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The connection between stochastic differential equations and associated Fokker-Planck equations
is elucidated by the full functional calculus. One-variable equations with either additive or multipli-

cative noise are considered. The central focus is on approximate Fokker-Planck equations which

describe the consequences of using "colored" noise, which has an exponential correlation function
and a correlation time ~. To leading order in v., the functional-calculus approach generalizes the ~-

expansion result and produces an approximate Fokker-Planck equation free from certain difficulties
which have plagued the less general approximations. Mean first-passage-tine behavior for bistable

potentials, an additive case, is discussed in detail. The new result presented here leads to a mean
first-passage-time formula in quantitative agreement with the results of numerical simulation and in

contrast with earlier theoretical conclusions. The theory provides new results for the multiplicative
case as well.

INTRODUCTION

The functional derivative and the path integral are the
basic tools of functional calculus. ' With them, the con-
nection between a stochastic differential equation and its
associated Fokker-Planck equation can be made transpar-
ent. When a stochastic process incorporates "colored"
noise, i.e., noise with an exponential correlation function
instead of the Dirac-5-function correlation of white noise,
the process is no longer Markovian, Consequently, it no
longer is characterized by a Fokker-Planck equation.
However, to leading order in the correlation time r of the
colored noise, an approximate Fokker-Planck equation
can be found. This r-expansion result has been
achieved using the Furutsu-Novikov method and the cu-
mulant method. The Furutsu-Novikov ' method utilizes
the functional derivative but does not involve the path in-
tegral In th. is paper, the full functional calculus is used
to derive a generalization of the r-expansion result. ' This
generalization removes certain technical difficulties found
in the v-expansion method. Moreover, it solves a recent
conundrum which arose in the study of mean first-passage
times for bistable potentials. '

In this paper attention is restricted to stochastic dif-
ferential equations in only one variable, x:

—x = W(x)+g(x)f (t),d
dt

in which W(x) and g (x) may be nonlinear functions of x.
When g(x) =1, the process is "additive"; otherwise it is
"multiplicative. " The noise function f(t) is assumed to
be Gaussian, and it may be either "colored" or "white. "
In the case of white noise, Eq. (1) is to be interpreted in
the sense of Stratonovich. "' This interpretation is the
one which generalizes unchanged to the colored-noise
case. The Gaussian character of f ( t) is expressed in the
functional calculus by a probability distribution function-
al

P [f]=N exp ——,
' J ds I ds'f (s)f'(s')K (s —s')

(2)

The path integral is also used to define the probability
distribution functional for x(t), the solution to Eq. (1).
This quantity is

P(y, t)= J J &fP[f]5(y —x(t)) . (4)

It is shown below that for white noise, P(y, t) satisfies the
Fokker-Planck equation,

B [~(y)P]+~ B B

By

for which K (s —s'):—(1/2i{,)5(s —s') in (2). In the
colored-noise case, an approximate Fokker-Planck equa-
tion is derived,

—P=-
Bt

—P=-
Bt [W(y)P]

+DB ( )
B g(y)

By By 1 —r6"(y)

r W'(y)g'(y)

[1—r W'(y)]

(6)

for which the correlation function for f ( t) is

(f(t)f (s)) =—exp

such that ~ is the correlation time. The primed functions,
W' and g', are the first derivatives of 8' and g, respec-

in which K is the inverse of the f correlation function,
and N is the normalization which is expressed by a path
integral over f:

'= J J Nf exp ——,
' f ds J ds'f(s)f(s')K(s —s')
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tively, with respect to y. When the v-dependent denomi-
nators in (6) are expanded to leading order in r, then the
~-expansion result is

—P= — [ W(y)P]
Bt By

+D g(y)
B

By By

X [g(y)+rg(y) W'(y) —rW(y)g'(y)]P .

The problem of a bistable potential models many dif-
ferent physical problems. ' Its standard form is given by
the potential U(y) which satisfies W(y)= —U'(y) and is
explicitly given by

U(y) = ——y'+ —y'
2 4

(8)

It has symmetric minima at y =+v'a lb, with an inter-
vening local maximum at y=0 of relative height a 14b
The mean first-passage time for a transition from one
minimum over the local maximum into the other
minimum may be relatively easily measured in both nu-
merical simulations and with analog computers. Analyti-
cally, its calculation requires the solution to an ordinary
differential equation, which in one variable is always for-
mally tractable. ' For these reasons, the mean first-
passage time for the quartic potential in (8) has been stud-
ied with each of these approaches. For the white-noise
case, there is complete agreement among all approaches.
For the colored-noise case, however, a tantalizing conun-
drum has arisen. '

In the case of bistability, the simplest model has
W(y)=ay by and g(—y)=1. The 7 expansion yields the
approximate Fokker-Planck equation, which follows
from (7):

B = B
[«y —by»]3

Bt By

B2
+D {[1+r(a—3by )]PI . (9)

By

Hanggi et al. have computed the mean first-passage time
T for this equation to leading order in r and obtained

' 1/2
a

a steady state, on the average, and (y ) is replaced by its
steady-state value, which is a/b. With these plausible as-
sumptions, Eq. (11) yields a mean first-passage time T in-
volving the exponential factor exp[(a /4bD)(1+2ar)).
This leaves the two puzzles: (1) Why does the r expansion
fail'? (2) What is the justification for Hanggi's ansatz
which produces Eq. (11)?

The functional-calculus approach of this paper answers
both of these questions. First of all, it shows that the r
expansion Fokker-Planck equation (9) is a limiting expres-
sion for a stronger result, the analogue of Eq. (6) for the
bistable potential

—P=-
Bt

[(ay —by')P]

+D
By

1 P
1 r(a —3by )—

(12)

The similarity of this equation to Eq. (11) is obvious. The
calculation of the mean first-passage time requires an in-
tegration of the steady-state solution of the Fokker-Planck
equation. ' Generally, such integrals are not analytically
tractable, and either numerical integration or an approxi-
mate, steepest-descent method is employed. When the
steepest-descent method is applied to (12), the result is
again (10). However, in this case it is possible to execute
the required integral exactly, using parabolic cylinder
functions. Doing so yields the expression

1+2a7
exp (1+2a r)a

1 —a~
(13)

In Eq. (1), f (t) can be either white noise or colored
noise. Consider the white-noise case first. The conditions
on f (t) are that it is Gaussian and has first and second
moments given by

which quantitatively matches the numerical solutions.
These results provide confidence in the functional-

calculus approach to stochastic differential equations in-
volving colored noise. The bistable-potential analysis cor-
roborates the use of Eq. (6) for the additive-noise case.
The multiplicative-noise implications of Eq. (6) will be
tested by measurements of laser noise.

I. FUNCTIONAL CALCULUS FOR NOISE

which exhibits a weak ~ dependence and no ~ dependence
in the exponential factor. Their numerical simulations,
however, show instead a very clear ~ dependence in the ex-
ponential which is quantitatively given by
exp[(a l4bD)(1+2a, )]. Hanggi et al. ' have made a
proposal to explain this discrepancy. They used a pro-
cedure developed by Hanggi' using functional derivatives
to arrive at the approximate Fokker-Planck equation
given by

P= — [(ay b—y )P]—
Bt By

(f(t)) =o,
(f(t)f(s))=2A5(t —s) .

The probability distribution functional is given by

P[f)=%exp K f ds f (s)—

'= $ $ &fexp K f ds f (s)—
Using functional differentiation, one obtains

(14)

(15)

(16)

(17)

1 B2
+D (&1)

1+r(3b (y ) —a ) By

in which (y ) in the denominator is the mean square of y
with respect to P (y, t). It is assumed that the system is in

&P [f]
5f(t)

5N
exp —K f ds f (s)2

5 (t)

XKf(t)ex—p —K f ds f'(s) (18)
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and

N2 J J ~f [ —Kf(t)]exp K—f dsf (s}
(t)

=NK( f (t) ) =0 . (19)

Therefore, one also obtains

5'P [f]
5f(s)5f (t)

K—5(t s)P[—f]+K f(t)f(s)P[f] .

(20)

By using (15), this yields

5'P[f]f5f (s)5f (t)

This implies

K= 1

2A,

and that the K(s —s') of (2) is indeed (1/2A, )5(s —s').
Combining (22), (19), and (18) produces

5P[f] 1 f (t)P [f] (23)

which will prove useful later.
Now, consider the colored-noise case. The conditions

on f(t) are the same as above except for (15) which be-
comes

K5(t ——s)+K'(f(t)f(s) ) (f(t)f(s)}=C(t—s) . (24)

K5—(t s)+K'2) —5(t —s) . (21)
The probability distribution functional is given in (2).
From (3) one obtains

T

ds' s'K t —s'+ ds sK s —t exp ——,
' s s' s s'Ks —s'

=N f dsK(t —s)(f(s)) =0.
Therefore, it follows that

5P [f]
5 (t) f ds K(t —s)f (s) P[f] .

Consequently,

5 P[f]
5f (t')5f (t) f ds f ds'K(t s}K(t' s')f—(s)f(s')—P[fj K(t —t')P[fj—

(25)

(26)

(27)

0= f J Nf, = f ds f ds'K(t s)K(t' —s')(f—(s)f(s')) K(t t')— —5'P[fl
5f (t')5f (t)

= f ds f ds'K(t s)K(t' —s—')C(s s') K(t t')—. ——

This implies

dsK t —sCs —s' = t —s' (29)
Bt y

$ $ Nf P[f)5(y —x(t)}[K(x)+f(t)]

i.e., the kernel K(s —s') is the inverse of the correlation
function C(s —s'). This fact makes (26) useful later.

II. ADDITIVE %'HITE NOISE

Start with (1) and choose g(x)=1. Let f(t) be deter-
mined by (16), (17), and (22). This is the additive —white-
noise case. From (4), it follows that

a
Bt

P= $ J &fP[f—] — 5(y —x(t))x

in which x =(d/dt)x, which is replaced by the right-hand
side of (1). Therefore,

[W(y)P] — $ J &fP[f]f(t)5(y —x(t)) .
a

By By

(31)

Now, use (23) and employ functional integration by parts
to obtain

J J afP[f]f(t)5(y —x(t))

= —2A, $ I &f 5(y —x (t))
5P [f]
5f(t)

=2k. $ $ Nf P[f] 5(y —x(t))
5f(t)

= —2A. ~Nf P[f] 5(y —x(t)) . (32)
By 5 (t)
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From (1), one observes that ( J &fP[f]f(t)5(y —x(t))= —A, P . (37)

d 5x (t),
(

5x (t)
dt 5f(t') 5f(t')

This equation possesses the unique solution

5x (t) = f ds exp f ds'W'(x(s')) 5(s t—')
5f (t')

=6(t —t')exp f ds W'(x(s))

in which 6(t t'} i—s defined by

1, E~E'

6(t —t'}=

(33)

(34)

(35)

Inserting this into (31) yields the Fokker-Planck equation

B B2P—= — [W(y)P]+ A, P .
Bt By 2 (38)

P=—— [W(y)P]
Bt By

III. MULTIPLICATIVE %HITE NOISE

This case is the preceding case with g(x)+I in (1). In-

stead of (31) one now obtains

5x (t) 1

5f(t} 2
(36)

has been justified. This completes the analysis started in
(32). Therefore,

0, t (E'.
The value for t =t' is a consequence of the 5 function in
(34) and the coincidence of its t' argument with the s-
integration limit, t In (3.2) the t =t' value is needed and
the replacement = W'(x), +g(x)5(t t'}-d 5x(t), 5x (t)

dt 5f(t') 5f(t')

+g'(x), f(t) .
5x (t)

(t')

The solution to this equation generalizes (34), and is

(40)

g(y) l &I ~f P[f]f(t)5(y x(t})—. (39)
By

Once again (32) follows. However, (33) is no longer
correct and in turn becomes

5f(t') o s
= f ds exp f ds'[W'(x(s')}+g'(x(s'))f(s')] g(x(s))5(s —t')

=6(t —t')g{x (t'))exp f, ds[ W'{x (s))+g'(x (s))f (s)]

in which 6(t t') is again given—by (35}. Now, (36) becomes

5x (t)
(t)

= —,g(x(t)) .

When this is put into (32), and then into (39), the result is

B BP= — —[W(y}P]+I, g(y} g(y)P,
B

Bt By By By

the desired Fokker-Planck equation for multiplicative white noise.

(41)

(43)

IV. ADDITIVE COLORED NOISE

Consider (1) with g(x)=1 again, but use (24), (29), (2), and (3) instead of (16}, (17}, and (22). This is the
additive —colored-noise case. Once again Eq. (31) is valid, but Eq. (32) is no longer tenable. By using (26) and (29), it is
observed that

P[f]f(t)=P[f) f ds5(t s)f(s)=P[f] f ds f ds—'C(t s')K(s' s)f(s)— —

ds'C (t —s')~ 5P ff]
5f(s')

Functional integration by parts, as in (31), yields

J J Nf Pff]f(t)5(y —x(t))= —f ds'C(t —s') $ $ &fP[f] 5(y —x(t))
By 5f (s')

For 5x (t) l5f (s ), the complete solution (34) is needed. Putting (34) into (45) and then into (31) produces

B B B2

BE By
P= — [ W(y)P]—+ f ds'C(t —s'} $ $ N fP [f]exp f ds W'(x (s)) 5(y —x (t) } .

By
2 0 S

(45)

(46)

This is not a Fokker-Planck equation. ' As it stands the last term cannot be reduced to a term contaimng P(y, t) be-
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cause of the non-Markovian dependence on x (s) for s & t.
Consider the special case of colored noise with an exponentially decaying correlation function, and assume that the

correlation decays rapidly. These conditions are met vvith

DC(t —s) =—exp

and r small. In fact, the white-noise case is given by D= A, a—nd the limit r~0 C.hange variables to t'=t —s' and ob-
serve that

ff ds'C(t —s')exp f ds W'(x(s)) = f dt'C(t')exp J ds W'(x(s))

t

dt'exp ——exp t'8" x t ——, t' 8"' x t i t (48)

in which the integral over W' has been expanded in terms of t'. Neglecting the ( t')i term in (48), which can be shown to
be self-consistently valid for small r, the Markov approximation is obtained from

t

f dt'C(t')exp f,ds W'(s) =—f dt'exp ——+t'W'(x(t))
I,

D
1 rW'(x (t—) )

for sufficiently large t. Putting this back into (46) does yield a bona fide Fokker-Plank equation

(49)

B = B B2P= — —[W(y)P]+D P
Bt By By

i 1 —r W'(y)
(50)

The special case of bistability quoted in (12) is just this equation for W(y}=ay by . If the—r dependence is formally ex-
panded to first order in r, then one gets

P= — [—W(y)P]+D, I [1+r W'(y ) ]PI,B

Bt By By'

which is identical with the r-expansion result for additive colored noise. This equation becomes (9) for the special case of
bistability. Notice that for sufficiently large y, the diffusive term in (9) becomes quite negative, which leads to technical
difficulties in the mathematics and the interpretation of Eq. (9). However, the generalization given by (12), which is a
special case of (50), is free from this behavior, the diffusive term remaining positive for all y, as long as r is not too
large. A return to the analysis of bistability using Eq. (5) comes later.

V. MULTIPLICATIVE COLORED NOISE

Once again start with (1) with g(x)&1. The preceding analyses are valid insofar as yielding (39) and (45). Together
this gives

B B 5x (t)
Bt By

[W(y)P]+ g (y) f ds'C (t —s') J $ &fP [f]5(y —x (t) )
By By 5f (s') (52)

Equation (41) is also still valid. Therefore,

B B B

Bt By
P= — [W(y)P—]+ g(y) J ds'C(t —s') ff W~f P[f]5(y —x(t)}

By By

)&exp f ds [ W'(x (s))+g'(x (s))f (s)] g(x (s')) . (53)

The restriction to an exponential decay for C(t —s ) is again made by assuming (47). By using the change of variables
used in (48) yields, to dominant order in t', the result
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t f
ds'C t —s' exp ds 8 x s +g' x s s g x s'

t

—=—f dt'exp ——exp j t'[ W'{x (t))+g'(x (t))f(t)] I [g(x (t)) t'—g'{x (t)) W(x (t))]0

C
I

=—f dt'exp ——+t'W'(x(t)) [g(x(t)) t'g—'(x(t))W(x(t)))
0 7

D
g(x (t) ) — g'(x (t) ) W(x (t)),Dv.

(54)
1 rW—'(x (t) ) [1—r W'(x (t) )]'

wherein a f ( t) term has been neglected which can be shown to be self-consistently valid. It has also been assumed that t
is sufficiently large compared to r. Inserting the approxitnation expressed by (54) into (53) yields the Markovian approx-
imation

[W(y)P]+D g (y)
B B B

Bt By By By 1 rW'(y—)

rg'(y) W(y)

[1—r W'(y) ]
(55)

When the r dependence is formally expanded to leading order, the r-expansion result is obtained

B B B B

Bt By
[W(y)P]+D g(y} [[g{y)+~g{y}W'(y)—rg'{»W(y)]P]

By By
(56)

Technical difficulties of the type referred to above for
(51}also plague (56), but are eliminated by the generaliza-
tion given by (55).

It should not go unemphasized that the derivation of
(55}, which contains (5) when g(y) =1, is much easier us-
ing functional calculus than the derivation using either cu-
mulants or the Furnstsu-Novikov ' ' identity. More-
over, the technical difficulties of the r-expansion results
are avoided by this generalization.

P= — [ W—(y)P]+ [D(y)P] .B B . B'
Bt By By

(57)

VI. FIRST-PASSAGE TIME DISTRIBUTION

Consider the general one-variable Fokker-Planck equa-
tion

B B 2

Bt By
—Q = W(y} Q+D(y), Q .

By
(62)

While the Fokker-Planck equation (57) describes the prob-
ability distribution P(y, t,y, O) for the variable values be-
tween y and y +dy at time t, starting from y' at t =0, thr
Kolmogorov equation (62} describes the probability distri-
bution Q(y', t,y, O) for the variable values between y' and
y'+dy' at t, starting from y at t=O. Therefore, the prob-
ability that the variable is still in the interval ( —ao, O) at
time t is given by

0
G (y, t) = f dy'Q (y', t,y, O) . (63)

From (62), it follows that

B B B2—G = W(y) G+D(y), G (64)
Bt By By

Even Eq. (55) can be put into this form by making an Ito
shift"' on the streaming term in (56). The steady-state
solution is

with initial condition

1 for y 6( —&x, O)G,O='
0 otherwise . (65)

P, (y) =E exp dx
1 W(x)

D(y) —~ D(x)

in which

0 W(x)
dy exp dx

D (y) —~ D (x)

(58)

(59)

The boundary condition G( —oo, t)=0 is also used. Let
the time that the variable leaves ( —oo, O) be called T. For
small dt, the probability that the variable leaves {—0o, O)
between t and t +dt is given by

G(t) G(t+dt) ————6 dt .
Bt

The lower limits in the integrals should be thought of as a
limit

0 0f dx =lim f dx (60)

especially in the case where U(y) ( U'= —8') satisfies

Therefore, the average of any function of T, f ( T), is ex-
pressible as

(f(T))= —f dt f(t) G(t)—
0 Bt

lim U(y)~ ao . (61) =f(0)+ f dt f(t) G(t)—
dt

Kolomogorov's backward equation' ' corresponding to
(57) is its adjoint:

because G (y, oo ) =0. Consequently, the "mean first-
passage time" is
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T(y)= (—T) = f dt G(y, t) (67) These integrals should again be interpreted in the sense of
(60). As a notational convenience, introduce

starting from y.
The mean first-passage time T(y) satisfies an equation

which follows from (64) and (67):

W(y} T+D(y} T-= —1,i' By

wherein the initial condition (65) was used. Let P=—T . P
satisfies

W(x}f{y)=exp dx
D(x}

The solution to (68) can be written as

T(y)= f dx P( —~)
P(x)

or

8'P+ Did' = —1 (69) t{(z) 1

P(x) D(z)
(72)

The solution is

The boundary condition T( —ao ) =0 is manifestly satis-
fied, but the boundary condition T(0)=0 requires

{ti(y)=exp —f dx P( —00)
W(x)
D(x) dx dz z x 1 Dz

{(}(—oo ) = 0
dx1 x

Thus the final result is

(73)

T(y) =
0

dx
1P(x)

1 '
d

"
d p(z) 1 i'

d
~ 1{(z) 1dx dx dz

f(x) —~ —~ g(x) D(z) —~ —~ f(x) D(z)
(74)

The boundary conditions, T( —ao ) = T(0}=0, correspond
to "absorbing" boundaries at y=0 and y = —cc. For a
boundary such as y= —ao where U( —oo)=00, a "re-
fiecting" boundary is often used and is expressed by
T'( —ao )=0 instead of T( —oo )=0. This means that in-
stead of (74), one gets

T(y)=T( —ao) —f dx f dz . (75)

Now, ?(0)=0 implies

T( —ao)= f dx f dz

11ITl X
1

(x)

0
dX—R g(x)

(80)

T„(y)=(T")=n f dt t" 'G(y, t) for n &0. (81)

From (66), To(y) = ( T ) = 1. From (64), it follows that

This is the situation for the bistable potential discussed
below.

Not only the mean first-passage time, T(y), but the en-
tire first-passage-time distribution is computable. Define
T„(y) by

Together, this yields

?-(y)= f'd. f" d.

Notice also that

(77)

W'(y) T„+D(y) T„= nT„—
Qy

2
(82)

with boundary conditions T„(0)=0 and T„(—ao ) =0, or
T„(0)=0 and T„'(—co)=0. The Fourier transform of
the first-passage-time distribution is the characteristic
function iI~(k,y) defined by

g(y) /D (y)

f dx [1{t(x)/D(x)]

which converts (77) into its equivalent

0 1 X

T(y}= f dx f dzP(z) .
D(x)P, (x}

(78) (ik)"4(k,y)={exp(ikT))= g T„(y) .
n!

It satisfies the equation which follows from (82}
a'

W(y) N+D (y ) i' = ik4—
By By

(83)

Formula (74) reproduces (77) when U( —ao ) = oo, pro-
vided one shows

with iIi(k, —ao }=ip(k,O) = 1, or ili{k,O) = 1 and
N'(k, —ao ) =0. The second choice for boundary condi-
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Thus we define the integral kernel K(y, z') by

K(y,z')= f dx f dz 5(z —z') .
o x (z)

f(x) D(z)
4(k,y)=1+ik f dx f0 x g(z) 4(k, z) .

P(x) D(z)
(85)

Therefore,

tion is of interest below. It yields an iterated solution to
(84) generated by

(86)

0
4(k,y)=1+ik f dz'K(y, z')+(ik) f dz, f dzzK(y, z&)K(z&,z2)+

0 0
+(ik) f dz, f dz„K(y, z& ) K(z„&,z„)+

4(k,y) can either be Fourier transformed into the distri-
bution function of first-passage times or it can be used as
a generator for first-passage-time moments:

f(z) I' W(y)

&„(y)=( —i)" @(k,y)
~ k

VII. BISTABILITY

(88) =exp —f dy exp f dy . (96)
W(y) ' W(y)
D(y) o D(y)

The approximation

The case of the bistable potential is governed by (8).
Recent work' has been concerned with the addi-
tive —colored-noise case, i.e., g (x)=1 in (1). The r expan-
sion yields the Fokker-Planck approximation given in
(51). This means that in (68), D(y) is given by

W(y) 1 x
exp — dy =-exp

D(y) 2 a'

is justified because W(0) =0, and cr is given by

1 W'(0} W(0)D'(0) W'(0)

g D(0) D (0) D(0)

(97)

(98)

D (y ) =D [1+r W'(y) ] . (89) The expression for 7( v'a—/b ) in (95) is dominated by
The functional-calculus result (50), which is stronger, im-
plies T( — a/b )= f dz exp f dy

D
1 rW'(y)—

Hanggi's ansatz' ' implies

(90)

X —,'(2n.cr )' ' (99)

D(y) = D
1+x(3b (y') —a)

(91)

in which the explicit expression W(y) =ay by has be—en
used.

This situation is the case for which (77) is valid for the
mean first-passage time. Moreover, P, (y) may be used to
determine the most probable y for the initial value. P, (y}
is maximum when

in which (96) and (97) have been used. The z dependence
of D(z) is weak in each of the three cases (89)—(91). The
exponential factor in (99) has its maximum at
z = —&a/b if r-dependent corrections are ignored. This
implies the further approximation, valid to leading order
in r for each of the three cases:

' 1/2
m D (0) 1+2ar

2a D
f'(y) g(y)D'(y)
D (y) D'(y)

This translates into

(92)
X f dz exp f dy

0 W(y)

W(y) —D'(y) =0,
which implies

y = —v a/b +Dr

(93)

(94)

where a is a constant. Therefore, it suffices to compute

The remaining integrals have produced the conundrum
discussed in the Introduction. Hanggi et a/. ' have
treated (100) by the method of steepest descent. The max-
imum for the exponential integrand of (100) occurs when
the exponential's argument is maximal, which occurs
when its derivative vanishes and its second derivative is
negative. This happens when W(z) =0 and

T( —&alb )= f ~ dx f dz (95} W'(z)

D(z)
W(z)D'(z)

D (z)

W'(z)

D(z)
(101)

Now, I/P(x) for x E( —v'a/b, 0) achieves its maximum
at x=O and has a Gaussian profile close to x=O. Using
(71), we note that

The solution is z = —v'a/b which is independent of the
choice for D (z). The steepest-descent approximation to
(100) becomes
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T( —&a/b )=
2Q

' 1/2

1/2
mD (0) 2m D ( —v'a /b )

2Q 2Q

1+2ar I &.~~ -W(y)
dy (102)

Now, even with the stronger version of (89) and (90), this yields

T( —&a/b )=
2a (1 ra—)

1+2Qv
1 —Qw

2nD
2a (1+2ar)

1/2
Q4'

1/2
1+2Q~ 1

exp —f dy [ W(y) rW—(y) W'(y)]

(103)

because W( —&a/b ) = W(0}=0. This last pair of identities kills any r dependence in the exponential factor! Hanggi s
ansatz, (91), however, yields

T( — a/b ) =— exp (1+2ar) (104)
2a 4bD

because D(0)=D( —&a/b )=D/(1+2ar) when (y )=a/b is used. This result, of course, is preferred because it
agrees with the numerical simulations.

The conclusion ' that the functional-calculus approach which produces (100) has somehow failed is unwarranted.
Only the applicability of the method of steepest descent needs to be questioned. Instead, it can be shown that (100) may
be integrated exactly, and yields a result commensurate with (104) when this is done. The method of steepest descent is
insensitive to the quartic dependence in U which determines the behavior of the integrals in (100).

These facts are seen as follows. Using (90), we begin with
' 1/2

T( &a/b )-=-
2a (1 ar)—

mD

2a (1 ar)—
' 1/2

dzexp ——U z + —,wR' z (105)

and then look at the integral

I= x exp ——U x + —,~8' x
0 1 I

ce D

dx exp ————x +—x + ,'r(a x +b —x 2abx )—
00 D 2 4

0
x exp

Q

2D
Q

2D
1 x6n

n1

5
ahr 4 ~ br—
D „2D (106)

%'e then change variables to y =x, which implies
dy =2x dx. Therefore, I becomes

Q —Q 7 6 —4Qb&
dy y exp

0 2D 4D y

and

U(n, —x)= 1
exp( ——,x )

I (n+ —, )

)& f dss" " 'exp(xs ——,'s ) .

xg
n=0

I
y

3Pl

nt (107)

This means that
The parabolic
tities"

cylinder functions satisfy the iden-

f dxs" '' 'exp(xs ——,'s )=n exp( ,'x )V(n, x)—.

U(n, —x)=, V(n, x)
I (n+ —, )

(109)

for x ~0 and n an integer (108) If s =[(b 4abr}/2Dj'~ y is sub—stituted into (107), then
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1 2DI=—
2 b —4ab~

1/4

1 2D
n! b —4abw

Xn exp( ~x )V(3n, x),

3n /2

(110)

Inserting this into (112) gives
' 1/2

a (1—ar)
exp

4bD 1 —4a ~a —a ~2
(114)

The ~ dependence in the argument of the exponential has
the r expansion 1+2ar. Returning to (105), the mean
first-passage time becomes

a —a r2

x =
2D

2D
b —4abv

' 1/2 T( —v'a/b )=— exp (I+2ar)I+2ar a
a 2 1 —ar 4bD

(115)

Since only the dominant v dependence is desired, this
yields the approximation

1/4
1 2DI=—
2 b —4ab~

trexp( —,x ) V(O, x) . (112)

The numerical simulations were performed for a =b =1,
r &0.05, and D=0.05 and 0.1. The values for x in (111)
are, respectively, v 10 and ~5. These values justify the
asymptotic expansion for V(O, x) given by

This proves that the functional-calculus approach
agrees with the numerical simulations. Hanggi's ansatz
has been justified, but it need not be invoked since (12) has
been shown to work without approximation. The general
result embodied by Eq. (6) will be tested in the near fu-
ture.
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