described as chaos without
diffusion' and narrow chaos. '. The chaotic solution is
said to be phase locked because the phase maintains syn-
chrony with the rf bias. In the present instance, the phase
advances by 0 revolutions during each rf cycle, with small
variations in (()(0} from cycle to cycle but no 2m phase
slips. Phase-locked chaos is also characterized by a noise
spectrum which approaches zero at low frequen-
cies. ' ' ' One concludes that the chaotic region shown
in Fig. 11, which spans a narrow range of rf amplitudes
and produces a relatively low level of noise, would be dif-
ficult to detect experimentally.

The chaotic region shown in Fig. 11 is typical of chaot-
ic regions that evolve from a period-doubling cascade.
When chaos evolves from a cascade associated with the
nth rf-induced step, the chaotic solutions just beyond the
accumulation point are phase locked and advance by n re-
volutions during each rf cycle. The phase-locked chaotic
region usually spans a parameter range smaller than that
of the cascade and is usually terminated by a crisis. All
along the upper limit of branch A for Qi & 1.4Q& and the
upper limit of branch 8 for Qi & 1.69Q& (cf. Fig. 3}, one
thus finds a narrow range of rf amplitudes where phase-
locked chaos is observed. VA'th the exception of the
chaotic region adjoining branch A on the interval
0.660& & 0& & 1.4Q&, the crisis which terminates this nar-
row interval of phase-locked chaos is invariably an exteri-
or crisis, beyond which the system switches to a periodic
solution. Thus, the chaotic regions adjoining branch A
for Qi &0.66Q& and adjoining branch 8 for Q) & 1.69Q~,
which include the chaotic regions for which the onset of
chaos is accurately predicted by the method of Melnikov,
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are very limited in extent and would be difficult to ob-
serve experimentally.

In contrast, the chaotic region adjoining branch A on
the interval 0.660& & 0& & 1.40Q& is at some points rela-
tively easy to detect. In this frequency range, the crisis
which ends the phase-locked chaotic region is often an in-
terior crisis, beyond which unlocked chaos is observed.
An example of this situation is shown in Fig. 13 for
0& ——0.70&. The crisis occurs in this case at i~ ——1.1786
where the phase-locked chaotic solution collides with an
unstable period-5 solution. Beyond the crisis point, the
solution remains chaotic but the phase no longer main-
tains synchrony with the rf bias, advancing by a variable
number of revolutions per rf cycle. For unlocked chaos,
also called chaos with diffusion' and wide chaos, ' the
initial phase can assume any value between man—d m [cf.
Fig. 13(a}]and the noise s ectrum approaches a constant
at low frequencies. ' ' ' ' Thus, the noise produced by
unlocked chaotic motion is much greater than that for
phase-locked chaos, allowing easy experimental detection.
Unlocked chaos is also easy to detect because it tends to
span a much broader range of parameters than phase-
locked chaos. In the present instance, phase-locked chaos
is limited to the range of i i from 1.1772 to 1.1786 while
unlocked chaos extends without significant interruption
from i i ——1.1786 to 1.6284.

Because the chaos most easily detected in experiments
is unlocked chaos, it is of interest to consider the rf-
amplitude threshold for unlocked chaos. For frequencies
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between 0.66Q& and 1.4Q& the onset of unlocked chaos
usually occurs at an rf amplitude near the upper bound of
solution branch A. In some cases, as at 0&——0.7Q&, un-
locked chaos begins immediately after the narrow interval
of phase-locked chaos that adjoins branch A. In other
cases, where the phase-locked chaotic region is bounded
by an exterior crisis, unlocked chaos occurs only at some-
what higher values of ii A. t Qi ——Qz, for example,
branch A ends at i~ ——1.8076, the associated region of
phase-locked chaos ends at iI ——1.8086, periodic n =1
solutions are found between i i ——1.8086 and 2.1309 [cf.
Fig. 6(b)], and the onset of unlocked chaos is at
i, =2.1309. Thus, while the rf-amplitude threshold for
unlocked chaos is not a simple function of frequency, it is
usually not far above the upper bound of branch A at fre-
quencies between 0.660& and 1.40&.

Similarly, at frequencies below 0.66Q&, the onset of un-

locked chaos is usually close to the upper bound of solu-
tion branch C. As noted earlier, at Qi ——0.5Q& the onset
of chaos does not occur at i i

——2.99, the upper limit of
branch C. However, unlocked chaos does appear at
i, =3.56, a point not far above branch C. At Q, =0.6Q~,
on the other hand, the onset of chaos coincides with the
tangent bifurcation at i i ——1.62644 which ends branch C,
as shown in Fig. 14. In this case, the scenario for the on-
set of chaos is the tangency or intermittency scenario
which has often been observed in this sys-
tem. ' ' ' '3 ' Thus, the situation for frequencies
below 0.66Q& is much like the situation for frequencies
above 0.660& except that the unlocked chaotic state is
often entered through the tangency bifurcation which
ends branch C rather than the period-doubling cascade
which ends branch A.

Because the onset of unlocked chaos is close to the
upper limit of branch C for Q, &0.66Q& and close to the
upper limit of branch A for 0.66Q~ &Qi &1.4Q& the ex-
perimentally observed onset of chaos is expected to rough-
ly follow the "vee"-shaped curve in Fig. 3 which is de-
fined by the upper limits of branches A and C. Such a
"vee"-shaped threshold curve with a minimum in the
neighborhood of 0.6' has been obtained in many previ-
ous simulations ' ' ' ' ' and is confirmed by exper-
imental observations. ' The previous studies show that
the region above this "vee"-shaped curve includes broad
areas of unlocked chaos interspersed with islands of
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periodic motion. In contrast, the chaotic region predicted
by the method of Melnikov, which occurs at lower rf am-
plitudes, spans only a narrow parameter range and in-
cludes only weakly chaotic, phase-locked solutions. Al-
though of theoretical interest, this latter region of chaos is
unlikely to prove of practical significance.
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FIG. 14. Initial phase {a) and maximum Liapunov exponent
(b) as a function of rf amplitude for P=100, Q~ ——0.06, and
i0=0. For each rf amplitude, 512 values of (()(0) are plotted. A.

is calculated over 8192 rf cycles.
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